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Rommel Thiago Jucá Ramos Federal University of
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Foreword

The last 10 years were considered to be a new era of bioinformatics and computational biol-

ogy, which widens the pace of scientific invention and development in life science. The incli-

nation of computer science in the area of agriculture has changed the way we usually do

research related to plants in previous decades. To address the advances of bioinformatics in

agriculture, the editors, Dr. Pradeep Sharma, Prof. Dinesh Yadav, and Prof. Rajarshi Kumar

Gaur, have undertaken the thorny assignment of capturing the status and future trends of crop

production systems. Bioinformatics in Agriculture: Next-Generation Sequencing Era, deliv-

ered by the proponents of Agroinformatics, offers a wealth of information about the scientific

breakthroughs and discoveries aiming to meet the global challenges of the diminishing

amount of arable land as well as energy shortage, malnutrition, and famine. Bioinformatics

tools enable the generation, collection, and interpretation of biological data on key factors
that are responsible for better crop yield. This book presents the high-throughput technology, which is used for the gen-

erating of data in the form of biological sequences that could be DNA, RNA or protein. The use of NGS has introduced

a new age of omics approaches that revolutionize information generation in agriculture improvement.

The book consists of 37 chapters that are distributed in four sections: Section I, Bioinformatics and Next Generation

Sequencing Technologies, Section II, Omics Application, Section III, Data Mining and Markers Discovery, and

Section IV, Artificial Intelligence and Agribots.

The book highlights crop improvement such as yield enhancement, biotic and abiotic resistance, genetic modifica-

tion, bioremediation, food security, etc. It explores how the different omics technology independently and collectively

would be used to improve the quantitative and qualitative traits of crop plants. It explores how the different omics tech-

nologies, especially the most recent ones (proteomics, metabolomics, nutrigenomics, and metagenomics) would be used

to improve the quantitative and qualitative features of crop plants. The book also discusses more efficient farming prac-

tices of recent technological advancements and solutions to current bottlenecks in farming. Application of Artificial

Intelligence or machine intelligence across the farming sector is also mentioned, which could act to be an epitome of

shift in how farming is practiced today. The chapters contain numerous beautiful and revealing illustrations helpful for

the reader to grasp the essence of the message. Throughout the book, the approaches have been scrutinized with a criti-

cal eye as is characteristic of dedicated science professionals.

I am confident that this excellent book provides an insightful overview of the prospects and challenges of plant bio-

technology, both to researchers and students in this fascinating field. It is thrilling to see editors take on this project and

important topics. I hope that many readers of the book will become informed advocates of bioinformatics.

Nagendra Kumar Singh

National Institute for Plant Biotechnology,

Pusa Campus, New Delhi, India
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Preface

Agricultural biotechnology is playing a significant role in developing appropriate strategies to be utilized by breeders

for crop improvement programs. With an estimated world’s population of 7�9 billion by 2050 and climate change, the

goal of achieving global food and nutritional security will be extremely difficult by using conventional methods of agri-

culture. Technological innovations as the outcome of biotechnological research in the form of emerging omics-driven

tools seem to have immense potential to deliver in near future. The recent revolution in genome sequencing technolo-

gies popularly referred to as next-generation sequencing (NGS) resulted in deciphering of several genomes of important

crops along with model crops. With the drastic increase in the genome sequence information, its storage, retrieval,

annotation, and analysis need efficient computational intervention in the form of emerging multidisciplinary science of

bioinformatics. The “Science of Omics” has several subbranches but the most popular among them are genomics (struc-

tural, functional, and comparative); proteomics; and metabolomics, where efficient tools have been developed and are

being applied in research.

The recent developments in agriculture need special attention among the students and researchers so that they get an

insight into the relevance of technological innovations with an ultimate aim for crop improvement to sustain life.

Keeping this in our mind, we thought of coming with a book which could provide all aspects of agricultural research

where bioinformatics has a central role to play. We are really happy to share that we got the best contributions from

experts all over the world who discussed not only the basics about the omics and bioinformatics but also the recent

advances such as big data analysis, artificial intelligence, and deep learning.

The advances in biotechnology such as the NGS technologies have required the use of bioinformatics in agriculture

and crop management. Computational biology manages biological data that help in decoding of plant genomics and pro-

teomics. Bioinformatics develops algorithms and suitable data analysis tools to infer the information and make discov-

eries. Application of various bioinformatics tools in biological research enables storage, retrieval, analysis, annotation,

and visualization of results and promotes better understanding of biological system in fullness. The exponential growth

of sequencing and genotyping technology and the parallel growth of bioinformatics and online biological resources can

successfully be harnessed for innovative breeding and pathogen diagnostic approaches.

In addition, we believe that this book will serve as a useful reference for both bioinformaticians and computational

biologists in the omics era. The chapters will be distributed in four sections.

Section I: Bioinformatics and next-generation sequencing technologies
(Chapters 1�14)

This section is devoted on bioinformatics as a central tool for the interpretation and application of biological data.

Using various omics tools implemented by a wide range of programmatic languages, bioinformatics tools organize, ana-

lyze, and interpret biological information at the molecular, cellular, and genomic level which can be used for crop

improvements. The combined power of NGS and bioinformatics is vital for genomics, proteomics, transcriptomics, and

metabolomics that can help for the crop improvements.

Section II: Omics application (Chapters 15�26)

This section describes the application of various omics technology and their holistic approach for quantification and

characterization of genes, transcripts, proteins, and metabolites. The chapter discussed the genomic studies of crop

plants such as rice, maize, wheat, tomato, potato, and tea that provided the insights into total number of genes, gene

organization, genetic mapping, and role of genes in various metabolic processes. Approaches of bioinformatics tools

toward abiotic and biotic stresses are the part of this section.
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Section III: Data mining and markers discovery (Chapters 27�33)

This part of the edited book deals with the need of utilization of information and communication technologies, which

will enable the extraction of significant data from agriculture in an effort to obtain knowledge and trends. The chapters

also describe the data mining and marker-based technology that provide information about crops and enable agricultural

enterprises to predict trends about customer’s conditions or their behavior. The need of bioinformatics of agriculture

data and how data mining techniques can be used as a tool for knowledge management in agriculture should be consid-

ered by researchers.

Section IV: Artificial intelligence and agribots (Chapters 34�37)

This section overviews about the current implementation of automation in agriculture, the weeding systems through the

robots and drones. The deep learning, artificial intelligence, and big data methods in agriculture are discussed along

with automated techniques. The implementation of all these technologies in agriculture has brought an agriculture revo-

lution. This technology has protected the crop yield from various factors such as the climate changes, population

growth, employment issues, and the food security problems.

The book is the contribution of the renowned workers and authors who are the pioneers in the field of bioinformatics

over the world. Moreover, the editors will refine the authors’ views in simpler manner that can be easily understandable

by the readers. This book is designed to be self-contained and comprehensive, targeting professors and scientists work-

ing on bioinformatics and its related fields, such as computational biology, genomics, applied data mining, machine

learning, and artificial intelligence. This edited book will also helpful to policy makers and other stakeholders to formu-

late effective policy recommendations for crop improvements.

Pradeep Sharma1, Dinesh Yadav2 and Rajarshi Kumar Gaur2

1ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India,
2Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University,

Gorakhpur, Uttar Pradesh, India
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Chapter 1

Advances in agricultural bioinformatics:
an outlook of multi “omics” approaches

Nisha Singh, Megha Ujinwal and Anuradha Singh
ICAR-National Institute for Plant Biotechnology, New Delhi, India

1.1 Introduction

For an ever-increasing global population, it is vital to improve food productivity in the 21st century (Singh, Bhatt,

Rana, & Shivaraj, 2020; Singh, Mahato, et al., 2020; Singh, Rai, & Singh, 2020). Plants have not only served as food

but also other resources such as resin, oil, fuel, dyes, drugs, and secondary metabolites (Challam, Nandhakumar, &

Kardile, 2019). Recent advances in plant biotechnology have been greatly shifted from genetically modified crops and

gene manipulation to multiomics approaches. Novel approaches entail that phenomics, genomics, transcriptomics, prote-

omics, metabolomics, ionomics, and bioinformatics have great potential to identify and characterize the new traits in

plants to meet environmental status (Lepcha, Kumar, & Sathyanarayana, 2019). Due to fast development of omics tools,

not only quality, nutrition composition, and taste of food crops increase but also the agricultural production, crop pro-

tection, and agricultural economics also develop very well (Singh, Bhatt, et al., 2020; Singh, Mahato, et al., 2020;

Singh, Rai, et al., 2020). The application of multiomics methods has enhanced the uniformity and predictability of plant

breeding (Van Emon, 2016). Omics has also provided insight into the molecular pathways of insect pesticide resistance

and plant herbicide tolerance, allowing for more effective pest management. It enables a system biology approach to

work out the complicated interactions between genes, proteins, and metabolites in an interested trait/phenotype.

Chemical analytical procedures, bioinformatics, and computer analysis are all used in this integrated approach to

improve crop protection and improvement. It also accelerated the development of genome-scale resources in applied

and emerging model plant species and boosted translational research by integrating knowledge across plant species

(Mochida & Shinozaki, 2010). Generally, crop traits are typical quantitative traits, controlled by multiple genes. That’s

why highly throughput omics techniques are integrated with bioinformatics tools to identify the factors affecting the

growth and yield of food crops (Rhee, Dickerson, & Xu, 2006). Due to next-generation sequencing (NGS) technology,

crop productivity and their research field have been explored. NGS is greatly accepted in targeted genomic regions,

transcriptomics, whole-genome sequencing, and low-throughput practices such as genome-by-sequencing (GBS)

(Poland et al., 2012; Semba, 2016).

Interdisciplinary techniques are required for plant breeding to increase crop production and solve breeding chal-

lenges (Moose & Mumm, 2008). As a result, approaches such as high-throughput genomics, proteomics, transcrip-

tomics, and bioinformatics are critical in increasing the production rate for enhanced crop growers in order to expedite

genetic gain. This new sector has the potential to provide a platform for more precise gene functional prediction in a

range of complex situations. In this chapter, we address the developments in agricultural bioinformatics and how mul-

tiomics approaches allow accurate breeding and overcome barriers to crop improvement (Fig. 1.1).

1.2 Different types of “omics” approaches

1.2.1 Phenomics

The introduction of new crop types and improved production technologies, such as contemporary irrigation methods, pesti-

cides, synthetic nitrogen fertilizer, and other management techniques, contributed to a substantial increase in food produc-

tion due to the Green Revolution in the 1960s. (Rahman et al., 2015). The recent development in phenotyping techniques
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for plants and DNA sequencing, along with the study of massive datasets, has given rise to the term “phenomics.”

Phenomics is the description of all phenotypes, ranging from molecules to organ levels, at various levels. The word “phe-

nomics” was coined by Steven A. Garan in 1996. The term “phenomics” defines the imaging techniques that allow scien-

tists and researchers to learn about plants at their root or whole plant level and the inner workings of the leaves. The term

also refers to the entire organism research, which involves the use of the high-performance phenotyping and the data analy-

sis in terms of development, performance, structure, architecture, and data acquisition (Pasala & Pandey, 2020). Phenomic

technology can be used to research large-scale individual cells, leaves, or plants, that is, ecosystems. Phenomics is the sci-

ence of the processing and analysis of large-scale phenotypic data (Heffner, Jannink, & Sorrells, 2011; Lu, Savage, Larson,

Wilkerson, & Last, 2011). It is further interconnected with other “omics” technologies such as genomics, transcriptomics,

and metabolomics in order to evaluate plant output in the field and link it to the core molecular genetics. High-throughput

phenomics, which included imagery techniques, was used to phenotype multiple plant populations in a short amount of

time (Yang et al., 2020). 3D imaging, infrared imaging, fluorescence imaging, visible light scanning, and magnetic reso-

nance are the examples of phenomic high-throughput techniques (Sozzani, Busch, Spalding, & Benfey, 2014).

� In 3D imaging techniques, plant pots move through an imaging chamber on a conveyor system. Automatically 3D

models are generated in a computer. (Tsaftaris & Noutsos, 2009).
� Thermal infrared cameras use light to investigate plant-canopy temperatures in the far-infrared spectrum area from

15 to 1000 nm. The temperature rise will further help research production, salinity and drought tolerance, and photo-

synthesis efficiency (Nasarudin & Shafri, 2011).
� When an object refracts light at a certain wavelength while absorbing light at a different wavelength, a fluorescence

picture appears. This technique facilitates the photosynthesis process and plant health measurements. Chlorophyll

fluorescence is used to research the effect of various genes or environmental factors on photosynthesis performance

(Baker, 2008; Maxwell & Johnson, 2000).
� In visible light scanning, a difference in color provides an estimate of the plant/leaf senescence. The senescence of

matured leaves represents mechanisms of escape or avoidance adopted by the plant under conditions of water stress,

whereas stay-green genotypes under water stress will continue the photosynthesis process and are known as tolerant

(Howarth, Gay, Draper, & Powell, 2011).
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FIGURE 1.1 Various disciplines of omics research.
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� Magnetic resonance imaging is a type of imaging that is commonly used to analyze plant roots. The root images are

taken using a magnetic field and radio waves in the same way that bodily organs are imaged in medicine (Borisjuk,

Rolletschek, & Neuberger, 2012).

Study in crop phenomics incorporates agronomy, life sciences, information technology, mathematics, and engineer-

ing and integrates high-performance research (Fig. 1.2). Computing and artificial intelligence (AI) technologies in a

dynamic setting are used to explore diverse phenotypic knowledge on crop growth. The ultimate objective is to develop

an efficient technological infrastructure capable of high-throughput, multidimensional, big data, intelligent crop pheno-

typing, and automatically measuring manners (Zhao et al., 2019). After identifying the necessity for numerous traits to

be phenotyped quickly and reliably, several next-generation and high-throughput plant phenotyping platforms (HTPPs)

were developed to correctly measure trait values and evaluate variance between individuals (Hartmann, Czauderna,

Hoffmann, Stein, & Schreiber, 2011). HTPPs have enabled better approaches to the link between characteristics, plant

development, growth, and reproduction in a variety of situations (Brown et al., 2014). This leads to a better understand-

ing of the plant’s complete phenomenon in a wide range of environmental and growth settings.

1.2.1.1 Applications

1. Abiotic stress—In different environmental conditions, drought-tolerant wheat crops are used with different quantities

of water at different growth stages. Researchers have to research the productivity of crops in the field over an entire

growing season to breed drought-tolerant wheat. Under drought stress conditions, phenomic remote sensing technol-

ogy can measure plant growth, canopy temperature, and other characteristics. (Berger, Parent, & Tester, 2010; Chen

et al., 2014; Munns, James, Sirault, Furbank, & Jones, 2010).

2. Rapid and efficient mutant screening—In the domain of phenomics, measurements can be made on multiple plants

at the same time and during the course of the growing season. Phenomic approaches have been used to identify and

control field disease epidemics and pathogen root assaults, as well as to screen germplasm and simulate biomass

output (Miyao et al., 2007).

3. Study of various physiological processes—There are two main photosynthetic pathways of supercharging photosyn-

thesis plants, that is, C3 and C4. Researchers in phenomics want to replace the rice C3 pathway with a more suc-

cessful mechanism of C4. C4 plants may concentrate carbon dioxide within the leaf and photosynthesize more

effectively than C3 plants. In Rubisco enzyme, the inefficiency of photosynthetic performance is a key limiting
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FIGURE 1.2 Steps involved in phenomic studies.
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factor. Using phenomics, researchers are looking for wheat types with increased Rubisco production and photosyn-

thetic rates that can grow well under nutrient deficit, drought, and salinity (Baker, 2008).

1.2.1.2 Challenges

Crop yield is the product of complex dynamic processes that occur between the genome, the climate, and management.

In crop breeding programs, however, none of this complex knowledge is used to affect the output of a specific geno-

type. The challenge is to develop nondestructive methods that can be used to rapidly quantify performance traits over

time and inform selection decisions on high numbers of genotypes in the field. In order to calculate crop output, agrono-

mists and farmers often currently have to rely on challenging and damaging methods and lack the resources to track

crop performance in the field. Phenomics may provide some strategies to improve the efficiency of farm-scale crop

assessment (Zhao et al., 2019).

For crop morphological, structural, and physiological data, we emphasis three multicharacteristics: multidomain

(phenomics, genomics, etc.); multilevel (conventional small to medium scales up to omics on a broad scale); and multi-

scale (crop morphology, structure, and physiological data from cell to whole plant). The association study in the new

age called “-omics” does not satisfy the single and individual phenotypic information, and the systematic and full phe-

nomic information will be the basis for future research (Coppens, Wuyts, Inzé, & Dhondt, 2017).

1.2.2 Genomics

Hans Winkler coined the term “genome” in 1920 to describe a haploid set of chromosomes with their genes, whereas

Thomas Rodrick coined the term “genomic” to describe the structure, function, and inheritance of an organism’s

genome. (Griffiths et al., 2005). Genomic knowledge has provided perception into the total number of a gene, gene

mapping, gene organization, and role of genes in various metabolic processes. Earlier, Sanger technology for DNA

sequencing was quite expensive, time�consuming, and laborious. Innovation in DNA sequencing, that is, NGS technol-

ogies prompted a standard change in the field of genomics (Lister, Gregory, & Ecker, 2009) (Table 1.1). NGS technolo-

gies avail a widespread platform that provides deep knowledge of genomic sequences (Metzker, 2010; Pollard,

Gurdasani, Mentzer, Porter, & Sandhu, 2018).

Resequencing combined with reference genome sequencing outcomes is a prominent application that fulfils the fea-

ture of NGS technologies (DePristo et al., 2011). Even polymorphisms in ecotypes and cultivars closely related to DNA

polymorphisms, such as single-nucleotide polymorphisms (SNPs) and insertion�deletion polymorphisms, were classi-

fied using NGS-based resequencing (InDels).

As a result of rapid technological advances in the omics area, we need to use available genomic research for many

plants of nonmodel and model species which led us to recognize another translation field of plant science, that is, plant

genomics. Advances in plant genomics, huge array of denovo sequencing, assembly, annotations for can be easily done

in nonmodel plant species. Further we can developed a costeffective genotyping technologies to enrich breeding pro-

gram. For instance, Arabidopsis thaliana, a model plant of 125Mb, 25,489 individual genes, and 14% recurring ele-

ments, published in 2000, was the first sequenced genome for plants (UNFAO, 2015). More than 109 plant genomes,

21 monocots and 83 eudicots, 10 model and 15 nonmodel plant genomes, and 5 nonflower and 69 plant species with 6

TABLE 1.1 Different NGS technologies for genomic sequence.

Technologies Applications References

454 FLX (Roche) Targeted resequencing (amplicon sequencing), metagenomics,
transcriptome sequencing

Zhang, Zhang, Hu, and Yu
(2011)

Hiseq (Illumina solex) Genome resequencing, genotyping metagenomics Bennett, Barnes, Cox, Davies,
and Brown (2005)

SOLiD and PacBio RS
(Pacific Biosciences)

Quantitative transcriptomics and genotyping Eid et al. (2009)

Ion Torrent De novo genome sequencing, target resequencing, genotyping,
RNA-seq on low complexity

Rothberg et al. (2011)

NGS, Next-generation sequencing.
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model crops and 15 relative wild crops were completely sequenced until 2015 (Michael & VanBuren, 2015). The pro-

cessing of biopharmaceuticals and industrial compounds cannot be integrated into plants prior to the omics period.

Studies of gene expression classify phenotype products of functional genes which can be used to boost the seed. The

desirable phenotype can be generated faster than conventional plant reproduction by adding a particular gene to the

plant or knocking down a gene with RNAi (Ahmad et al., 2012).

GWAS (genome wide association study) offers a wider view of working and interaction of genes. Progress in

genome technology has allowed us to make model crops with appealing economic features. In various fields of crop

biotechnology, genome sequencing, subsequent functional annotation, and molecular analysis were utilized (Yadav,

Kumar, Kumar, & Yadav, 2018). SNPs are the most common type of DNA sequence variation found in human gen-

omes. It was discovered in the genome’s coding and noncoding regions. As a result, the creation of a high-density SNP

genotyping chip is critical for studying deep genetics and functional genomic applications in many crop species. These

genotyping chips are extremely valuable for phylogenetic investigations, germplasm characterization, association map-

ping, background selection and evolutionary research, bulk segregant analysis, and the creation of high-density linkage

maps. (Singh et al., 2015).

In this context, several SNP genotyping have been developed in different crops and animal species: rice (Chen

et al., 2014; McCouch et al., 2010; Singh et al., 2015; Zhao et al., 2011), sunflower (Bachlava et al., 2012), soybean

(Song et al., 2013), oil palm (Kwong et al., 2016), maize (Ganal et al., 2011; Unterseer et al., 2014), wheat (Wang

et al., 2014; Winfield et al., 2016), and pigeonpea (Saxena et al., 2018; Singh, Bhatt, et al., 2020; Singh, Mahato, et al.,

2020; Singh, Rai, et al., 2020) and chicken (Kranis et al., 2013) and cattle (Rincon, Weber, Van Eenennaam, Golden, &

Medrano, 2011). Of them only two are entirely genic-SNP genotyping chips based on single-copy genes, that is, for

rice “OsSN Pinks” 50K (Singh et al., 2015) and pigeonpea “CcSNPnks” 62K (Singh, Bhatt, et al., 2020; Singh,

Mahato, et al., 2020; Singh, Rai, et al., 2020). It comprises multiple SNPs per gene, allowing gene-based haplotype

association analysis.

In genomic applications, GWAS becomes an efficient tool for the identification of complex traits into plant genetics

(Atwell et al., 2010). GWAS offers a number of advantages over traditional gene mapping methods, including the fact that it

is more successful in plants than in people. In an ecological context, mapping tools can be used (i) to separate adaptive

genetic variation from structured background variation, (ii) Quantitative trait loci (QTL) were first discovered in biparental

crosses in plants, but they were limited in allelic diversity and chromosomal resolution. By offering better resolution, typi-

cally to the gene level, GWAS overcomes numerous drawbacks of classical gene mapping, and (iii) utilizing samples from

previously well-studied groups where frequent genetic differences are linked to phenotypic variance (Brachi, Morris, &

Borevitz, 2011). The objective of “agricultural genome,” through the analysis of crops or livestock genomes, is to find novel

solution for the safety of the food industry, and sustainable productivity knowledge for the other aspects such as development

of energy or design (Van Borm et al., 2015; Vander Vlugt et al., 2015; Wilson & Roberts, 2014).

1.2.2.1 Applications of genomic technologies

1. Genome sequencing and gene prediction—With the advancement of NGS technologies, we are allowed to predict

gene functionality through comparative genomic studies. The first full genome sequencing of A. thaliana, discover-

ing 25,000 functional genes, is compared with newly sequenced genomes to discover new genes by comparative

genomic studies. Model and nonmodel plant species’ comparative genetics will classify an arrangement of their

genes with respect to each other, which is then used to transfer knowledge from model crop systems to other food

crops (Yadav et al., 2018).

2. Analysis of genetic variation and trait-specific marker mapping—As an important instrument for early detection of

desired characters in the progeny, molecular markers have been identified. To access and amplify the variety of eco-

nomically important traits of crop plants, knowledge of molecular markers can now be applied (Collard & Mackill,

2008). In the processing of large sequences and identification of SNP or SSR (simple sequence repeat), molecular

markers are found throughout the genome, NGS technologies have made it possible (Salgotra, Gupta, & Stewart,

2014). These molecular markers have been used to produce genetic and physical maps and to classify the regions

responsible for crop adaptation to different conditions of stress (Varshney et al., 2013). Based on their cosegrega-

tion, genetic maps reflect the location of markers in the linkage community. The creation of genetic maps with

increased marker density has led to NGS technologies. To replace QTL mapping with association mapping, these

enriched maps have been used. The QTL mapping connects a wider genomic region with specific features, but as it

uses more markers, association mapping provides higher resolution. Thus, as a molecular characterization tool, asso-

ciation mapping is more informative and accurate.
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3. Genetic improvement of crop plants—Omics studies have contributed to the advancement of agricultural science for

food crop enhancement, feedstock, and environmental maintenance. Genomic sequencing and studies of gene

expression have helped to classify the functional genes associated with a specific phenotype, and this information

may be used by incorporating genes or posttranscriptional gene silencing to boost crop plants (Ahmad et al., 2012).

The development of functional foods such as drought-tolerant maize, higher grain-producing rice (Ashikari et al.,

2005), and bananas with longer shelf life has been made possible by genomic technologies (Mehrotra & Goyal,

2013). Plants are subjected to mutagenic reagents, popularly known as mutation breeding, for the development of

designer crops with desired economic traits (Fig. 1.3). Marker-assisted breeding has chosen the progeny with the

ideal character. To boost agricultural crops, molecular markers such as SSR and SNPs discovered by genome

sequencing techniques have been applied (Salgotra et al., 2014).

1.2.2.2 Challenges of genomics in agricultural field

Agriculture has substantial problems in exploiting the deluge of genomic data from various sources and formats for

crop development, such as the assembly of long reads of genomic sequencing and the presence of highly repetitive

DNA in the plant genome sequence (Hu, Scheben, & Edwards, 2018). The gaps in the genome sequence will cause

inaccuracies in the final draught sequencing. Polyploidy and heterozygosity in agricultural crops provide difficulty dur-

ing the construction of their sequences. The functional annotation of numerous genes discovered has yet to be com-

pleted (Yadav et al., 2018)

1.2.3 Transcriptomics

The “transcriptome” is defined as “a complete complement of mRNA molecules formed by a cell or cell population.”

The term was coined by Charles Auffray in 1996 (McGettigan, 2013). The analysis of RNA profiles within the cells at

a given point in time is “transcriptomics.” In addition to RNA coding, cells often have large non-RNA coding

sequences. Because of its importance, it is not as straightforward as studying the transcriptome of a cell or its complex-

ity. However, the recent advancement of transcriptomic technology has allowed the transcriptome of a living cell to be

characterized and untie the molecular base to strategically increase the development of crop plants (Pandit, Shah, &

Husaini, 2018). DNA transcribing genetic information into RNA and RNA translated to protein. The core dogma of

molecular biology is focused on various aspects of biological functions of cells, tissues, and species, where RNA itself

is the main player for mediating the expression of genes and proteins. Thus RNA plays an important role in transcribing

the DNA message (Pertea, 2012).

Transcriptomics, also known as expression profiling, is a study of mRNA expression levels in a specific cell popula-

tion and provides information on expressed sequence tags (EST) in a specific tissue at a certain time. Since it is primar-

ily a depiction of the genes which actively expressed under different conditions at any given time, and the same gene

can generate many transcripts due to alternate splicing, transcriptomic is a dynamic, except in the case of mutation,

FIGURE 1.3 Different regulation of genomics used in agriculture.
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unlike genome, which is approximately fixed for a specific cell line (Van Emon, 2016). Transcriptomics explore the

way gene expression patterns change due to inner and external influences such as biotic and abiotic stresses (Valdés,

Ibáñez, Simó, & Garcı́a-Cañas, 2013). Advancements in NGS technologies have made it possible to obtain cost-

effective, useful transcriptome assemblies for gene annotation (Mochida & Shinozaki, 2010). Analysis of transcriptome

assemblies provide information on different functional markers related to stress-resistant response such as SSR and

SNPs (Aharoni & Vorst, 2002). After acquiring the qualitative counts of each transcript, differential gene expression

might be examined by normalizing the data with the use of statistical modeling. (Lowe, Shirley, Bleackley, Dolan, &

Shafee, 2017). The transcriptome can now be defined using NGS technology due to RNA sequencing (RNA-seq), and

the number of research utilizing RNA-seq has continuously expanded, eventually covering the microarray-induced bias

(Yu & Lin, 2016).

1.2.3.1 Applications

1. Transcriptome analysis provides an important forum for examining the relationship between genotype and pheno-

type, providing a better understanding of underlying pathways and mechanisms that regulate cell fate and develop-

ment and progression of diseases (Ruan, Le Ber, Ng, & Liu, 2004).

2. In order to understand the variation in transcriptome data during seed germination, growth, development, and differ-

ent stresses, the microarray technology was used favorably (Poole, Barker, Wilson, Coghill, & Edwards, 2007).

3. As gene silencing methods for the refining of agricultural crops, practical techniques such as RNA interference

(RNAi), mutagenesis, and epigenetics can be applied.

4. QTL has been mapped on crop genome related to grain development, resistance to biotic and abiotic stresses, and

have been successfully applied for crop variety improvement (Saha, Sarker, Chen, Vandemark, & Muehlbauer, 2010).

5. The significance of transcriptome analyses has made it possible for relevant research groups to handle and make these

data available to researchers to help them to unlock and analyze particular transcription activity at specific develop-

mental stages of different genes. The characterization and quantification of the transcriptome was accelerated by NGS,

which also strengthened the developmental evolution of advanced bioinformatics tools (Afzal et al., 2020).

6. Transcriptomics from multiple species can help researchers better comprehend complicated plant�microbe interac-

tions. Transcriptomics can be used to improve marker discovery, the relevance of resources generated for related

species, and the characterization of genes involved in various plant processes (Schenk, Carvalhais, & Kazan, 2012).

1.2.3.2 Different transcriptomic techniques with their application

1. NGS-based RNA sequencing (RNA-seq) is a method that can use NGS to analyze the sum and sequence of RNA in

a sample. RNA-seq lets us investigate and discover the transcriptome, and then we can connect the genome informa-

tion to the functional expression of the protein (Ozsolak & Milos, 2011).

2. We can record transcriptional profiles in each cell type using single-cell transcriptomic methods to uncover the

genetic foundation of their identity and function. This knowledge of cell type-defining gene networks is important

for both fundamental science and the production of crops that are more resilient to climatic and other environmental

challenges. (Rich-Griffin et al., 2020).

3. DNA microarray used to study circadian clock, plant defense, environmental stress response, and fruit ripening

(Aharoni & Vorst, 2002).

4. EST are used for premicroarray design.

5. SAGE (serial analysis of gene expression) used for expression analysis plants with less characterized genomes

(Velculescu, Vogelstein, & Kinzler, 2000).

6. Long SAGE, a derived transcriptome used for annotation of expressed gene (Saha et al., 2010).

7. MPSS (Massive Parallel Signature Signaling) used to identify and quantify RNA transcript (Brenner et al., 2000).

1.2.3.3 Challenges

Other technologies, such as microarray hybridization, are typically regarded as inferior to RNA-seq. Due to the small

amount of raw genetic material, single-cell data is constrained by low sequencing coverage and strong amplification

bias. Furthermore, due to the vast genome scale, extremely repetitive areas in plant genomes, entire genome duplica-

tions, and large numbers of gene families, it is difficult to evaluate computational results (Yuan, Bayer, Batley, &

Edwards, 2017). The alignment of reads to a reference genome was the first major problem posed by the advent of

RNA-seq (McGettigan, 2013). While in RNA-seq, there are only a few steps that involve several stages of manipulation

during the development of cDNA libraries, which may complicate its use in all forms of transcript profiling. The study
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of RNA-seq outcomes is also complicated by certain manipulations during library construction. RNA-seq faces many

computational challenges, including the creation of successful methods for storing, retrieving, and processing large

quantities of data, which must be resolved in order to minimize image analysis and base-calling errors and eliminate

low-quality reads (Wang, Gerstein, & Snyder, 2009). To analyze the huge amount the data, we don’t have high-

throughput machine learning (ML) algorithm to cope with this. Many researchers have found large amounts of data

from RNA-seq technologies for transcriptome profiling, but we still don’t have to analyze it properly by comparing it

with other information (Rich-Griffin et al., 2020). On the other hand, MiRNAs induce gene silencing in plants by cleav-

ing target mRNA or repressing translation. Although most miRNAs’ biological roles are unknown, research has

revealed their involvement in several developmental stages, signal transmission, disease resistance, nutritional value,

and metabolomic technologies in genetic engineering (Challam et al., 2019).

1.2.4 Proteomics

The “proteome” can be identified as a cell’s overall protein content that is characterized at a specific time in terms of

its position, interaction, posttranslational modification, and turnover. In 1996 Marc Wilkins first used the word “proteo-

mic” to denote the “protein complement of a genome.” The proteome characterizes much of the functional details of

genes (Aslam, Basit, Nisar, Khurshid, & Rasool, 2017). To maintain structure and important regulatory function, the

genome code for the protein is needed (Souda, Ryan, Cramer & Whitelegge, 2011). Proteomics is the study of amino

acid sequences and posttranslational modifications in order to determine their relative concentrations (Barbier-Brygoo

& Joyard, 2004). In contrast to genomics, it is complex in nature subject to translational and posttranslational modifica-

tion (Natarajan, Xu, Bae, & Bailey, 2007). Proteomics is a cutting-edge approach for deciphering a tissue’s protein pro-

filing in order to identify molecular entities that may be modified to generate superior crop breeds that are resistant to

both biotic and abiotic stresses. (Singh et al., 2015). It has emerged as an essential tool for crop improvement as it

describes the position of protein within cells that maintain homeostasis, are involved in cell signaling pathways, and are

necessary for structural maintenance.

Several attempts have been made to analyze the differential proteome map of crop plants in response to a variety of

stresses, including hazardous abiotic and biotic factors such as metal salinity, flooding ultraviolet-B radiation, and dis-

ease infection (Aghaei, Ehsanpour, & Komatsu, 2008; Zhen et al., 2007). The most insensitive proteomic research was

done on the model plant species A. thaliana and rice, especially after Arabidopsis and rice genome decoding was

reported in 2000 and 2002, respectively (Goff et al., 2002; Kaul et al., 2000). This is because protein recognition is

only possible using genomic knowledge, this approach is known as proteogenomics. Similarly, the growing number of

crops studied using a proteomic approach, such as rice, maize, wheat, barley, chickpea, pigeonpea, soybean, and date

palm, has increased with increasing genomic DNA and EST sequencing data deposited in the public domain.

Different protein atlas was developed in different plant species. Protein atlas or expression atlas offer information

on gene and protein expression in plant samples of various cell types, organism sections, developmental stages, dis-

eases, and other factors. Atlas comprises 389 experiments investigating plants in 11 species (http://www.ebi.ac.uk/gxa/

plant/experiments), including 7 baseline studies disclosing expression in tissues, strains, and cultivars, for example, rice,

wheat, maize, and Arabidopsis (Petryszak et al., 2016). Many large-scale research works have now been conducted to

investigate the molecular mechanisms of symbiosis between legume models and Medicago truncatula. Furthermore, the

recently discovered genome sequence of M. truncatula significantly expanded the gene pool (Young et al., 2011).

Sinorhizobium meliloti is associated with M. truncatula quantitative atlas of protein expression (https://mtgea.noble.org/

). This proteome atlas contains information on 23,013 protein groups, 20,010 phosphorylation sites, and 734 active

lysine acetylation sites. Using this resource, a subset of proteins with organ-specific regulation was identified. A

symbiosis-specific regulation network was generated by using this putative protein atlas (Marx et al., 2016). The

Glycine max Seq-Atlas incorporates RNA-seq data from a range of tissue collections and offers new methods for ana-

lyzing large sets of transcriptome data collected from NGS. This was possible by uniquely mapping short read

sequences in RNA-seq digital gene expression analysis of paleopolyploid soybean genome. The Seq-Atlas of G. max

(http://www.soybase.org/soyseq) incorporates RNA-seq data from a range of tissue collections and offers new methods

for analyzing large sets of transcriptome data collected from NGS (Severin et al., 2010).

1.2.4.1 Applications

1. In order to unravel the expression of allergens in transgenic plants and to compare allergens between cultured and

wild forms, the proteomic techniques (Fig. 1.4) has been used (Natarajan et al., 2007) and also it has been used for
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the investigation of gene silencing materials in transgenic plants. Substantial suppression of GlymBd 30K, a domi-

nant soybean seed allergen, was confirmed by reverse genetic method (Herman, Helm, Jung, & Kinney, 2003).

2. Quantitative proteome investigations using high-resolution and mass-precision tools have added to our knowledge

of plant growth, development, and interactions with the environment. This capability is especially beneficial for

crops because it can help with not just increasing nutritional value and yield but also understanding crop adaptation

mechanisms in response to abiotic challenges (Hu, Rampitsch, & Bykova, 2015).

3. Translational plant proteomics is a proteomic extension from expression to functional, structural, and finally, the

translation of ideal characteristics and their manifestation. The findings of proteomics for foods by translational pro-

teomics are possible to apply authenticity, food security and protection, sustainability of resources, human health,

improved economic standards, and environmental management (Agrawal et al., 2012).

4. To increase the photosynthetic efficiencies of crop plants and their resistance to abiotic stress, C4 plants have been

found to produce two forms of chloroplasts and are thus more efficient in terms of energy conversion. A compara-

tive proteomic analysis was conducted with C3 chloroplast plants and C4 to classify the proteins that are responsible

for more successful light fixation (Zhao, Chen, & Dai, 2013) (Fig. 1.4).

1.2.4.2 Technologies involved in proteomic analysis
� The most frequent gel-based approach used in a proteomic laboratory for separating the protein portion of the cellu-

lar extract is two-dimensional electrophoresis, which is reasonably easy and inexpensive (Xu, Xu & Huang, 2008)

(Fig. 1.5).
� Electrospray ionization is used to convert peptides into ions by passing them through high-voltage columns. In mass

spectrometry, time of flight (TOF) is a methodology for analyzing the mass of peptide ions. The most extensively

used Ms (mass spectroscopy) technique is matrix-assisted laser desorption/ionization TOF. (Kersten et al., 2002).
� Ms-based proteomics can be utilized for protein profiling, recognition, and quantification, as well as the investiga-

tion of protein changes and interactions. (Aebersold & Mann, 2003) (Fig. 1.4).
� iTRAQ (isobaric tags for relative and absolute quantification) proteomic study has been conducted in the quantifica-

tion of protein, best suited for impartial untargeted biomarker discovery and the quantification of protein acetylation

in HCT (Helminthosporium carbonum toxin)-treated or pathogen-infected plants. These studies reveal that HCT

plays an important role in altering activity of histone deacetylases, which further influences both histone and
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FIGURE 1.4 Application of proteomic techniques.
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nonhistone protein during plant pathogen interaction. This approach is used for functional annotation and enrichment

analysis, clustering analysis, network analysis, and statistical analysis (Walley, Shen, McReynolds, Schmelz, &

Briggs, 2018).

1.2.4.3 Challenges of proteomic approaches

The samples extract abundant amounts of proteins, which would hinder the analysis of the desired protein. Proteomic

analysis and data interpretation techniques do not currently have appropriate guidance available. Biological protein dif-

ferences are responsible for the lower reproducibility of results from proteomics. Therefore, under regulated conditions,

the research should be carefully performed. Proteomics also relies on protein-function prediction instruments and soft-

ware in silico. Protein functions are also predicted by homology quests with open datasets, which may lead to incorrect

predictions (Yadav et al., 2018; Gong & Wang, 2013).

1.2.5 Metabolomics

Metabolomics is a new method based on finding out the essence of dynamics and biochemical structure within the liv-

ing system (Dixon et al., 2006). The metabolite is the end of cellular regulatory processes, and its level is also seen as a

definite response of the biological system to changes in genetics and the environment. In the form of environ-

ment�gene interaction, mutant characterization, marker identification, and drug discovery, metabolomics stands out

significantly (Razzaq, Sadia, Raza, Khalid Hameed, & Saleem, 2019). Metabolomic strategies have the ability to opti-

mize agricultural product trait production and biorefining, that is, the plant-based economy (Dixon et al., 2006).

Plants generate more than 20,000 metabolites that are involved in many resistance and stress tolerance responses

and play a key role in enabling the adaptation of unique ecological niches and contributing to the color, taste, aroma,

and fragrance of fruits and flowers (Oksman-Caldentey & Saito, 2005; Bino et al., 2004). The customs of agricultural

varieties range from obsolete foodstuffs to foodstuffs with certain useful features, such as nutritional values and con-

sumer products derived from fibers, latex, packaging materials, polymers, and certain essential chemical fuels (Abbas

& Cheryan, 2002). The metabolomic approach in agriculture seeks to understand the biology of metabolites and apply

that knowledge to food and environmental safety.

FIGURE 1.5 Overview of proteomic techniques.
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Many metabolomic extraction and analysis approaches are employed to determine the complicated nature of the

metabolite and its diverse chemical composition (Wishart, 2011). Integration with metabolomics of modern plant geno-

mic instruments, databases, and bioinformatics tools (GBS, genome-wide genetic variants and whole-genome sequenc-

ing) (Table 1.2) reveals an exciting horizon for crop improvement (Zivy et al., 2015). The metabolomic technique

performs metabolic profiling of biofluid and various cell tissues to represent the whole physiological makeup of the cell

(Yang et al., 2018). The metabolome is made up of several various chemical and physical components, such as pka, sta-

bility, molecular weight, size, polarity, and solubility. (Villas-Boas, Koulman, & Lane, 2007). Various analytical tech-

nologies have been used for these chemicals to be isolated, detected, and quantified. The metabolite content in

agriculture is linked to a variety of processes, including fruit development, resistance to adverse environmental circum-

stances, stress tolerance, and pathogen infection. These substances are analyzed using a variety of analytical methods

For example, a wide variety of compounds, such as vitamins, coenzymes, carbohydrates, amino acids, and many more,

can be analyzed by liquid chromatography (LC) combined with mass spectrometry (Carreno-Quintero, Bouwmeester, &

Keurentjes, 2013).

1.2.5.1 Metabolomic application in crop production

The content of metabolites is linked to processes of development and differentiation, processes of fruit maturation,

resistance to adverse environmental factors, stress-related issues, and pathogen attacks, especially in agriculture, among

others. Some applications are:

1. As plants are capable of generating different chemical compounds, successful engineering of plant metabolic path-

ways associated with modern biotechnology would be beneficial to humankind (food and medicines) (Oksman-

Caldentey & Saito, 2005). Knowledge-based approaches to metabolic engineering will help to continuously increase

the input and output of engineering plants by inculcating large datasets and logical metabolic pathway models

through large-scale processing and mining of multiple omics data (Farre, Twyman, Christou, Capell, & Zhu, 2015).

Vintages of endogenous sugars, for example, such as higher level sugars and simple sugar derivatives, have been

TABLE 1.2 Bioinformatics databases and tools for multiomics approaches.

Database Purpose URL References

Phytozome Comparative genomics https://phytozome.
jgi.doe.gov/pz/portal.
html

Goodstein
et al. (2012)

GRASSIUS Coregulation and comprehensive collection of transcription factors http://grassius.org/
grasscoregdb.php

Yilmaz et al.
(2009)

RiceNetDB Genome-scale multiple level network reconstruction and
comprehensive rice genome annotated information

http://bis.zju.edu.cn/
ricenetdb/

Liu et al.
(2013)

Expression atlas Gene expression and biological conditions https://www.ebi.ac.
uk/gxa/plant/
experiments

Petryszak et al.
(2016)

Gramene Comparative functional genomics http://www.gramene.
org/

Tello-Ruiz
et al. (2016)

XCMS Raw data can be entered directly an online bioinformatics
application, which may then be utilized for statistical analysis and
data processing

https://xcmsonline.
scripps.edu

Montenegro-
Burke et al.
(2017)

METLIN Used for stress response metabolic profiling in plants https://metlin.scripps.
edu/

Smith et al.
(2005)

MetaGeneAlyse Implementation of regular clustering technique, that is, ICA
(independent component analysis) and k-mean

http://metagenealyse.
mpimp-golm.mpg.
de/

Daub, Kloska,
and Selbig
(2003)

MeltDB A web-based platform for data assessment, processing, and
statistical analysis that has been used in plant metabolomics

https://meltdb.
cebitec.uni-bielefeld.
de

Kessler et al.
(2013)
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successfully enhanced by discovering sugar biosynthesis and accumulation pathways by plant metabolic engineering

(Patrick, Botha, & Birch, 2013).

2. Biopesticides have many benefits in agriculture, but their use is very limited due to unreliable manners, efficiency,

shelf life, and restrictions on the climate (Babalola, 2010). To increase this, we need a new method, such as metabo-

lomics, which describes the need for stimuli or gene expression to synthesize metabolites that have already been dis-

covered. Therefore metabolomics will help to discover new metabolites and consistent biopesticides for agricultural

purposes with the molecular method of gene sequencing and detection (Mishra & Arora, 2018).

3. It deals with the study of plant biochemical relationships of plants through the distinct structure of time (habitat life

time to time of generation) and space (distance between habitat patches). This technique allows us to evaluate the

interaction of abiotic factors with intra-interspecific interactions and multiple impacts between two trophic stages.

The influence of abiotic and biotic stresses on any biochemical process through metabolite recognition is encoun-

tered in response to environmental factors. feedback (Garcia-Cela et al., 2018).

4. For phenotypic and genomic assortment, crop breeding relies on genetic markers. This, however, presents a signifi-

cant problem due to marker effects for picking complicated features that frequently differ between populations. This

can be overcome by using a mix of metabolomics and other omics to provide detailed information on crop plants in

a larger scale context These mQTL and mGWAS data help us to analyze the nature of interest characteristics in

quantitative terms (Langridge & Fleury, 2011). Plant metabolic technologies may thus contribute to the development

of more logical models linked to accurate metabolites or pathways associated with yield or quality characteristics by

providing information on the number of identified metabolites that are also correlated with agronomically significant

characteristics. In particular, current efforts to better understand the metabolic response to various stresses suggest

that metabolomic assisted breeding could support in the development of more stress-resistant crops (Fernie &

Schauer, 2009).

5. The design of the biochemical network was carried out by evaluating the relative metabolite profiles. A comprehen-

sion of the regulatory network and association of genetic material with phenotypic characters was implied by the

integration of metabolome and transcriptome data (Urano et al., 2009).

1.2.5.2 Challenges of metabolomic technologies

Metabolite applications as biomarkers are constrained by the difficulties of traceability to particular pathways.

Unknown metabolites have often been found during the study of LC-Ms, which cannot be used for any analysis. The

data produced by the study of metabolomics is vast and complicated, requiring multivariate analysis techniques.

Biological factors can lead to the problem of evaluating a metabolite associated with a specific phenotype. Much of the

metabolite is part of many pathways, so analyzing the metabolite linked to unique pathways of biosynthesis becomes

challenging (Yadav et al., 2018).

1.2.6 Ionomics

Micronutrient deficiency (e.g., iron, zinc, and calcium) is commonly found in both developing and developed countries

accounting for nearly 2 billion people (Tulchinsky, 2010). The majority of those changes rely on staple crops, including

wheat, rice, and maize for survival. Mineral enrichment, or biofortification (genetic augmentation) of staple food crops,

has thus been proposed as a long-term solution to the problem of mineral shortage. (Singh, Bhatt, et al., 2020; Singh,

Mahato, et al., 2020; Singh, Rai, et al., 2020). Mineral concentration in these tissues is influenced by a variety of fac-

tors, including soil mobilization, root absorption, plant transport and redistribution, seed import and accumulation, and

so on. Plant ionomics could be a good way to look into the link between gene(s) and ion transport and accumulation in

this case. However, in comparison to other “omics” approaches, ionomics is usually in the onset because the bulk of

genes and gene networks involved in ionome regulation are yet unknown. The term “ionome” refers to the examination

of all mineral nutrients and trace elements found in a living organism (Salt, Baxter, & Lahner, 2008). The complex net-

work of components, managed by plant physiology and biochemistry, is ultimately regulated by genetic and environ-

mental factors (Baxter, 2009). Plant ionomics is the foundation for combining metabolomics and mineral nutrition. It

all started with Robinson and Pauling’s belief in the late 1960s and early 1970s that an organism’s metabolite profile

indicates its physiological status and provides a rich source of information (Marschner, 2011). Since several reliable

technologies have been developed to simultaneously examine living beings’ metabolites and mineral nutrient compo-

nents, bioinformatics and other genetic instruments, such as sequencing, genomes, and DNA microarrays, may be used

to compare Robinson and Pauling’s early ideas on metabolomics with mineral ions (Lahner et al., 2003).
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Mineral acquisition, distribution, and storage in plants is a complicated process requiring numerous molecular com-

ponents such as transporters, channels, chelators, and some specific genes that encode and manage them (Gilroy &

Jones, 2000). For plant ionomics, measurement of the composition of ions and elements of the entire plant, tissue, and

even a single cell is needed. These can vary with the elements to be calculated, sample size availability, sample

throughput, range of dynamic quantification, sensitivity, reliability, and accuracy.

All strategies are based on knowledge available in literature, clustered into two categories:

1. Techniques based on elements’ electronic properties:

a. Atomic absorption spectrometry (AAS)—In AAS, free atoms are in a gaseous state and absorb light in the form

of optical radiation in order to detect chemical elements in a sample quantitatively (L’vov, 2005).

b. Ion beam analysis (IBA)—The IBA is a collection of modern and efficient methods for the quantitative determi-

nation of the sample elements. In IBA, a beam of accelerated charged particles traveling from the target material

at a very high speed strikes the sample material, which further results in the release of particles or secondary

radiation from the target material as c-rays and X-rays (Smit, 2005).

c. X-ray fluorescence (XRF) spectroscopy—XRF is also a reliable method for determining chemical components

and concentrations in liquid or powdered (solid) materials and it has the added advantage of being a nondestruc-

tive analytical tool (Akbaba, Sahin, & Turkez, 2012).

2. Techniques based on elements’ nuclear properties:

a. Neutron activation analysis—It is a useful technique for determining the elemental composition of diverse mate-

rials in local environmental research (Galinha et al., 2011)

1.2.6.1 Applications of plant ionomics

1. Ionomics is utilized to investigate the process of mineral transport in plants by identifying potential transporter

genes and additional functional validation. It entails using high-throughput elemental analysis technologies and

merging them with bioinformatics and genetic tools (Baxter, 2009)

2. People are also using ionomic data for phylogenetic analysis of plant species (White & Broadley, 2009).

1.2.7 Computomics

Computomics was developed in 2012 by Detlef Weigel, a German-American scientist and MEGAN (MEtaGenomics

Analysis tool to advance the knowledge of metagenomics datasets) author, so that benefit of ML algorithms can be

profited by others. In many national publications, Computomics has been featured since it is one of the very few com-

panies focused on plant breeding and study of plant genomes. The diversity of biological life is unlocked by applying

AI to genetics, phenotypes, microbiomes, and environmental datasets. Computomics is a team of world-leading ML,

plant science, and bioinformatics specialists. Our advanced ML techniques enable plant breeding, agricultural, biotech,

and microbiome researchers to quickly understand genomic data. Agri-technology and precision farming, today com-

monly referred to as digital agriculture, are new scientific fields that use data-intensive methodologies to drive agricul-

tural productivity while reducing its environmental impact The data generated in modern agricultural operations comes

from a variety of sensors, allowing for a better understanding of the operating environment (the interaction between

complex crop, soil, and weather conditions) as well as the process itself (machinery data), resulting in more precise and

faster decision-making (Kong et al., 2007; Mackowiak et al., 2015).

ML and deep learning have arisen in association with big data technologies and high-performance computing to create

new opportunities for unraveling, measuring, and understanding data-intensive processes in agricultural operating environ-

ments (Wang, Cimen, Singh, & Buckler, 2020). For association studies and crop improvement, measuring the functional

and structural aspects of a plant phenotypic is also significant. As genomic research and sequencing technologies improve,

an increasing demand for plant phenotypes to understand genomic data is emerging (Liu et al., 2014). Robotic elevated

phenotyping may now be produced thanks to advances in measurement technology (high-throughput images and auto-

mated sensors) and ML. This overcomes the constraints of traditional human-based phenotyping by permitting quick pro-

duction of phenotypic features and characteristics across vast populations (Singh, Ganapathysubramanian, Singh, &

Sarkar, 2016). Phenotyping using ML has been used in stress phenotyping and disease control. A real-time ML-based

high-throughput phenotyping methodology was developed to determine the extent of iron deficiency chlorosis in a total of

4366 soybeans from representative canopies (Naik et al., 2017). Polyploid genome assemblies with significant redundancy

can benefit from ML. Highly redundant genomes are difficult to assemble using a non-ML-based assembly method that

uses a linear approach to assemble repetitive sequence regions (Brenchley et al., 2012). To overcome this limitation, an
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ML approach was utilized to detect assembly errors and construct high-quality bread wheat (Triticum aestivum) assembly.

The RNA-seq mapping method also uses ML to delineate between natural and artificial splicing junctions, which has

benefited in the annotation of the bread wheat genome (Mapleson, Venturini, Kaithakottil, & Swarbreck, 2017).

The most prevalent class of variations in plant genomes are SNPs (Rafalski, 2002). However, the discovery of SNP in

polyploid plants remains a problem (Flint-Garcia, Thornsberry, & Buckler, 2003). SNP-ML, a ML -based analysis tool,

employs neural networks and tree bagging models to effectively filter false positive SNPs. They demonstrated that SNP-

ML could accurately detect SNP variants and identify real SNPs in simulated SNP variant data of peanut, cotton, and

strawberry (Buggs et al., 2012; Clevenger, Korani, Ozias-Akins, & Jackson, 2018). Accelerator ML has proven to be use-

ful in the agricultural sector and is expected to play a growing role in the improvement of plants (Van Emon, 2016).

1.2.7.1 Applications

1. The type of soil and the nutrition of the soil play an important role in the type and quality of the crop being culti-

vated. The quality of the soil is deteriorating because of rising deforestation, and it is difficult to assess the quality

of the soil. An AI-based application called Plantix has been developed by a German-based technology that can

detect nutrient deficiencies in soil, including plant pests and diseases, by which farmers can also get an idea of using

fertilizer that helps improve the quality of harvest (Coopersmith, Minsker, Wenzel, & Gilmore, 2014).

2. AI-enabled technologies predict forecast weather conditions, analyze crop sustainability, and assess farms for the

presence of diseases or pests and poor plant nutrition on farms with data such as temperature, precipitation, wind

speed, and solar radiation, by using ML algorithms in combination with images collected by satellites and drones

(Morellos et al., 2016).

3. ML methods, such as linear regression, support vector machine regression, decision tree regression, and K-nearest

neighbors, have been utilized to produce hydrogen utilizing biomass gases. To evaluate the rainfall parameters in

support of agriculture, decision tree, Bayesian, neural network, and random forest are applied (Jude Immaculate,

Evanzalin Ebenanjar, Sivaranjani, & Sebastian Terence, 2020).

1.2.7.2 Challenges

Agriculture has been addressing major problems such as lack of irrigation system, climate rise, groundwater density,

food shortage and waste, and much more. To a great degree, the fate of cultivation depends on the acceptance of differ-

ent cognitive solutions. Applications need to be more robust in order to explore the vast scope of AI in agriculture.

Only then it will be able to navigate regular changes in external circumstances, promote decision-making in real time,

and make use of the required framework/platform to effectively collect contextual data (Slaughter, Giles, & Downey,

2008). Farmers, on the other hand, are adapting to changing circumstances by incorporating AI into their farming opera-

tions. It’s just one example of how AI is revolutionizing agriculture, a growing trend that will help usher in a new era

in agriculture. We’ll have to be more resourceful this time around (Talaviya, Shah, Patel, Yagnik, & Shah, 2020).

1.3 Conclusions and future prospective

The advent of multiomics technologies has greatly increased our ability to feed a hungry world, especially nonagricul-

tural regions. The various approaches discussed earlier provide useful tools that, when used together, enable for addres-

sing the underlying process while passing through several levels of information. Through the advances made in the

arena of omics, a high-throughput phenotyping platform to measure various phenotypic traits such as image-based com-

puter vision phenotyping, image processing, and data extraction tools will be highly efficient. Integrating phenomic

data with other multiomics data from genomic, transcriptomic, proteomic, metabolomic, and other physiological studies

is enabling a systems biology approach for understanding plants from the single cell to the mature plant, not only during

development but also under changing environmental conditions. It gives detailed information on the regulatory mecha-

nism in response to an external stimulus at many subcellular organization levels. Despite the fact that there is a growing

number of plant research using specific omics approaches to identify important biomolecules. We can see that in near

future omics can revolutionize agricultural research in many exciting areas and meet the projected food demand of ris-

ing global population.
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Chapter 2

Promises and benefits of omics
approaches to data-driven
science industries

Niranjani Iyer
Biovia Corp, Dassault Systemes, San Diego, CA, United States

Globally, 8 billion people have to be fed, and this number is expected to reach 10 billion by the year 2050. The UN has

a sustainable goal to eliminate hunger by 2030; nearly 690 million people worldwide still are unable get a single meal a

day. There are three important challenges to human and planetary health and that include feeding a growing and

increasing population, reducing environmental impact, and growing plants that can adapt to changing climate condi-

tions. The One Health initiative aims to work locally, nationally, and globally to achieve optimal health for people, ani-

mals, and the planet (https://en.wikipedia.org/wiki/One_Health). In order to achieve this lofty initiative, a holistic

approach needs to be adopted and implemented. An example of holistic approach would be deciphering the genomes of

the organisms of interest in a given environment. Thus sequencing a plant or a human genome is not sufficient by itself.

The soil rhizosphere in which the plant is growing and the microbes on the plant are important. On the same grounds,

the gut microbiome from the humans is vital to gain a holistic understanding of the human genome. Genomic resources

expand the toolbox available for plant breeding and crop improvement efforts. This chapter will focus on various types

of omics approach, and data-driven science in revolutionizing genomic science, and helping human health to agricul-

tural science.

In the last two decades, science is trending to be more multiscale high-throughput data. With the advancements in

sequencing technologies, large-scale omics analysis has revolutionized biology. Our understanding of biological pro-

cesses is largely driven by omics datasets that includes genomics, transcriptomics, proteomics, epigenomics, metabolo-

mics, etc. With the decreasing cost of sequencing, rapid generation of data creates exciting opportunities and

formidable challenges. This chapter will discuss about various sequencing technologies, different omics analysis, and

the challenges of data integration. The use of machine learning and AI as potential tools for studying the vast multiplat-

form omics datasets is discussed.

2.1 Sequencing technologies

The building block of life is the treasure trove that contains genetic information carried in the DNA of the organism.

Scientists believe that sequencing genomes and understanding the coding regions and the noncoding regions that carry

out regulatory instructions can highlight many of the biology of interest. The challenge of growing population and cli-

mate changes, enhancing genetic gain in biotechnology using multipronged approach and combining conventional and

genomic technologies holds potential promise for biotechnology industries.

Within crop genomics, advances relevant to crop improvement have primarily been in marker [e.g., Illumina single-

nucleotide polymorphism (SNP) chips, Kompetitive allele-specific PCR (KASP) assays, genotyping by sequencing, and

sequencing (e.g., Illumina, PacBio, Nanopore)] technology. Recent innovations are driving a paradigm shift in which

the extent and relevance of structural variation within the pan-genome of crop species are now being considered

(Coletta et al., 2021).
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Early 2000 was the first step in the initial exploration to study plant and animal genomes using the next-generation

sequencing (NGS) technologies (Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project,

2005; Schnable et al., 2009). Several sequencing projects were initiated, and genome assemblies of many plants were

completed. These studies revolutionized the way biology and breeding of crops were done. Early plant genome assem-

blies revealed interesting diversity in plant genome. This was observed at SNP level and structural variants (SVs) (e.g.,

presence�absence variation and copy number variation), and chromosomal rearrangements, and repetitive portions of

the genome [e.g., transposable elements (TEs), knob repeats, and centromere repeats]. All these interesting features

helped in characterizing the “core genome,” that is, common to all organisms within a species and the rest as “dispens-

able” genome.

2.2 Advances in genome assembly technology

The advent of NGS technologies in the last two decades and assembly algorithms profoundly helped in understanding

the complexity of the genomes. NGS enables whole-genome sequencing (WGS), and resequencing, transcriptome

sequencing, metagenomics, and high-throughput genotyping. These techniques can be applied to understand genetic

diversity, genetic and epigenetic characterization of genomes.

Sequencing of genes in late 1970s was based on Sanger sequencing. This method was expensive and was adopted

for genome sequencing later by doing BAC libraries [(e.g., rice (International Rice Genome Sequencing Project, 2005),

maize (Schnable et al., 2009), sorghum (Paterson et al., 2009), and soybean (Schmutz et al., 2010)]. When NGS tech-

nology came into picture, crop reference genomes were done using paired-end and mate-pair Illumina data and de

Bruijn graph approaches [e.g., barley (Schmutz et al., 2010) and wheat (International Wheat Genome Sequencing

Consortium IWGSC et al., 2018)]. The reduced cost of Illumina sequencing and improved assembly algorithms facili-

tated accession level genome assembly. Several de novo assembly techniques were adopted to build multiple accessions

per crop using low-cost short-read data [e.g., maize-PH207 (Hirsch et al., 2016), maize-W22 (Springer et al., 2018;

maize-HZS (Li et al., 2019), maize-Flint genomes (Haberer et al., 2020), rice genomes (Schatz et al., 2014), and soy-

bean genomes (Li, Fillmore, et al., 2014; Li, Zhou, et al., 2014)].

Sequencing by short reads approach was extremely economical but genome assembly was a challenge in repetitive,

TE-rich regions of the genomes and the regions closer to the centromere. This resulted in several draft genomes with

numerous gaps and partial assembly. Often Sanger sequencing would be adopted to close the gaps or assemble the draft

genome. PacBio offered the long-read technology that facilitated addressing some of the shortcomings of the small-read

techniques. Although this technique led to discoveries of variation and copy number (Song et al., 2020; Zhou, Hirsch,

Briggs, & Springer, 2019), it had a high error rate in base calling. Improvements in this technology have considerably

reduced the error rates and facilitated long-read assemblies for uncovering agronomically relevant information across

different lines within crop species. It is important to understand the different sequencing technologies and data analysis

steps in assembling the genome.

2.2.1 Algorithms in reference-based and de novo assembly

Sequencing technologies for shorts reads and long reads of WGS provide the information of entire genetic material of

an organism. There are two main approaches involved in assembling these reads into longer contiguous genomic

sequences. Both of these methods have their pros and cons and its often-scientific subject knowledge drives the decision

on which method would work best for their type of studies.

Prior to assembly, quality checks of raw reads are critical in determining the output of the assembly. High-quality

reads are important for downstream assembly algorithms and analysis. The raw reads are subjected to quality filtration

and adapter trimming. One of the popular algorithms used is Trimmomatic (Bolger, Lohse, & Usadel, 2014). The

primer sequences, polyA tails, and reads produced from ribosomal DNA template are trimmed out.

The reference-based assembly approach involves mapping each read to a reference genome sequence to identify

genetic variation such as SNPs, indels, insertions, copy number variants, genome-wide association studies (GWAS),

and building haplotypes from genome assemblies. The reference-based assembly is usually done by downloading the

reference sequence (fasta) and genome and gene information (GFF3 or GTF) from public databases and indexing them.

The high-quality fastq files are aligned with the reference genome using BWA mem (Bowtie, BWA are other com-

monly used algorithms) with optimized parameters. The reads are aligned to the reference index.

When no reference sequences are available, a de novo-based approach is used, where sequenced reads are compared

to each other, and then overlapped reads are used to build longer contiguous sequences. The built contigs are then
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oriented. The de novo assembly of high-quality reads is usually used with some popular de novo algorithms such as

Velvet/Spades/SOAP de novo. These assemblers are highly sensitive to input parameters and multiple Kmer assembly

runs are done to optimize the assembly. This is assembled using Kmer length, coverage cutoff, insert length, and

expected coverage for scaffold assembly. The best assembly is usually selected based on scaffold N50 and max scaffold

length. Given the variability observed in de novo techniques, the final assembly is determined based on scaffolds N50,

assembly coverage (depth), reads participated in assembly, and guanine-cytosine (GC) content assembly.

2.2.2 Postassembly algorithms for encoding the biology

Once a genome is assembled by either reference or de novo based, several steps go in to understand the biology of the

genome. The first step includes the gene prediction. Ab initio, gene predictions are statistical models and are trained to

find features of genes start and stop codons, and alternate splicing. Gene prediction algorithm such as Prodigal/

Augustus is popular in predicting the coding regions in the draft genome. The next layer of biology is the annotation of

the coding regions. Often this involves bringing in all the knowledge from several databases such as NCBI nonredun-

dant protein database (NR), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous

Group (COG), Pfam, and Gene Ontology to classify the genes based on biological processes, molecular function, and

cellular localization.

One of the major advancement with genomic assembly technology is often interesting features in the genomic stud-

ies such as SNPs and Indel and structural variations are valuable tools to associate with a biological process. Many a

times, SNP discovery is done from the alignment file generated by BWA/Bowtie program. SAMTOOLS/GATK tools

with optimized parameters are used in calling SNPs and Indels. Comparative genome analysis or synteny analysis is

done with closely related species by pairwise alignments or OrthoMCL. These methods are also often used in identifica-

tion of core genes in a species.

The de novo assembly of genomes results in a nonreference-based manner assemblies without any reference bias

and often used in identification of structural variation (SV). However, this can result in number of challenges including

cost, detection of false structural variants, and compromise on downstream analysis as de novo assemblies result in dif-

ferent output depending on the data types, algorithms parameters, and the assembly algorithms. The other major chal-

lenge can be the consolidation of pan-genome variation into a single reference system that can affect the biological

significance of SV in QTL analysis, GWAS, and genomic prediction. In pan-genome context, SV is called by mapping

resequencing reads to a reference.

Several methods exist for SV information in a pan-genome context. One approach known as map-to-pan approach is

to map resequencing reads to a reference genome, de novo assemble unmapped reads, and add the assembled contigs to

the reference assembly (Golicz et al., 2016; Hu, Wei, & Li, 2020). This strategy can minimize errors by exploiting the

information already available from a high-quality reference genome and limit the coordinate consolidation issue. Yet

the genomic locations of newly assembled contigs remain unknown without further analysis. An alternative approach is

the construction of a graph-based rather than linear reference genome (Computational Pan-Genomics Consortium). In

this method, any variant such as SNP or SV are added to the reference as a node at the genomic location where it is dis-

covered (Garrison et al., 2018; Rakocevic et al., 2019). Based on the strengths of the graph and linear method, recently

a hybrid approach was developed. In the hybrid approach, reads are first mapped to a graph-based genome, and then

haplotypes are associated with one of the reference genomes used to build the graph. Reads are then realigned to this

genome and this leads to more accurate mapping than the graph-based approach alone (Grytten, Rand, Nederbragt, &

Sandve, 2020).

Another important feature that was not given enough attention until recently is the widely prevalent TEs. Plant gen-

omes are rich in TEs (Elliott & Gregory, 2015) and difficult to characterize due to repetitive fraction of genome, often

creating a challenge with mapping reads to the regions. Methods to characterize variation in TE content using short-

read data (Nelson, Linheiro, & Bergman, 2017) and whole-genome comparisons (Anderson et al., 2019) are emerging

and will help provide access to a new level of functional variation underlying agronomic phenotypes. TEs are function-

ally relevant, including modifying the structure and amount of gene product that is transcribed (Alonge et al., 2020;

Jiang, Bao, Zhang, Eddy, & Wessler, 2004). This is well observed in many studies. In maize, a Harbinger-like DNA

transposon represses the expression of the ZmCCT9 gene to promote flowering under long-day conditions (Huang

et al., 2018). In rice, a gypsy retrotransposon has been identified to enhance the expression of the OsFRDL4 gene and

promote aluminum tolerance (Yokosho, Yamaji, Fujii-Kashino, & Ma, 2016). Annotating TE sequences are still a chal-

lenge and often homology-based using existing TE databases such as Repbase (Bao, Kojima, & Kohany, 2015) and P-

MITE (Chen, Hu, Zhang, Lu, & Kuang, 2014).
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2.2.3 Genome-wide association, a valuable tool mapping associations with a phenotype

Early crop reference genome assemblies facilitated the development of platforms (e.g., Illumina SNP chips) that allow

for rapid, cost-effective genotyping of thousands or millions of SNPs across large sets of individuals. These platforms

facilitated an increase in marker density which aided in the identification and cloning of QTLs associated with different

traits (Kumar et al., 2017). Without extensive phenotyping, now these markers can be rapidly used for screening large

populations as functional markers (Liu, He, Appels, & Xia, 2012) or through marker-assisted selection (Collard &

Mackill, 2008). Sequencing assembly methods are very important for GWAS and other marker-based studies.

Reference-based assemblies with single reference genomes sometimes results in reference bias, as variants associated

with a trait may not be identified if it is missing in the reference genome. This has been identified when more and more

accessions are sequenced, the genomes can be missing a particular gene. Certain genes are identified when reference

genome assembly is different. For example, in maize, gene conferring resistance to sugarcane mosaic virus could be

identified by GWAS using markers based on the B73, but not the PH207 (Gage et al., 2019). Another problem is that

deletions relative to reference genomes can be misinterpreted as missing data. Although genome assembly with differ-

ent algorithms can be providing slightly different results, but still these techniques have allowed us to uncover numer-

ous new biological insights.

Although genomics provides information at the DNA level, many a times the real biological significance is to look

into regions especially the gene and the transcript. Transcriptomics is the study of transcriptome, the complete set of

RNA transcripts produced by the genome at any one time and how they affected by development, disease, or other envi-

ronmental factors. The next section will focus on the transcriptomics and its relevance.

2.3 Transcriptomics—where genome connects to gene function

The flow of genetic information from DNA, transcribed to RNA, and then translated to protein is the central dogma of

molecular biology. The study of RNA content and sum total of RNA transcripts is called “transcriptomics.” The coding

region is mRNA and is the transient intermediary molecule representing the protein, while noncoding RNA (ncRNA)

does not code for any proteins but perform diverse functions. The transcriptome analysis studies the set of RNA tran-

scripts that are produced under specific conditions in a specific cell or tissue or organ. Transcriptomics have been

applied to various aspects of research and field, clinical applications ranging from diagnostics and therapeutics, gene

therapy applications, pharmacogenomics and disease prevention to developmental biology, evolutionary genomics, and

comparative genomics.

Transcriptomic study is most commonly used to compare pairs of sample, which could be environmental conditions

(abiotic or biotic stress conditions) and in developmental stages and progression of diseases or any particular state. This

type of analysis provides immense datasets and often used in biomarker studies and in outcome prediction and targets

for treatment. The transcriptomic analysis has a broad approach and is the most popular omics study done.

2.3.1 Methodologies and algorithms

The early study of whole transcriptome was done using microarray technology where the defined sequences (probes)

were arranged on a solid substrate. The sample of total RNA was laid on the surface and the amount of binding to the

probe determined the quantity of expressed genes that supposedly reflect the translation into proteins.

With the advent of NGS technology, a high-throughput RNA sequencing called as RNA-seq methods provide

abundance of data information with very little starting material. In this methodology, the bulk RNA is extracted

from the sample and is copied into double-stranded cDNA. The sequencing is done on any of various sequencing

platform and the reads are mapped to the reference genome available in public data banks. The nucleotide sequences

generated are typically around 100 bp in length but can range from 30 bp to over 10,000 bp, depending on

the sequencing method used. RNA-seq leverages deep sampling of the transcriptome with many short fragments

from a transcriptome to allow computational reconstruction of the original RNA transcript by aligning reads to a ref-

erence genome or to each other (de novo assembly) The expressed gene can be used in determining alternate splicing,

novel transcripts, and gene fusions. The RNA-seq is not limited to genomes with reference; it can be done to study

gene expression of poorly characterized species with limited genome resources. RNA-seq can be performed using

many NGS platforms; however, each platform has its own requirements of sample preparation and the instrument

design.
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2.3.1.1 RNA-seq data analysis

One of the most popular NGS techniques involves RNA-seq analysis. These experiments generate a large volume (in

millions) of raw sequence reads, which have to be processed to yield useful information. Many data analysis tools are

available depending on the experimental design and goals. This analysis can be broken down into the following four

stages: quality control, alignment, quantification, and differential expression (Van Verk, Hickman, Pieterse, & Van

Wees, 2013). Most of these tools work in Linux environment and command-line tools can be used in servers that are in

house or in cloud environment. Several R/Bioconductor and python packages are available for statistical analysis

(Huber et al., 2015).

2.3.1.1.1 Quality control

The raw reads generated by a sequencing instrument are never perfect. Therefore it is important for a quality control

and checking the accuracy of each base for downstream analyses. The typical QC analyses involve examining high-

quality scores for base calls, GC content matches with the expected distribution, Kmers to check the over representation

of particularly short sequence motifs, and any unexpected high read duplication rate (Conesa et al., 2016). Some of the

popular QC packages include the FastQC and FaQCs software packages (Lo & Chain, 2014). Any abnormalities identi-

fied in this step may be removed by trimming or tagging.

2.3.1.1.2 Alignment

To estimate the abundance of expression of particular gene and its spliced variants, the raw reads need to be first

assembled by aligning to a reference genome or a by de novo method when the reference is not available. This comes

with few challenges especially when it comes to complex genomes and technical aspects of high-performance com-

puting. Each alignment software can provide meaningful information and unique strength in terms of speed of align-

ment of the short sequences, handling intron splicing, and ability to map to multiple locations. Several advancements

have been addressed to increase the sequencing read length and reducing multimapping reads. A list of currently

available high-throughput sequence aligners is maintained by the EBI (Fonseca, Rung, Brazma, & Marioni, 2012).

Fig. 2.1 (http://cracs.fc.up.pt/Bnf/hts_mappers/) lists the up-to-date compendium of high-throughput sequencing

(HTS) mappers.

The DNA mappers are in blue, RNA mappers in red, miRNA mappers in green, and the bi-sulfite mappers are in

purple. For more details on the sequencing platform, minimum read length, maximum read length, maximum number

of mismatches and indels, and several other information can be obtained from this link (http://cracs.fc.up.pt/Bnf/

hts_mappers/).

Similar to the genome assembly, reference-based and de novo assemblies have their pros and cons when it comes to

assembly for RNA-seq experiments. One of the main challenges with de novo assembly is the intense computational

requirements compared to reference-based assembly. In addition, de novo mapping needs to be validated for gene var-

iants. Some of the metrics used to understand the assembly of transcripts include N50 and which in some cases can be

misleading and many evaluation methods have been available (Li, Fillmore, et al., 2014; Li, Zhou, et al., 2014; Smith-

Unna, Boursnell, Patro, Hibberd, & Kelly, 2016). For assessment of assembly completeness, annotation-based metrics

such as contig reciprocal best-hit count provide useful information.

2.3.1.1.3 Quantification

The amount of expression can be done at gene level, exon or at transcript level (spliced variants). The mapping of the

annotation is done with the GFF file (general format file) or GTF file (general transfer format). The HTseq package is

used in gene and exon read counts (Anders, Pyl, & Huber, 2015). For estimation of isoform, abundance from short

reads is more complicated and requires probabilistic methods. Tophat cufflinks software works out to be a popular

choice (Trapnell et al., 2010). Since some reads can align either equally well at multiple places, it is important to clean

by removing them or align it to the most probable location. Methods like kallisto can circumvent the need of an exact

alignment by using pseudo alignment and have the advantage of running faster compared to tophat/cufflink method

(Bray, Pimentel, Melsted, & Pachter, 2016).

2.3.1.1.4 Differential expression

Since RNA-seq experiments are usually carried out comparing a control versus treatment sample, differential gene

expression is measured by normalizing, clustering, and statistically analyzing the data. Some of the popular software
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used are the Cuffdiff2 (Linux-based) and several R/Bioconductor packages such as EdgeR, DEseq2, and Limma/Voom.

Most of them read a table of genes and read counts as input, but cuttdiff uses the input bam files. The pairwise tests are

common statistical tools applied for determining the differentially expressed genes or exons or isoforms.

2.3.1.2 Validating RNA-seq experiments

A standard technique that is used in validating genes of interest and their differential expression is by quantitative

PCR (qPCR). This is done by measuring the expression of gene(s) of interest and control gene(s) in control and treated

conditions (Fang & Cui, 2011). This method is restricted to smaller regions of less than 300 bp and targeting more

to the 30-end of the coding region. Regions in isoforms that determine the differences are targeted for primer design for

discrimination of the different isoforms or spliced variants. This technique has been considered as a validation test

and shows strong correlation to RNA-seq data (qPCR validation of RNA-seq data has generally shown that different

RNA-seq methods are highly correlated (Camarena, Bruno, Euskirchen, Poggio, & Snyder, 2010; Core, Waterfall, &

Lis, 2008).

2.3.2 Noncoding RNA

The data analysis techniques that are applied for mRNA is applied for the noncoding regions in the genome. Since the

functions of the noncoding regions are associated with transcriptional regulation, RNA splicing, DNA replication etc.,

often the biological insights from these experiments are done using the databases for small RNAs (Table 2.1).

FIGURE 2.1 Compendium of HTS mapper (http://cracs.fc.up.pt/Bnf/hts_mappers/).
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2.3.3 Epigenomics

Only 1% of the DNA sequences in most genomes is protein-coding genes. The vast stretches of the noncoding regions

are the regions that regulate the gene activity. These sequences interact with regulatory elements such as transcription

factor, chromatin regulators, and noncoding RNAs, which together constitute the epigenome. Epigenomics is the sys-

tematic analysis of the global state of gene expression not attributable to mutational changes in the underlying DNA

genome. An organism has multiple, cell type-specific, epigenomes comprising epigenetic marks such as DNA methyla-

tion, histone modification, and specifically positioned nucleosomes (Stricker, Koferle, & Beck, 2017). Epigenomic pro-

filing is providing a descriptive view of the chromatin landscape, and data integration enables us to infer functionality

from complex datasets. Various sequencing, microarray, and antibody based methodologies are employed to examine

the different aspects of epigenetic regulation, including DNA methylation, chromatin accessibility, and histone modifi-

cations. Epigenetic analysis techniques called as typing involves profiling of the epigenome. The end-point measure-

ment reflects a proportion or ratio of chromatin with epigenetic marks compared to the total chromatin.

Given the importance of human epigenome, the first project to study the structural and modification of chromatin

led to development of the catalog of Encyclopedia of DNA Elements, abbreviated as ENCODE (Davis et al., 2018) and

the International Human Epigenome Consortium (IHEC) (Bujold et al., 2016). Public plant epigenomic datasets are

emerging quickly, including DNase-seq, ATAC-seq, meDIP-seq, ChIP-seq, and MNase-seq data.

2.4 Beyond genomics and transcriptomics toward proteomics and metabolomics

2.4.1 Proteomics

Proteomics is the study of quantifying proteins in high-throughput manner. In the early 1990s, protein sequencing was

done by Edman degradation process. Currently, this is done using both shotgun and targeted approach. Improvements

in mass spectrometry (MS) technology have increased sensitivity requiring low concentrations of samples. The high-

throughput analyses allow for looking for minimal differences in protein abundances and identifying the posttransla-

tional modifications (Aebersold & Mann, 2016).

Proteomic studies can be done by either chemical labeling or unlabeled techniques. The six major steps included are

sample collection, protein extraction, enzymatic digestion of proteins into peptides, separation/fractionation using liquid

chromatography (LC) method, peptide and protein identification and quantification by MS, and pathway and network

analyses using bioinformatics tools. The field has moved forward from 2D-PAGE-based (dye/fluorescence labeling)

protein spot extraction followed by LC-MS or matrix-assisted laser desorption/ionization time-of-flight Ms characteriza-

tion to more system-wide screening approaches with quantitative steps such as Isotope-Coded Affinity Tagging,

Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC), 18O Stable Isotope Labeling, Isobaric Tagging for

Relative and Absolute Quantitation (iTRAQ), and Tandem Mass Tags (TMT) (Bakalarski & Kirkpatrick, 2016) or are

label-free (Anand, Samuel, Ang, Keerthikumar, & Mathivanan, 2017; Bantscheff, Lemeer, Savitski, & Kuster, 2012)

methods.

TABLE 2.1 List of some databases specially designed for transcriptome analysis.

Database Host Description

Gene Expression Omnibus
(GEO)

NCBI GEO is data repository supporting MIAME-compliant data submissions for both array-
and sequence-based datasets

BioStudies (previously known
as Array Express)

EBI Biostudies database offers one stop shop for all data supporting life sciences including
the array data from Array Express

Expression Atlas EBI Public repository of gene expression pattern data under different biological
conditions. This includes baseline and differential expression experiments

Genevestigator Privately
operated

This is largest preanalyzed gene expression databases in the world covering more
than 250,000 microarray and RNA-seq datasets. This provides data on biomedical
and plant biology, with sophisticated tools for data search, visualization, and analysis

NONCODE Noncode.
org

This database offers integrated knowledge database dedicated to noncoding RNAs
(excluding tRNAs and rRNAs)
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Both label-free (Proffitt et al., 2017) and label-based methods such as TMT proteomics from diverse biological

matrices have yielded favorable results. The community has not yet built a consensus in terms of data formatting, clean-

ing, and normalization, for example, the use of ion intensity versus peptide-to-spectrum matches, despite the ongoing

efforts through the Proteomics Standards Initiative (Deutsch et al., 2017). Nonetheless, proteomics is advancing our

understanding in biomedical research, including diagnosis, protein-based biomarker development, and therapeutics.

2.4.2 Metabolomics

The omics study of metabolites, which are usually the products of biochemical pathways, is called metabolomics. They

provide a link connecting genome, transcriptome, proteome to a phenotype. Metabolomics captures small molecule in

solid (with solid-state nuclear magnetic resonance (NMR)), liquid (LC-MS), capillary electrophoresis MS (CE-MS), and

gas phase MS (GC-MS, tandem-MS). Metabolic analyses includes sample collection, quenching of metabolism, metabo-

lite extraction, chemical derivatization MS, data alignment, filtering, imputation, statistical analysis, annotation, and

pathway/network analysis. Depending on the platform used, the sample analysis, data structure, imputation, and normali-

zation scaling differ in data type and instrument. The steps also differ when choosing targeted or untargeted analyses.

2.5 Integrating omics datasets

To understand the actual biological processes in any systems, it is important to integrate all the omics datasets together

so that a holistic picture would help the biologists to understand the complex biological pathway(s). The multiomics

integration studies have been usually done by conceptual, statistical, and model-based methods. The conceptual meth-

ods have provided insights but could result in risky arbitrary connections. Statistical methods from different datasets

provide an unbiased integration (Cavill, Jennen, Kleinjans, & Briedé, 2016; Rai, Saito, & Yamazaki, 2017). The model-

based integration allows construction of biological pathways or regulatory pathways which could be qualitative or quan-

titative and these models are considered for hypothesis testing (Rai et al., 2017; Thiele & Palsson, 2010).

Unbiased and element-based integration often uses statistical tools such as clustering, correlation, and multivariate

analysis. Clustering approaches such as hierarchical cluster analysis or nonhierarchical methods such k-means clustering

are used to identify underlying associations and patterns in the dataset. These methods often produce distinct groupings

and provide biological insight. Often, when these approaches are taken to next level with knowledge-based pathways

with coexpression and mapping-based approaches, it can provide novel biological insights.

Machine learning (ML) techniques such as Random Forest are used in multiomics experiments such as to identify

the regulatory elements, and in studies for specific phenotypic traits such as tuber flesh color, shape, and starch gelatini-

zation. (Acharjee, Kloosterman, Visser, and Maliepaard, 2016). For more complex omics datasets, multivariate analysis

allows greater flexibility in experimental design and metadata analysis (Rai et al., 2017) including trends in datasets,

and discovery of variance or covariance associations (Meng, Kuster, Culhane, & Gholami, 2014) and topological net-

works between transcript/protein/metabolite elements (Weckwerth, 2019). Most common multivariate techniques are

principal component analysis, partial least squares, and orthogonal projection to latent structures discriminant analysis

(Mamat, Azizan, Baharum, Mohd Noor, & Mohd Aizat, 2018; Mazlan, Aizat, Baharum, Azizan, & Noor, 2018; Reinke

et al., 2018).

Pathway mapping is a very popular approach that maps different omics datasets to existing metabolic pathways.

Several databases are available to study the pathways and some of these tools are listed in Table 2.2. Integrating multio-

mics dataset can be done by coexpression analysis, which heavily relies on statistical correlations between different

omics datasets and to assess the strength of relationships. The relationships are further transformed into weighted net-

work with tools such as weighted gene coexpression network analysis (WGCNA). The WGCNA package is available in

R program. These types of analysis have helped scientists to identify hubs and clusters for a pathway of interest and rec-

ognize the key regulatory elements in a pathway. Often, the WGCNA approach is followed with Cytoscape visualiza-

tion (Jiang, Xing, Wang, Zeng, & Zou, 2019; Savoi et al., 2017). Both pathway analysis and coexpression analysis

make meaningful integration and are helpful in identifying relationships between different omics datasets. The issues

with these pathways are that they are often static and do not take the experimental parameters and perturbation.

The mathematical approach in omics integration aims to develop well-defined differential equations and modeling

for a system-level understanding. These analyses involve four steps, which include identification of systems compo-

nents, understanding the systems regulation and topology, determining mathematical equations, and finally parameter

selection and optimization.

The mathematical integration with differential and genome-scale analyses provides a quantitative approach to evalu-

ate the impact of dose of a gene product or a chemical on a particular pathway (Belouah et al., 2019; Voit, 2017;
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Wang et al., 2018). Genome-scale analysis is a mathematical modeling approach that aims to build a genome-scale

model and metabolic pathways at the organismal level. This involves primarily four steps such as draft reconstruction

using annotated genome, then pathway refinement using experimental results, further network modeling in mathemati-

cal format, and lastly, validation and iteration for model accuracy (Thiele & Palsson, 2010), The mathematical models

can accurately predict changes or perturbation with database annotation and experimental evidence. However, when the

system gets complex especially when dealing with diverse cellular, tissue types, and organelle compartmentalization,

the analysis becomes challenging.

2.6 Challenges

Integrating omics experiments is a challenging task as there are too many variables that can make the task complex and

ultimately make the interpretation difficult and in some cases result in false positive. The challenges can be grouped

into categories listed in Fig. 2.2.

2.7 Machine learning in omics

Huge amounts of data are produced from omics experiment. The problems with these datasets is that they are too large

for traditional theoretical and applied statistical methods. This data also has the issue of important signals in a very

small region often dominated and masking with noise. For these reasons, the importance of ML and AI methods are get-

ting very popular in extracting valuable information from omics experiments. ML and related deep learning algorithms

can handle the large data obtained from NGS and phenotyping platforms for studies addressing precision medicine, pre-

cision breeding in agriculture, complex trait dissection, and gene discovery.

TABLE 2.2 Summary of databases, functionalities, and license types for the different omics platforms.

Database Omics Domain Functionality License

types

KEGG � Genomics
� Transcriptomics
� Proteomics
� Metabolomics

Multiple
organisms

Biological pathways for processes, diseases, drugs Open
source and
licensed

Plant Metabolic
Network (PMN)

� Genomics
� Transcriptomics
� Metabolomics

Plants Plants specific database containing pathways, reactions Open
source

KBCommons
(Knowledge Base
Commons)

� Genomics
� Transcriptomics
� Proteomics
� Metabolomics
� Phenomics
� Epigenomics

Multiple
organisms

Platform supporting storing, sharing, analyzing genomics
and integrative omics data

Open
source

BioCyc database � Genomics
� Transcriptomics
� Proteomics
� Metabolomics

Multiple
organisms

Computationally predicted metabolic pathways and
operons (bacteria and archaea). Data support for gene
essentiality, regulatory networks, protein features, and GO
annotations

Open
source

MetaCyc Metabolomics Multiple
organisms

Pathways involved in both primary and secondary
metabolism, as well as associated metabolites, reactions,
enzymes, and genes

Open
source

COVAIN � Transcriptomics
� Proteomics
� Metabolomics

Multiple
organisms

Workflow including uploading data, data preprocessing,
uni- and multivariate statistical analysis, Granger time-
series analysis, pathway mapping, correlation network
topology analysis and visualization

Open
source
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2.7.1 Machine learning for genomic studies

With the third-generation sequencing technologies, longer reads are produced in comparison to short reads by Illumina

sequencing but often are accompanied with the challenge of sequencing errors. To tackle this challenge, Clairvoyante, a

deep learning model, was generated using convolution neural network (Luo, Sedlazeck, Lam, & Schatz, 2019). The

authors tested Clairvoyante performance to call variants in a genome-wide scenario from 1000 genomes project and

found that they achieved 99.67%, 95.78%, and 90.53% F1-score (a measure of test accuracy) when common variants

were analyzed, and 98.65%, 92.57%, and 87.26% in whole-genome analysis for Illumina, PacBio, and Oxford

Nanopore data. Another popular ML algorithm using artificial neural network is the DeepVariant package. DeepVariant

computes the probabilities of three possible allele combinations (homozygous or heterozygous alleles with the refer-

ence, and homozygous alleles within the variants) for each variant site, by learning statistical relationships between

images of reads around putative variant and true genotype calls. This variant calling method works well for different

sequencing technologies (Poplin et al., 2018).

In agriculture, ML tools are getting popular and used in precision agriculture and for smart agriculture. Next-

generation phenomics combines precision in trait detection and big data generation by means of high-throughput agri-

systems and high-performance computing technologies. The plethora of information from phenomics and genomics

data is used in linking and understanding the function of the unknown genes and their network. ML plays a pivotal role

for the analysis of complex agricultural data related to plant features and environmental parameters. It allows processing

the huge amount of data from sensors and phenotyping platforms, increasing the throughput and accuracy in analysis,

as well as its management. The next-generation breeding includes using ML algorithms for precision breeding for the

prediction of untested phenotypes in genome selection processes. Random Forest and Bayes models are quite popular

ML algorithms used in plant breeding. In the last few years, online sources have been developed for the prediction of

genomic estimated breeding values (GEBVs) solGS, a user-friendly online interface implemented in the Nextgen

Cassava breeding database (CASSAVABASE, https://cassavabase.org/solgs), which allows users to create training

populations, input a dataset, and estimate the GEBV of selection candidates. The interactive online exploration and

graphical data output makes this tool available to broad number of users (Fig. 2.3).

2.8 Big data storage and management

Handling the deluge of datasets which grows in exponential manner requires high storage and modern and innovative

methods. Raw data from sequencing projects are stored in the Sequence Read Archive, which is a repository for short

sequence reads (NCBI, https://www.ncbi.nlm.nih.gov/sra). Only few agencies, such as European Bioinformatics

Institute (EMBL-EBI) and the National Center for Biotechnology Information (NCBI), can store large dataset.

•Study design
•Variability in Sample prepara�on
•ReproducibilityExperimental

•Pla�orm variability
•Imputa�on and Normaliza�onOmics Dataset

•Data scaling and reduc�on
•Variability in sta�s�cal tools
•False posi�vesIntegra�on

•FAIR
•Data Archiving and Sharing
•Several Data pipelinesData Issues

•Subjec�ve Interpreta�on
•Valida�on challengesBiological 

Insights

FIGURE 2.2 Data challenges with high throughput Omics

experiments.
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The Amazon S3 storage services are emerging as popular options in terms of cloud-based file system, unlimited capac-

ity, and data security. Beijing Genomic Institute (BGI, Shenzhen) also has built a cloud-based data service for bioinfor-

matics method development, automated analysis, and data delivery.

2.9 Future directions

Predictive models with multiomics datasets hold great potential in biomarker discovery and accelerating drug develop-

ment process. It is becoming essential to undertake an integrative approach to fully utilize all data types and gain

insights into biological systems. ML offers novel techniques to integrate and analyze various omics data, enabling dis-

covery of novel patterns and new biomarkers. With the cloud computing becoming more accessible, there is a future of

ML and AI for small- and medium-size institutions and industries.
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3.1 Introduction

The information resulted from postgenomic and high-throughput techniques are no longer a bottleneck in understanding

and tackling the biological processes. The biological problems are easy to unravel by sequencing of DNA, proteins

using various computational tools, and informatics algorithms for assessing molecular data (Khan, 2018).

Bioinformatics is playing a major role in the field of molecular biology ranging from cancer studies in humans to study

of microbial pathogens (Katara, 2014). Moreover, to understand the high-throughput techniques such as DNA microar-

rays, chip-on-chip, protein chips, and recently, the new-generation sequencers, from global prospective, the researchers

are handling a vast amount of data generated through these techniques. This huge amount of data generated needs to be

analyzed using bioinformatics tools. The first genomic initiative has been set up about 35 years ago, the Human

Genome Project, and completed in 2003. Bioinformatics aids in deciphering various human genes and provided infor-

mation about their structure and organization. A researcher could be able to learn more and more regarding functions of

genes and proteins among the similar and dissimilar organisms. The only challenging goal was determining the unit by

unit order of nucleotides together making up the human genome (Collins & Fink, 1995). Arabidopsis thaliana was the

first among the plants and third among the multicellular organism after Caenorhabditis elegans and Drosophila melano-

gaster, to be completely sequenced (Tabata et al., 2000). It became the sound basis for further investigations as on com-

pleting the sequencing of this plant; it was found that high-throughput technologies will dramatically increase the

knowledge on complex biological networks (Hidalgo, 2003). Bioinformatics is an interdisciplinary subject which is the

amalgamation of biological and information science that develops new methods and software tools to understand the

biological data. It plays a key role to do comprehensive analysis and to understand gene functions with variable levels

of protein expression. It is also used to compare the genetic and genomic data and aids to understand various evolution-

ary aspects of molecular biology. There are various sequence search engines, namely, for homology-based search,

NCBI BLAST N and BLAST p.; for orthologous sequence search, Ortho MCL; and for paralogous sequence search,

Mc Scan and Mc Scan X are available. Biological databases are used to store and distribute the sequence data, namely,

European Molecular Biology Laboratory (EMBL) and the DNA database of Japan (DDBJ). In order to speed up the

analysis, bioinformatics enriched itself with a lot of resources, facilities, and databases which are updated timely with

new information and knowledge. This review enlightens various bioinformatics methods to solve the biological pro-

blems which are related to functional genomics.

3.2 Functional genomic approaches

Functional genomics may be referred to as the development and application of global (genome-wide or system-wide)

experimental and systematic approaches that help to assess the gene function by use of information provided by struc-

tural genomics (Bouchez & Höfte, 1998). It deals with the study of genes and intergenic regions of the genome which
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contributes to the different biological processes. The main goal of functional genomics is to generate a particular pheno-

type with the help of different components of a biological system. Some functional genomic approaches are mainly

based on DNA level (genomics and epigenomics), RNA level (transcriptomics), protein level (proteomics), and metabo-

lite level (metabolomics).

3.3 Serial analysis of gene expression

Serial analysis of gene expression (SAGE) is a unique method and used for identification of transcripts and quantifica-

tion of eukaryotic genome. The basic principle for this is the determination of a normal gene structure and identification

of structural changes in an abnormal genome (Wang, 2004). It is mainly based on representing the mRNAs by using a

short sequence tags followed by the concatenation of tags for cloning to allow the sequencing analysis. This technique

does not require prior knowledge of gene of interest. Velculescu, Zhang, Vogelstein, and Kinzler (1995) developed a

high-throughput method of determining the absolute effluence of every transcript in population of cells (Fig. 3.1).

mRNA obtained from cells allows to convert in double-stranded DNA form. Digestion was performed with a 4-bp cut-

ter “anchoring enzyme” NlaIII and then the poly-A proximal ends collected and ligated to a linker fragment. The men-

tioned linker fragment harbors a 50-GGGAC-3 sequence, which is the site of recognition of the Type IIS restriction

endonuclease BsmFI. It cleaves the cDNA 15 bp away in the 30 direction from the recognition site. A 15-bp long

FIGURE 3.1 A SAGE procedure.

The AE used is NlaIII and TE used

in the procedure is BsmFI. Boxes A

and B are the independent linkers,

39 portions of which are designed

to contain TE sequence. Transcript-

derived tag sequences are denoted

by Ns. Blunt end ligation step is

denoted as *, and discussed later in

the text. AE, anchoring enzyme;

SAGE, Serial analysis of gene

expression; TE, tagging enzyme

Adapted from Yamamoto, M.,

Wakatsuki, T., Hada, A., & Ryo, A.

(2001). Use of serial analysis of

gene expression (SAGE) technol-

ogy. Journal of Immunological

Methods, 250(1�2), 45�66.
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fragment called tag released by treatment of the linker-ligated cDNA with BsmFI from a defined position of each

cDNA. The tags are concatenated and cloned into a plasmid vector, which is then sequenced after removal of this linker

fragment. Generally, for a given sample, around 10,000�100,000 tags may be analyzed. The profusion of the transcript

which corresponds to the tag is represented by the number of each tag in the total sample. The next main step is to iden-

tify the gene which corresponds to the tag or tag annotation. The 15-bp tag sequence is generally used as a query to

search expressed sequence tags (ESTs) or cDNA databases of any organism of interest through BLAST search

(Altschul, Gish, Miller, Myers, & Lipman, 1990). Results of tag counts and tag annotation are then combined finally

into a gene expression profile. Gene expression profiles are then compared of two samples that are treated differently,

then we will be able to tell which gene is up- or downregulated in response to the particular treatment. In short, follow-

ing are the steps to the SAGE procedure:

� mRNA of an input sample (e.g., a tumor) isolated.
� Remove a small portion of sequence of mRNA molecule which is used for analysis.
� Link these small sequences together to form a longer chain or concatamer.
� Clone these chains into a vector which can be taken up by bacteria.
� Then sequence the chains with the help of high-throughput sequencer.
� Processing of data to count the small sequence tags with the help of a computer.

USAGE, a web-based application which comprises a set of tools to compare and analyze SAGE data. USAGE is

accessible at http://www.cmbi.kun.nl/usage free of cost for academic institutions. In addition, it enhances the functional-

ity and flexibility of data (Van Kampen et al., 2000). Some of the SAGE databases are:

1. SAGE net: This is the database known as SAGEnet (http://www.sagenet.org) which is maintained by the

Vogelstein/Kinzler Lab at Johns Hopkins. It is used mainly for colon cancer, pancreatic cancer, and some normal

tissues of these cells.

2. SAGEmap: This is developed by National Institute of Health’s (NIH) National Centre for Biotechnology

Information (NCBI) and NIH’s Cancer Genome Anatomy Project (CGAP). This database is considered as a public

gene expression repository and unique in many ways.

3. Genzyme’s SAGE database: Database is used to create SAGE tag libraries for contracting parties. This database is

also available through other agencies such as Celera Genomics and Compugen.

Besides this, few other SAGE analysis tools are available such as SAGE300. The SAGE data is obtained with the

help of sequencing the short DNA tags, although data may have errors due to sequencing (Tuteja & Tuteja, 2004).

3.3.1 Advantages of serial analysis of gene expression

1. SAGE studies may be proved to be an effective tool in human cancer studies with the help of the gene expression

profile studies from cancer and normal tissue of interest. A large number of genes recognized as tumor-specific

genes. Northern blot analysis has been done to confirm the differential expression of related gene (Yamamoto et al.,

2001).

2. SAGE technique is very much helpful in the areas such as cardiovascular biology, stem cell biology, cardiovascular

development, angiogenesis, atherosclerosis, and lipid regulation. It is mainly due to the electronic nature of SAGE

databases. Direct comparison of libraries may be done by different investigators. CGAP genome annotation initia-

tive may be used for gene expression queries regarding human heart SAGE library (Patino et al., 2002).

3. SAGE analysis may be done in immunological studies for human monocytes, macrophages, and their differentiated

descendants. By comparing the SAGE profiles of related cells, it was discovered that granulocyte macrophage-colony

stimulating factor (GM-CSF)-induced and M-CSF responsible macrophages expereed comparable sets of genes and

expressed similar sets of genes, implying functional similarity (Chen, Centola, Altschul, & Metzger, 1998).

3.3.2 Drawbacks of serial analysis of gene expression technique

1. It does not compute the authenticity of expression level of a gene.

2. The size of a tag obtained after SAGE analysis is 10 bases, making it difficult to assign a tag to a specific transcript

with accuracy.

3. Two different genes could have the same tag and the same gene that is alternatively spliced could have different

tags at the 30 ends.
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4. The mRNA transcript allocated with each tag could be made even more arduous and uncertain on interpolating the

sequencing errors into the process.

3.4 DNA microarray

DNA microarrays comprise various microscopic DNA spots (probes) confined to a solid surface, namely, glass or a silicon

chip or microscopic beads (Illumina). Under high stringency conditions, from any sample of interest, single-stranded DNA

that is labeled or antisense RNA fragments are hybridized to the DNA microarray. DNA microarray pinpoints the probe

using its location revealing the amount of hybridization detected which is equivalent to the level of nucleic acids from the

commensurating location among the original sample in genome (Bunnik & Roch, 2013) (Fig. 3.2).

3.4.1 Applications of microarray

1. Microarray aids in examining the huge amount of former or current samples. Also, it has been proved to be effica-

cious in estimating the role of a certain marker in tumors.

2. DNA microarray analyzes the whole bacteria genome viability using a small amount of DNA as there is an immense

increase in resistant bacteria leading to casual infections causing failure of antibiotics (Govindarajan et al., 2012).

3. Drug target characterization, identification, and selection.

4. Cellular response to bacterial infection.

5. It diagnoses the presumed genetic disease by testing the existence of mutations.

3.4.2 Drawbacks of microarray

1. DNA microarray traces various samples simultaneously but it is a complicated procedure.

2. Despite of being a popular technology working for more than thousands of genes, it requires proficiency and skills

for data normalization and analysis.

3. Also, the technique works for only predefined sequences.

4. The technique is based on hybridization but it necessitates the high-power computing facilities.

FIGURE 3.2 Schematic representation of steps of microarray.
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3.4.3 Bioinformatics tools for microarray data analysis

The data coolected by the microarray experiment generates extremely huge files, which are examined for the results. In

order to make the process easier, a variety of software has been developed. The Affymetrix GenChip platform, for

example, is one of the most widely used software for studying gene expression. Following are the software for

Affymetrix data analysis.

3.4.3.1 GeneChip Operating Software

It works in hardware management, image analysis, expression assessment, and data normalization. Also, it performs the

normalization and estimates quality control parameters.

3.4.3.2 Affymetrix Expression Console Software

The software summarizes the probe sets with enumerating and normalizing the expression arrays of gene chips. The

software is rigged with Microarray Suite 5.0 (MAS5) normalization algorithm, Probe Logarithmic Intensity Error

Estimation normalization, and Robust Multichip Analysis (RMA) normalization.

Moreover, following are some of the free software for academic use:

RMA Express: Robust Multichip Average, a program used to assess the gene expression summary values for

Affymetrix GeneChip. The software is free for academic use and can be downloaded from http://rmaexpress.bmbolstad.

com. RMA normalization can also be performed using R (http://www.r-project.org) and Bioconductor (http://www.bio-

conductor.org).

dCHIP: Initially, Cheng Li and Wing Hung Wong evolved the DNA-Chip Analyzer (dCHIP) by executing a model-

based expression analysis for Affymetrix gene expression arrays. The Affymetrix raw data (dat and cel files) and pro-

cessed data (quantified expression values as a tab delimited file) could easily be processed by this software. A large

data analysis such as SNP array, exon array, and tilling arrays can also be done.

The other features of the software are normalization and quality control, hierarchical clustering and comparison of

samples.

Few other software which are easy and free to access are SNOMAD (web-based tool), TM4 (Spotfinder, Microarray

Data Analysis System), Genesis, Gene Expression Model Selector, etc. (Mehta & Rani., 2011).

MIAME (minimum information about a microarray experiment): In order to report the microarray experiments,

FGED society fabricated this standard that specifies the required information for elucidating the experiment results evi-

dently. More precisely, it illustrates the required information to certify the interpretation of microarray data at ease lead-

ing to the development of data analysis tools. Various public databases such as ArrayExpress and Stanford Microarray

Database are storing gene expression data using the MIAME standard, including the Gene Expression Omnibus. These

databases in this age dispense some additional facilities for data analysis and annotation purposes (Brazma et al., 2001;

Kremer et al., 2001).

3.5 Next-generation sequencing technologies

The three most prominent and foremost next-generation sequencing (NGS) platforms, namely, Roche 454 platform

(Roche Life Sciences), the Applied Biosystems SOLiD platform (Applied Biosystems), and Illumina (previously known

as Solexa) Genome Analyzer, and HiSeq platforms (Illumina), are used at large scale.

3.5.1 Illumina sequencing

Bruno Canard and Simon Sarfati at the Pasteur Institute in Paris innovated this technique at first. Although, Shankar

Balasubramanian and David Klenerman of Cambridge University established this and consequently founded Solexa, a

company later acquired by Illumina. The method is based on the ability of single-dye terminators to identify the single

bases when introduced into DNA strands. Reversible termination sequencing technology is a sequencing-by-synthesis

approach that concludes the template sequence by stepwise primer elongation. On Illumina platform, it is generalized

as a second-generation sequencing technology.

Ion Torrent sequencing is based on the detection of hydrogen ions that are released during the polymerization of

DNA and sequence DNA based on a semiconductor chip that is released in February 2010. Also, it is named as Ion

Torrent sequencing, pH-mediated sequencing, silicon sequencing, or semiconductor sequencing.
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3.5.1.1 Cost of sequencing full genome

1. In June 2009 Illumina announced Personal Full Genome Sequencing Service at $48,000 per genome.

2. In November 2009 Complete Genomics sequences a complete human genome for $1700.

3. In May 2011 Illumina lowered its Full Genome Sequencing service to $5000 per human genome, or $4000 if order-

ing 50 or more.

4. Several companies, namely, Life Technologies in January 2012, Oxford Nanopore Technologies in February 2012,

and Illumina in February 2014, started to claim that as the cost of sequencing begins to decline, their equipment

will achieve $1000.

3.5.2 Applications of next-generation sequencing

1. The exact order of nucleotide occurrence in DNA could be attained by sequencing methods. The genetic information

can be elucidated from any biological system using DNA sequence. F. Sanger in 1975 developed the Sanger

sequencing method which was the first generation method of sequencing to be developed. There were certain limita-

tions to the method inherent in nature regarding throughput, speed, scalability and its resolution, second-generation

of sequencing method, or NGS developed in order to fulfill the uprising demand of a sequencing method which is

cheaper as well as faster in technology.

2. Principally, the basic idea behind NGS is based on the sequencing of thousands of fragment of DNA using a single

sample, also known as massive parallel sequencing. It allows the large stretch of DNA base pairs to be sequenced

which in results produces hundreds of gigabases of data in single sequential run.

3. The third-generation sequencing method has been developed but it is not as mature as the second-generation

sequencing method (Hayden, 2009), therefore being infant, it could not be widely accepted till now, but the NGS

methods really are.

4. Molecular biology: NGS plays a vital role in molecular biology while studying the whole genome and encoded pro-

teins. The information retrieved regarding changes in genes and their alliance and affiliation with various diseases

and phenotypes helps researchers to learn. Also, it helps in identification of drug targets.

5. Evolutionary biology aids in estimating the correlation between the organisms and their development.

6. Medicine: The presence of any genetic disease-related risk could be decided, if any, using sequencing methods by

the medical technicians.

7. Forensics: The use of DNA sequencing methods has been established in DNA profiling and paternity tests in field

of identification of forensics. Various samples such as fingerprints of any organism, hairs, saliva, etc. are used as

samples in estimating the different separating DNA patterns which is the basis of identification. A certain unique

pattern using a single strand could be produced by detecting specific genome as each and every living organism

comprises a unique DNA and could be determined via DNA testing. No two individual shares the exact similar

DNA pattern, if any, a rare case.

However, NGS methods are much capable as they cope up with the traditional methods (Sanger sequencing)

by providing a faster alternative to them. NGS ensures to be very fast as a whole genome in a single day could

be sequenced by researchers. For example., Illumina, which costs less than $5000 per genome could sequence more

than five human genomes in a single run, resulting into generation of data within a week. The genes including their

regulatory pathways associated with diseases could be determined by using high-throughput sequencing (HTS)

method.

Exome sequencing reveals the disease-related variations and mutations in exome region. It helps to determine the

coding regions of protein within the genome.

Targeted resequencing computes the level of sequencing among the genomic region of interest. Being a small subset

such as exome, an advantage using targeted resequencing is that it does not involve higher sequencing cost.

Chromatin immunoprecipitation sequencing (ChIP-Seq): The interaction among protein, DNA and RNA is analyzed

using this method. It enables the identification of the binding sites of the DNA associated proteins. Also, it interprets

various regulation events such as gene regulation, DNA repair, and DNA synthesis.

RNA sequencing (RNA-seq): It is a transcriptome sequencing approach which comprises functions such as transcript

analysis and detection with low expression levels and with or without reference sequence, respectively. Moreover, the

method is found to be more precise in quantifying the exact expression levels.
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3.5.3 Bioinformatics tools for next-generation sequencing

TopHat: It is an open-source software which helps in the alignment of reads among RNA-seq to the reference genome.

It does not rely over the splice sites (Lee et al., 2012).

Bambino: It is a viewer for next-generation sequence files (Edmonson, Zhang, & Yan, 2011).

Tablet: It is Java based and available for Linux, OSX, Windows, and Solaris platforms, in both 32- and 64-bit ver-

sions. It provides a sequence level as well as contig overview. Also, it is more capable in highlighting the disagreements

among the reference or consensus sequence in the mapped reads.

The Integrative Genomics Viewer: It is an open-source visualization tool (http://www.broadinstitute.org/igv/) which

aids to explore huge scale of data sets of genome. A variety of array-based data have been supported, namely, expres-

sion and copy-number arrays, RNA interference screens, methylation, genomic annotations, and gene expression.

The Savant (Sequence Annotation, Visualization and ANalysis Tool) Genome Browser: It is an open-source desktop

visualization and analysis browser developed for visualizing and analyzing genomic data, including the HTS data, for

example, NGS, with low memory requirements.

Magic Viewer: It was evolved to align short read visualization and annotation.

Geneious: It is an analysis tool to visualize sequence and a number of operations applied for visualizing and manip-

ulating next-generation sequence data. It also provides tools for the assembly, alignment, and annotation of genomic

reads and sequence with exploratory alignment against public repositories using the BLAST sequence search capability.

Mass spectroscopy: Orbitrap is the most forward mass spectrometer available till date with a high resolution, a high

mass accuracy, and a large dynamic range, making it convenient to be applied to the proteomic and metabolomic

applications.

3.6 Databases and genome annotation

Genome annotation is based on the assessment of functional elements among the genomic sequence. The sequencing of

DNA leads to produce the sequences of unknown function (Abril & Castellano Hereza, 2019). Genome annotation

results into the determination of the function of the product of a predicted gene via in silico method. For this to happen,

several necessary features of bioinformatics software must include (1) signal sensors (e.g., for TATA box, start and stop

codon, or poly-A signal detection); (2) content sensors (e.g., for G1C content, codon usage, or dicodon frequency

detection); and (3) similarity detection (e.g., between proteins from closely related organisms, mRNA from the same

organism, or reference genomes) (de Sá et al., 2018). Biological databases fulfill the requirements.

3.6.1 Biological databases

The biological databases fall under different categories: (1) DNA, (2) RNA, (3) protein, (4) expression, (5) pathway, (6)

disease, (7) nomenclature, (8) literature, (9) standard, and (10) ontology (Zou, Ma, Yu, & Zhang, 2015) (Fig. 3.3).

On the basis of source, there are two types of database: primary and secondary.

FIGURE 3.3 Types of biological databases. Adapted from NCBI.
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3.6.1.1 Primary database

The primary databases contain biomolecular data in its original form. EMBL, GenBank, DDBJ, SWISS-PROT,

TREMBL, and PIR constitute the primary databases.

3.6.1.1.1 DNA databases

GenBank is one of the representative of DNA databases as of December 2014, comprising over 184 billion nucleotide

bases in 179 million sequences or more. DNA databases establish the reference genome (e.g., NCBI RefSeq), human

genetic variation profiling (e.g., dbSNP), and association of genotype with phenotype (e.g., EGA) and help to identify

the human microbiome metagenomes (e.g., IMG/HMP) (Zou et al., 2015). The human DNA databases assemble the ref-

erence genome (e.g., NCBI RefSeq) and human genetic variation profiling (e.g., dbSNP) and associates the genotype

and phenotype together (e.g., EGA) and microbiome metagenomic identification of humans.

EMBL: It was established by collaboration of GenBank and DDBJ.

DDBJ: DNA Data Bank of Japan used to collect DNA sequences.

SWISS-PROT: It is a protein database that consists of about 547,357 proteins annotated manually in January 2015

and aids in providing minimum redundancy and higher integration with other databases. protien data bank (PDB)

(established in 1971) as determined by X-ray crystallography and numclear magenatic resonance (NMR) is the other

example of protein database for determining 3D structures of biological macromolecules. As of December 30, 2014,

PDB comprises 105,465 biological macromolecular structures where 27,393 entries belong to human.

3.6.1.1.2 RNA databases

For decoding ncRNAs, the human RNA databases are constructed (e.g., GENCODE) (Consortium, 1., 2012), specifi-

cally lncRNAs attracting the current interest (e.g., LncRNAWiki). RNA central is one of the representative examples of

RNA database. It avails the unified access to the ncRNA sequence data supplied by various number of multiple data-

bases such as Rfam, lncRNAdb, and miRBase. (http://rnacentral.org) (Table 3.1).

3.6.2 Functional genomic databases

These databases provide information about the functions of genes for example., Databases used for information

retrieval system, that is, BLAST, commonly used by the scientist for predicting and analyzing the information regard-

ing function of new or unknown genes. The foremost dedicated genomic databases are described in the following

sections.

TABLE 3.1 The biological information and the type of source.

S. no. Type of information Source

1. Nucleotide sequence GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
EMBL (http://www.ebi.ac.uk/embl/)
DDBJ (http://www.ddbj.nig.ac.jp)

2. Nonredundant EST sequence UniGene (http://www.ncbi.nlm.nih.gov/unigene)
TIGR Gene Indices (http://www.tigr.org/tdb/tgi)

3. Protein sequence and annotation Uniprot (http://www.uniprot.org/)

4. Protein structure PDB, (http://www.rcsb.org/pdb/)

5. Metabolic pathway KEGG (http://www.genome.ad.jp/kegg/)

6. Gene expression (cDNA microarray) data GEO (http://www.ncbi.nlm.nih.gov/geo/)
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)
SMD (http://smd.princeton.edu/)

7. Database of essential genes for prokaryotes and eukaryotes DEG (http://tubic.tju.edu.cn/deg/)

EST, Expressed sequence tag.
Source: Adapted from Katara, P. (2014). Potential of Bioinformatics as functional genomics tools: an overview. Network Modeling Analysis in Health
Informatics and Bioinformatics, 3, 52.
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3.6.2.1 Rice functional genomics

KOME database (Knowledge-based Oryza Molecular Biological Encyclopedia) gathers about 38 000 full-length

cDNAs of japonica cv. Nipponbare. A number of 10,081 and 12,727 full-length cDNA sequences from Gaungluai 4

and Minghui 63, respectively, comprised by the rice indica cDNA database (RICD) database. Affymetrix GeneChip

Rice Genome Array examines the expression profiles in various stressfull conditions in elite hybrid rice Shanyou 63

and its parents Zhenshan 97 and Minghui 63, present in the information platform of Collection of Rice Expression

Profiles (CREP). The comparison between transcriptomes of super hybrid rice LYP9 and its parental cultivars 93�11

and PA64s was performed using gene expression microarrays. Affymetrix GeneChip Rice Genome Array determines the

quantitative trait loci (eQTLs) expression in rice seedlings and flag leaves during heading period using recombinant

inbred lines, which was developed by performing a cross between Zhenshan 97 and Minghui 63 (Wang et al., 2010;

Wei et al., 2014).

The functional genomics of rice research has enriched the resources with genes such as Xa21 and xa13 conferring

resistance to plants against rice bacterial leaf blight. Pigm and Bsr-d1 could also be used as a breeding source for dis-

ease resistance specifically to rice blast. Wild rice also consisting of a gene Bph 14 identified originally in Oryza minu-

ta for obtaining resistance against brown planthopper. The local varieties also contributed by developing various alleles,

such as brown plant hopper resistance gene BPH3, salt tolerance gene HKT2, submerge tolerance gene Sub1, and high-

temperature tolerance gene OsTT1. The genes have a huge potential for breeding in rice.

Some of the databases for the molecular plant are IC4R (http://ic4r.org/), RICD (http://202.127.18.221/ricd/index.

html), TIGR (http://rice.plantbiology.msu.edu/), IRRI(http://irri.org/), CREP (http://crep.ncpgr.cn/), etc. (Li et al., 2018).

3.6.2.2 Functional genomics in Malvaceae family plants

Several economically flowering plant species constitute the category such as cotton, cacao, and durian. Ma-Gen Db was

developed as a user-friendly database for decoding and as functional genomic hub for this plant community, available at

http://magen.whu.edu.cn. There is an availability of eight types of 367 deep-sequencing data for 13 species. The database

aids the generation of multiple dynamic charts and hyperlinks. All the functional annotations for gene, transcript, and pro-

tein displayed on a page are named as Genewiki. MaGenDB is a database where a total number of 374 processed omics

data of nine techniques with 18 types of annotation and more than 24 million functional elements are stored and conferred

in a user-friendly way using well-designed custom dynamic charts. In a concluding note, the database is filling out the gap

for a salient plant family and, thereby, generating an functional comparison system (Wang et al., 2020).

3.6.2.3 Functional genomics in fungi

Fungi database (available at http://FungiDB.org) is a functional genomic resource which was developed with the part-

nership with the NIAID-funded Eukaryotic Pathogen Bioinformatics Resource Centre (http://EuPathDB.org). The data-

base consisting of the genome sequence and annotation from 18 species from several classes, including Ascomycota,

Eurotiomycetes, Sordariomycetes, Saccharomycetes, and Basidiomycota, Pucciniomycetes and Tremellomycetes, and

the basal “Zygomycete” lineage Mucormycotina. FungiDB enlightens various functional genomic data sets (1) for

Aspergillus flavus, Aspergillus terreus, Aspergillus niger, and Gibberella moniliformis. EST is data retrieved from

dbEST (http://www.ncbi.nlm.nih.gov/dbEST/). (2) Based on different synchronization methods, cell cycle microarray

data is derived for Saccharomyces cerevisiae. (3) RNA-sequence data is derived from Rhizopus oryzae during hyphal

growth and (4) two hybrid yeast data are obtained from S. cerevisiae (Stajich et al., 2012).

Some other databases for the study of genome are AgBase database for functional genomic resource, available at

(http://www.agbase.msstate.edu/); for studying diversity among Rubiaceae family, MoccaDB database is available (http://

moccadb.mpl.ird.fr/); the other one, TFGD database is used for tomato functional genomic databases (http://ted.bti.cornell.

edu/); SFGD database is for soybean functional genomic database (http://bioinformatics.cau.edu.cn/SFGD/), etc.

3.7 Conclusion

The genomic data resulting from sequencing created various huge challenges as well as several opportunities to study

the genomes of organism. The bioinformatic tools mentioned in the present review article including databases and soft-

ware play an efficient role in handling out those challenges. Several functional genomic approaches with their databases

are mentioned to tackle the biological problems generating from the huge size of data. Although the functional genomic

databases are continuously updated with mined knowledge and new information in order to provide much more reliable

information for genomics-related analysis.
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4.1 Introduction

Genome informatics (or geninformatics) is the new emerging discipline of bioinformatics, where computational and sta-

tistical techniques are applied to study the structure and function of genes and genome of an organism (Fadiel et al.,

2005). Watson and Crick (1953) proposed the double-helix model of DNA (deoxyribonucleic acid) in 1953 and subse-

quently, researchers throughout the world started working on the determination of DNA sequences. In 1977 two inde-

pendent groups such as Maxam and Gilbert (1977) and Sanger, Nicklen, and Coulson (1977) were significant research

groups who developed two different approaches of DNA sequencing (;). Initially Maxam�Gilbert method was preferred

but later Sanger’s sequencing method gained more popularity for the development of efficient and faster sequencing

technologies. The International Rice Genome Sequencing Project and Arabidopsis Genome Initiative and Human

Genome Project were based on Sanger’s sequencing technology. Moreover, Sanger’s dideoxy sequencing technology is

gold standard for genome sequencing, but it has several drawbacks such as in vivo cloning of DNA fragments, low

throughput, time-consuming, high cost and require more labor (Sharma et al., 2017). To overcome these shortcomings,

scientists and bioengineers have developed the new sequencing technologies that are called next-generation sequencing

(NGS) or high-throughput sequencing (HTS) technologies.

Genome informatics involves identification of short stretch of DNA fragments to the sequencing of whole genome

of an organism. Current progress in genome informatics provides comprehensive growth in lab benchwork as it is pro-

gressively reducing the hit-and-trial experiments (https://www.ingentaconnect.com). It comes out from the requirement

of suitable informatics for management, distribution, and organization of biological data. It is an interdisciplinary field

emerging from the interaction of molecular biology, statistics, mathematics, and computer science to study the genomic

data of various organisms. It also predicts the structure and function of macromolecules (Aslam, Khattak, Ahmed, &

Asif, 2017). Genome informatics explores the different aspects (genomics, transcriptomics, proteomics, metabolomics,

metagenomics and epigenetics) of biomolecular organization, and complicated biological systems from cells to ecosys-

tems. Due to the advancement of NGS technologies with low cost, there is a flood of molecular data which are gener-

ated from environmental samples to organisms (Esposito et al., 2016). The NGS data analysis is an important and

essential technique for interpreting and analyzing vast amount of information generated and constructed using various

biological approaches. With the aid of next-generation technologies, bioinformatics plays a vital role in the coding and

decoding of genes, genomes, and proteins (Harishchander, 2017). The whole-genome sequencing of several species per-

mits us to understand their structural and functional organization (Morrell, Buckler, & Ross-Ibarra, 2012; Weigel &

Mott, 2009). Significant advancements in plant genomics have pushed the bioinformatics to a higher level than before

in the field of agricultural research.

In addition, the sequencing of transcriptome and proteome plays an essential role in deciphering the content and

functionality of gene(s) in genome organization (Chiusano, D’Agostino, Barone, Carputo, & Frusciante, 2009; Van

Emon, 2015). Furthermore, the classification of the genes and genome and their interaction are vital to be deciphered

into breeding training for livestock and crops, which contribute to their productivity, resistance, and health. The plant,
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livestock, and soil microbiome also play major roles in agriculture to determine the soil’s biogeochemical properties

(Acosta-Martinez et al., 2014), plant fitness (Haney, Samuel, Bush, & Ausubel, 2015; Timmusk et al., 2014), quality,

and yield traits (Babu, Jogaiah, Ito, Nagaraj, & Tran, 2015). The contribution of genomics and transcriptomics to agri-

culture spans the discovery and the manipulation of genes associated with breeding by marker-assisted selection (MAS)

of variants (Iovene, Barone, Frusciante, Monti, & Carputo, 2004) as well as specific phenotypic traits (Zhang et al.,

2014). This is so-called agrigenomics, which aims to find novel solutions through the study of crop genomics so

that crop production can be further improved (Esposito et al., 2016). It maintains continuous productivity for the

food or pharma industry, such as the design of pharmaceuticals or energy production (Blanchfield, 2004; Yuan, Tiller,

Al-Ahmad, Stewart, & Stewart, 2008).

In 2005 NGS technology became commercially accessible. Roche/454 GS FLX1 GS 20 sequencing technology

was the first sequencing technology, and after that, many sequencing platforms and chemistries have been developed.

These sequencing methods grouped into three different types, such as single-molecule sequencing, sequencing by liga-

tion (SBL), and sequencing by synthesis (SBS). Till date, many NGS platforms have been developed, such as Illumina

series, Ion Torrent, Life/AB SOLiD series, Helicos BioSciences: HeliScope, Pacific BioScience: PacBio, and Nanopore

(Egan et al., 2012; Jain et al., 2018).

4.2 The evolution of DNA-seq

Maxam�Gilbert and Sanger sequencing were the main sequencing methods that used until the development of new

sequencing technologies, which completely transformed the genome exploration and analysis approach (Maxam &

Gilbert, 1977; Sanger et al., 1977). In 2005 454 Life Sciences discovered the first NGS technologies and commercial-

ized by the Roche company, it was capable of generating huge amount of sequences with high speed, low cost, and

reduced labor. These new sequencing technologies were further termed as “next-generation sequencing (NGS) technolo-

gies” (Qiang-long, Shi, Peng, & Fei-shi, 2014).

To date, various next NGS technologies have been developed that produce millions to billions of reads of many

samples parallelly in a single run at much lower cost within an hour or a day. For example, Sanger’s sequencing tech-

nology took approximately 15 years and 100 million US dollars to sequence human genome that contains approximately

3 billion bps distributed in 23 chromosomes which are located in each human cell nucleus, whereas 454 Genome

Sequencer FLX took approximately 2 months at very low cost to sequence the human genome (Kchouk, Gibrat, &

Elloumi, 2017; Mardis, 2011). After the invention of basic sequencing methods, many technologies have been devel-

oped, which can be categorized into three generations, that is, first, second, and third.

4.2.1 The first generation of sequencing technologies

Sanger and Maxam�Gilbert developed the DNA sequencing technologies in 1977, which are classified as the first-

generation sequencing technologies (Heather & Chain, 2016; Liu et al., 2012). These technologies are based on differ-

ent chemistries of DNA sequencing. Maxam�Gilbert approach based on chemical method (chemical degradation

method) is dependent on the splitting of nucleotides by chemicals which is found to be more effective in smaller

nucleotides. The chemical treatment breaks nucleotide into small proportion of bases into four reactions, that is, T1C,

A1G, T, and G (Masoudi-Nejad, Narimani, & Hosseinkhan, 2013; Maxam & Gilbert, 1977). Due to its more complex-

ity and low resolution, the Maxam and Gilbert approach did not gain much recognition. On the other side, Sanger’s

sequencing approach is based on dideoxynucleotide or chain termination method or SBS method (Sanger et al., 1977).

It uses single strand of double-stranded DNA sequence as template for sequencing. This approach makes the use of

chemical analogs of the deoxyribonucleotides (dNTP). Lacking 30 hydroxyl group in dideoxynucleotides (ddNTPs)

which is necessary for the extension of DNA chain and due to which it cannot form a bond with 50 phosphate of the

next dNTP. Subsequently, certain amounts of ddNTP labeled with radioactive isotopes are mixed (ddTTP, ddATP,

ddGTP, and ddCTP) into four DNA extension reactions, respectively. Autoradiography and gel electrophoresis are used

to determine the DNA sequence on the basis of their position (Chidgeavadze et al., 1984; Heather & Chain, 2016).

4.2.2 The second generation of sequencing technologies

Sanger sequencing method was dominant in the world for three decades. After that, in 2005 the emergence of NGS

methods has revolutionized the whole-genome sequencing technologies. The second-generation sequencing technolo-

gies were produced by Roche/454 Life Sciences launched in 2005, Illumina in 2006, and ABI/SOLiD in 2007.
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The main features of the second generation of sequencing technologies are that they generate millions of reads paral-

lelly with high speed, low cost, and cheap labor, and output of reads can be detected without the need for electrophore-

sis. In this generation, it omitted the requirement of in vivo cloning, and DNA can be fragmented to generate

sequencing libraries by using adapter ligation amplification using PCR (polymerase chain reaction)-based system. On

the basis of chemistry, second-generation sequencing approaches are divided into two categories: SBL used by ABI’s

SOLiD and the second is SBS which is used by Illumina, Roche/454, and Ion Torrent (Heather & Chain, 2016; Sharma

et al., 2017).

4.2.3 The third generation of sequencing technologies

The second-generation sequencing technology changes the traditional DNA sequencing approach, but it still requires

PCR amplification step which takes long time, is complex protocol, and is very expensive in library preparation and

sequencing. Moreover, due to repetitive regions in the genome, it becomes difficult and incapable of solving in second

generation because of short reads. To overcome this issue, researchers developed the third-generation sequencing

platforms such as PacBio and Oxford Nanopore. These new technologies generated the long reads (several kilobases)

without the use of PCR amplification, cheaper in cost, and easy and straightforward sample preparation protocol as

compared to previous generations (Goodwin, McPherson, & McCombie, 2016). Single-molecule real-time (SMRT)

sequencing approach and synthetic approach are the two approaches used in third-generation sequencing technologies.

SMRT was developed by Quake Laboratory, and synthetic approach was developed by Illumina (Moleculo) and

10xGenomics (Bentley, Balasubramanian, & Swerdlow, 2008; Braslavsky et al., 2003; Harris, Buzby, & Babcock,

2008). Both PacBio and Oxford Nanopore use the SMRT approach to generate sequencing data (Heather & Chain,

2016). Single-molecule sequencing platform has the ability to detect epigenetic modifications, and longer reads are also

helpful in de novo genome assembly, improving previous genome assemblies with more accurate results. But the major

drawback of single-molecule sequencing technology is its higher error rate (Sharma et al., 2017). The sequencing plat-

form of each generation sequencing platforms and their details are listed in Table 4.1.

4.3 Genomics in agriculture

The NGS methods produce millions of sequencing reads which have not only simplified genome and transcriptome

sequencing but also started to change the research in life sciences. This can be useful in whole-genome sequencing,

structural variation discovery, simple sequence repeats (SSRs), single-nucleotide polymorphism (SNP), mRNA and non-

coding RNA profiling, epigenomics, and chromosome chromatin conformation. These approaches provide useful infor-

mation to solve the complex biological problems in agriculture, nutrition, and food (Esposito et al., 2016; Liu, 2009).

4.3.1 Genome assembly

De novo genome assembly is one of the major purposes of DNA sequencing. High-throughput genome sequencing pro-

vides practical solution to many challenges that occurred in the field of crop genomics such as novel de novo genome

TABLE 4.1 List of sequencing platforms as per generation.

Generations Platform Avg read length (bp) Reads per run Data generated per run

First ABI Sanger 400�900* 96 0.00069�0.0021 Gb

Second 454 100�700 B1M 0.02�0.7 Gb

Illumina 150�300 25M�6B 7.5 Gb�1.8 Tb

SOLiD 75 3�6B 160�320 Gb

Ion Torrent 200�400 0.4�80M 0.06�10 Gb

Third PacBio 1300�13,500 350�600 0.5�7 Gb

Oxford Nanopore 9545 100 1.5 Mb�4 Tb

B, Billion; Gb, gigabytes; M, million; Tb, terabytes.
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assembly without the prior knowledge of reference genomic information. It refers to the method of taking millions of

short DNA reads and putting back together to a create chromosome wise distribution of sequences of an organism. Due

to rapid growth in NGS technologies and the bioinformatics approaches that change the prospective of research from

classical conservation genetics method to conservation genomics method (Allendorf, Hohenlohe, & Luikart, 2010;

Primmer, 2009). Genome-wide data analysis provides detailed information of candidate gene approaches or genetic var-

iations and this opens the scope of screening of selective variations and assessing the adaptive potential of populations

such as quantitative trait loci (QTL) mapping, population selection and association mapping (Primmer, Papakostas,

Leder, Davis, & Ragan, 2013; Steiner et al., 2013). Many large-scale data types such as RAD-seq, transcriptome

sequencing, genotyping-by-sequencing, reduced representation sequencing, and amplicon sequencing can successfully

utilize in many plant-based research without relying on a reference genome (Ekblom & Wolf, 2014). But a complete

and annotated whole genome with chromosomal and positional data provides the crucial information for genomic

approach such as SSR, SNP, InDels (insertion and deletions), CNV (copy number variation), and structural rearrange-

ments, which is important for population-based genetic studies (Ellegren, Smeds, & Burri, 2012). All these studies

strongly rely on complete and well-annotated genomic data for the identification of structural and functional genomic

regions of interest (Ekblom & Wolf, 2014).

In 2005 Arabidopsis Genome Initiative published the genome of first plant species, that is, Arabidopsis thaliana and

after that the genome of many plant species was got sequenced using first-generation and NGS technologies (Bevan &

Walsh, 2005; Nivedita, Yadav, & Gautam, 2015; Turktas et al., 2015). There is a rapid growth in plant genome

sequencing, which can provide deep knowledge of physiological and biochemical processes which showed how the

plants respond to different environment factors such as abiotic and biotic stresses (Barba et al., 2014; Gedil, Ferguson,

& Girma, 2016a). There are more than 100 plant genomes, which have already been decoded in past two decades such

as A. thaliana, Oryza sativa, Triticum aestivum, Glycine max, Zea mays, Brachypodium distachyon, Vigna radiata, and

Vigna angularis. Availability of these genomes has paved a new path for studying the evolutionary history, complex

life cycle, phylogenetic relationship with other species, and functional and structural genomic organization. There are

several nonfunctional model plant species such as Utricularia gibba, Spirodela polyrhiza, Selaginella moellendorffii,

and Genlisea aurea which were sequenced. In addition, these plant species provide support in the evolutionary relation-

ship between basal vascular plants and most diverse as well as complicated angiosperms (Sharma et al., 2017).

With the advancement in NGS technologies, it has become very affordable and feasible to assemble and annotate

the genomic data of an organism. Decoding of high-quality genome assembly of eukaryotes is a very challenging prob-

lem that requires high computational resources, software, expertise, and time due to its complex genomic structure,

repeats, and sizes (Badouin, Gouzy, & Grassa, 2017; Jansen, Liem, & Jong-Raadsen, 2017). Fungi, virus, and bacterial

genomes require less resources and time as compared to eukaryotes. Eukaryote genomes take weeks to months for run-

ning a genome assembly and annotation (Dominguez Del Angel, Hjerde, & Sterck, 2018).

4.3.1.1 Pipeline of genome assembly

Every genome assembly project is different and complex on the basis of species to species (Fig. 4.1). There are several

properties that are needed to know before going to start genome assembly projects of an organism on the basis of com-

plexity and properties (Dominguez Del Angel et al., 2018) such as:

1. estimated genome size, repeats, heterozygosity, ploidy level, and GC content;

2. high-quality DNA requirements for de novo sequencing, chemical purity, and structural integrity of DNA;

3. suitable sequencing technology (short- or long-read sequencing technology);

4. computational resources;

5. genome assembly;

6. transposable elements;

7. structural and functional annotation;

8. high-quality genome assembly submission.

Steps involved in genome assembly are as follows:

Step 1. Preprocessing of data: In this step, to check the quality of fastq data and removal of low-quality reads, very

short reads, adapters, and overrepresentative sequences, reads with phred score less than 20, N’s in reads, are carried

out. Trimmomatic (Bolger, Lohse, & Usadel, 2014) and Trim Galore (https://www.bioinformatics.babraham.ac.uk/pro-

jects/trim_galore/) can be used for the removal of low-quality data.
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Step 2. Genome assembly: KmerGenie tool is used to estimate the best k-mer length size of genome and on the basis

of estimated k-mers, de novo assembly is to run by using short-read or long-read assembly tool such as MaSuRCA

(Zimin, Marçais, & Puiu, 2013), Allpaths-LG (MacCallum, Przybylski, & Gnerre, 2009), Abyss (Simpson et al., 2009),

SPAdes (Bankevich et al., 2012), and FALCON (Chin et al., 2016).

Step 3. Quality of assembly: Quality of de novo assembly on the basis of N50, GC content, and number of sequences

is checked by QUAST server (Gurevich, Saveliev, & Vyahhi, 2013).

Step 4. Downstream analysis: After getting the final de novo genome assembly, the next step is finding the exon

and intron organization, genic region identification, structure and functional annotation, repeats and variants identifica-

tion, motifs and domains, transcriptional factors, etc. (Fig. 4.2).

4.3.1.2 Simple sequence repeats

Microsatellites also called SSRs are the codominant markers that play a crucial role in biological functions. It is present

in the form of DNA sequences which contain 1�6 repeating units of nucleotides (Kapil, Rai, & Shanker, 2014). These

repeating units of nucleotides are present in both intro and exon region of DNA, but it is more abundant in the intron

region (Yu, Dossa, & Wang, 2016). Microsatellite markers play a crucial role in association studies, linkage mapping,

MAS, diversity evaluation, gene mapping, fingerprinting, and species identification for crop improvement due to its

codominant inheritance, multiallelic nature, robust amplification, and reproducibility nature. Microsatellite becomes one

of the most powerful and vital techniques for plant genetic studies (Wang, Elbaidouri, & Abernathy, 2015; Wang, Do

Kim, & Gao, 2016). Microsatellite markers are extremely polymorphic as it depends on an amount of short tandem

repeats (Chen, Liu, & Wang, 2015).

Microsatellite discovery using traditional methods from genomic data is compromised with a number of markers

besides cost, labor, and time. To overcome this issue, an in silico approach is another alternative. The in silico approach

has the benefit of predicting target-specific region in genome which can be more effective in developing molecular mar-

kers required for linkage mapping and QTL (Gupta, Souframanien, & Gopalakrishna, 2008; Sharma et al., 2017).

Linkage map requires more molecular markers to increase the map density for fine mapping (Marubodee, Ogiso-Tanaka,

& Isemura, 2015). MISA (MIcroSAtellite identification tool), a widely used Perl script for mining SSRs, has certain set

FIGURE 4.1 (A) Usage of NGS platform for genome sequencing, assembly, and analysis; (B) pipeline of genome assembly analysis. NGS, Next-

generation sequencing.
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of default parameters, that is, 10 repeating units for mono-nucleotide, 6 units for di-nucleotide, and 5 repeating units for

tri-nucleotide, tetra-nucleotide, penta-nucleotide, and hexa-nucleotide (Thiel, Michalek, & Varshney, 2003).

4.3.2 RNA-seq in agriculture

Transcriptome is the protein-coding part of genomic data of an organism and it refers to the set of RNA molecules such

as mRNA (messenger RNA), tRNA (transfer RNA), rRNA (ribosomal RNA), and ncRNA (noncoding RNA) which are

present in the cells. Whole transcriptome shotgun sequencing or RNA-seq is the study of whole set of RNAs transcribed

in a cell and their quantity for certain physiological condition and developmental stage (Gedil, Ferguson, & Girma,

2016b).

RNA-seq uses the NGS technology to identify the quantity and presence RNA in a biological sample at a given

time point. This is found to be more accurate and sensitive way to study the genome-wide differential expressed genes

and it overcomes the limitation of microarray (Voelckel, Gruenheit, & Lockhart, 2017). RNA-seq revolutionized the

field of agriculture transcriptomics where genomes of nonmodel species are rarely available (Fig. 4.3).

There are many studies carried out on plant, since the decoding of Arabidopsis genome. The RNA-seq analysis was

successfully applied in rice, wheat, maize, lentils, mung bean, and so on. RNA-seq profiling of Brassica napus was per-

formed to identify various biochemical pathways (Sharma et al., 2017). Transcriptome analysis of root tissue of wheat

was carried out, which reported 45,139 differential expressed genes (DEGs) in four sets of control and treated samples

of resistant and susceptible cultivars. Furthermore, 13,820 TF and 435,829 genic putative markers were identified

(Iquebal, Sharma, & Jasrotia, 2019). A total of 6310 DEGs were found to be associated with herbicide tolerance

(Iquebal, Soren, & Gangwar, 2017).

4.3.2.1 Types and pipeline of RNA-seq

RNA-seq analysis is categorized into reference-based and de novo-based methods (Fig. 4.4).

1. Reference-based RNA-seq analysis: This approach is used when reference genome assembly and its annotation is

already available.

2. De novo-based RNA-seq analysis: This approach is used when genome of specific species is not available. In this

case, all the reads of each biological replicates of various conditions are pooled, and the de novo transcriptome

assembly is carried out.

FIGURE 4.2 Workflow of gene prediction and annotation.
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FIGURE 4.3 Usage and application of NGS technologies in transcriptome analysis. NGS, Next-generation sequencing.

FIGURE 4.4 Pipeline of RNA-Seq analysis.
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Steps involved in analysis are as follows:

Step 1: Preprocessing of data: It includes removal of low-quality reads on the basis of phred score less than 20,

very short reads, adapters and overrepresentative sequences, N’s in the reads, etc.

Step 2: Mapping: In this step, all the reads of each condition separately map onto reference genome or de novo

transcriptome assembly. There are various tools developed for the alignment of reads onto reference genome such as

Hisat2 (Kim, Paggi, Park, Bennett, & Salzberg, 2019), Tophat2 (Kim, Pertea, & Trapnell, 2013), STAR (Dobin, Davis,

& Schlesinger, 2013), and Bowtie2 (Langmead & Salzberg, 2012).

Step 3: Transcript abundance estimation: Abundance estimation and read count can be obtained by using RSEM

(Li & Dewey, 2011), featureCounts (Liao, Smyth, & Shi, 2014), or HTSeq (Anders, Pyl, & Huber, 2015).

Step 4: Differential expression analysis: Expression analysis of genes can be detected from two different groups at

specific time point or other conditions such as control and treated, etc. Several tools, such as EdgeR (Robinson,

McCarthy, & Smyth, 2010), DESeq2 (Love, Huber, & Anders, 2014), and NOIseq (Tarazona, Furió-Tarı́, & Turrà,

2015), can be used for differential expression analysis.

Step 5: Homology search and gene ontology: After getting the DEGs, next step is finding the gene name based on

homology search against NCBI’s NR database (NRDB) and subsequently gene ontology can be analyzed using the

blast2GO tool (Conesa, Götz, & Garcı́a-Gómez, 2005).

The list of software and tools used for NGS data analysis are summarized in Table 4.2, which also include genome

assembly, RNA-seq, and SSR analysis.

4.3.3 Databases and prediction servers

Storage of NGS data as well as analyzed data is also a substantial issue to scientific community. Several biological

databases have been developed to overcome this issue, and these databases are NCBI (https://www.ncbi.nlm.nih.gov/),

DDBJ (https://www.ddbj.nig.ac.jp/index-e.html), and EMBL (https://www.embl.org/). All three databases share and

TABLE 4.2 List of software and tools for next-generation data analysis.

Category Tool name Aims and scope

Preprocessing FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) Assessment of reads

FASTX-toolkit (Gordon and Hannon (2010), NGS QC Toolkit (Patel and
Jain, 2012), Cutadapt (Martin, 2011), Trimmomatic (Bolger et al., 2014)

Removal of low-
quality reads and
adaptors

Assembly ALLPATHS (Butler et al., 2008), SOAPdenovo-Trans (Xie et al., 2014),
Trans-ABySS (Robertson et al., 2010), Oases (Schulz et al., 2012), Spades
(Bankevich et al., 2012), SOAP-denovo2 (Luo et al., 2012), ABySS
(Simpson et al., 2009), Velvet (Zerbino and Birney, 2008), Trinity (Haas
et al., 2013), FALCON (Chin et al., 2016), MIRA (Chevreux et al., 1999),
rnaSPAdes (Bushmanova et al., 2019]

Genome and
transcriptome
assembly tools

Mapping Tophat2 (Kim et al., 2013), STAR aligner (Dobin et al., 2013), Bowtie2
(Langmead and Salzberg, 2012), HISAT (Kim et al., 2015), BWA (Li and
Durbin, 2009)

Read aligner tools

Expression analysis RSEM (Li and Dewey, 2011), Feature counts (Liao et al., 2014), HTSeq
(Anders et al., 2015), Kallisto (Bray et al., 2016)

RNA-seq read count
tools

Differential expression
analysis

EdgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014), NOISeq
(Tarazona et al., 2015), EBSeq (Leng et al., 2013)

R package for
differential expression
analysis

Single nucleotide
polymorphism and population
genomics

SAMtools (Li et al., 2009), Plink (Purcell et al., 2007), Tassel (Bradbury et
al., 2007), GATK (Van der Auwera et al., 2013), VcfTools (Danecek et
al., 2011), Stacks (Catchen et al., 2013)

SNP and GWAS
analysis

Markers MISA (Beier et al., 2017), GMATo (Wang et al., 2013) Simple sequence
repeats tools

54 SECTION | I Bioinformatics and next generation sequencing technologies

https://www.ncbi.nlm.nih.gov/
https://www.ddbj.nig.ac.jp/index-e.html
https://www.embl.org/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


update their data with each other regularly through the International Nucleotide Sequence Database Collaboration

(http://www.insdc.org/). The most important databases which share NGS data with each other are listed in Table 4.3.

Furthermore, there are several other databases which are useful for NGS databases such as Gene Expression

Omnibus (repository of microarrays data and high-throughput gene expression data) (https://www.ncbi.nlm.nih.gov/geo/),

Transcriptome Shotgun Assembly Sequence Database (for transcriptome assembly) (https://www.ncbi.nlm.nih.gov/gen-

ank/tsa/), ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), and Ensembl (https://ensembl.org/index.htm).

4.3.3.1 List of plant-specific databases

There are specific databases that have been developed for various plant organisms which contain the information of

genome assembly, gene annotation, markers, variants, protein sequences, motifs, domains, etc. (Table 4.4).

4.4 Conclusion, applications, and future prospects of next-generation sequencing in
agriculture

NGS technology plays a vital role in transforming the experimental design at molecular level, which enables us in

increasing scientific knowledge in the field of agricultural research. Applications of NGS technologies have signifi-

cantly speed up the whole-genome sequencing projects and resequencing of genome to RNA-Seq, DNA methylation

sequencing, and epigenomics and metagenomics. It plays an important role in structural and functional genomics, plant

breeding, ecology, evolution, and plant disease diagnosis. Furthermore, markers including SNPs and SSRs are the most

suitable predominant marker types exploited in plant breeding approaches (Egan et al., 2012).

Genome assembly, transcriptomics, metagenomics, and epigenomics may also contribute to the understanding of the

functionality and organization of biological systems that provide insight to trace the molecular variability during the

development stage under specific condition such as pathological (biotic) or influenced by environmental and/or

TABLE 4.3 List of databases for storing next-generation sequencing data.

Data type NCBI DDBJ EMBL-EBI

Next-generation sequencing reads SRA DRA ENA

Capillary reads Trace Archive DTA

Annotated sequences GenBank DDBJ

DRA, DDBJ Sequence Read Archive; DTA, DDBJ Trace Archive; ENA, European Nucleotide Archive; SRA, Sequence Read Archive.

TABLE 4.4 List of important plant specific databases.

Rice Genome Annotation Project Oryza sativa http://rice.plantbiology.msu.edu/

TAIR Arabidopsis thaliana https://www.arabidopsis.org/

PlantGDB Multiple plants species http://www.plantgdb.org/AtGDB/

Phytozome Multiple plants species https://phytozome.jgi.doe.gov/pz/portal.html

EnsemblPlantys Multiple plants species https://plants.ensembl.org/index.html

PGDBj Multiple plants species http://pgdbj.jp/?ln5 en

Sol Genomics Network Multiple plants species https://solgenomics.net/

Pulse crop database List of pulses only https://www.pulsedb.org/

PlantTFDB Plant transcriptional factor database http://planttfdb.gao-lab.org/

PGDBj, The Plant Genome DataBase Japan; TAIR, The Arabidopsis Information Resource.
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physiological changes (abiotic) (Esposito et al., 2016). Genome assemblies provide an opportunity to mine millions of

molecular markers such SNPs and SSRs, and characterization of agronomically important genes. It has been observed

that variants such as SNPs and InDels dominate the molecular markers’ applications and usage due to their progression

in NGS technology (Edwards & Batley, 2010). Molecular markers play an important role in the development of genetic

and physical maps of genome and also involve in finding genes or QTL, which helps in regulating economically key

traits (Varshney, Nayak, & May, 2009).

Postadvancement of HTS technologies, large-scale genome-wide study of evolutionary, and phylogenetic and com-

parative analysis has become much easier for model and nonmodel crops (Grover, Salmon, & Wendel, 2012). HTS has

revolutionized the field of agricultural genomics research (agrigenomics). The genome assembly of organism, transcrip-

tomics, epigenomics, and metagenomics are the major areas which are influenced by NGS technology. Continuous

advancement in the NGS technologies tends to decrease the cost, labor, and time, which has opened the door for small

laboratories as well as researchers.
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5.1 Introduction

Tom Roderick, a geneticist of Jackson Laboratory, coined the word genomics on the mapping of human genome in

1986 but the term was used first time in 1926 (Mckusick, 2005; Ogbe, Ochalefu, & Olaniru, 2016). “Genome” is com-

posed of two independent words gene and omics where gene (Greek) refers to creation or birth and omics means the

study of respective fields. Gene is a set of DNA which can synthesize protein independently and omics is the collective

characterization and quantification of biological molecules which translate into structure, function, and dynamics of an

organism. Therefore genome is the total genetic materials of an organism and genomics is the study of the total genes

of an organism where total gene refers to whole genome of that organism.

Genomics could also be defined as the analysis of an organism complete DNA sequence (Bustamante, De La Vega,

& Burchard, 2011; Hardison, 2003). The suffix omics when added to protein, genome, transcriptome, and metabolome

make a sense and study of respective fields such as proteomics, genomics, transcriptomics, and metabolomics.

Genomics is the study of whole genome of an organism which uses a combination of recombinant DNA, DNA sequenc-

ing methods, and bioinformatics to sequence, assemble, and analyze the structure and functions of genomes. Most

importantly, genomics focuses on interactions between loci and alleles within the genomes. It also deals with other

interactions like epistasis, pleiotropy, and heterosis (Fig. 5.1) (Ogbe et al., 2016; Cooper, Kaufman, & Ward, 2003).

The work on genomics and next-generation sequencing technology is pioneered by Fred Sanger. Fred Sanger and his

colleagues established the technique of sequencing, genome mapping, data storage, and bioinformatics analysis between

1970 and 1980. This work paved the establishment of Human genome Project in 1990 and completed with the publica-

tion of complete human genome sequence in 2003 (http://www.ebi.ac.uk/).

5.1.1 Genome

Genomics is the study of whole genes of an individual, its interactions with each other, and the environments (http://

www.genome.gov). It deals with the structure, function, evolution, mapping, and editing of genomes. A genome is the

complete set of DNA of an organism (Hardison, 2003; Ogbe et al., 2016). Every single cell in the human body contains

nearly 3 billion DNA base pairs that make up the human genome (Lander, 1996). A DNA contains four language let-

ters, adenine, thymine, cytosine, and guanine which hold the information needed to build the entire human body.

Similarly, a gene is a unit of DNA that directs the synthesis of a specific protein. A human body contains nearly

20,000�25,000 genes and each gene codes for an average of three proteins. These genes are located in 23 pairs of chro-

mosomes in a nucleus of human cell. The main function of these genes is to produce proteins with the assistance of

enzymes and messenger molecules. The role of enzyme is to copy the information from gene’s DNA into a molecule
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called messenger RNA (mRNA). The mRNA travels out of the nucleus into the cell cytoplasm where the mRNA is

read by a ribosome and the information is used to link together small molecules, the amino acids to form a specific pro-

tein (http://www.genome.gov). Proteins make up the body organs, tissues and also control chemical reactions. If DNA

mutates, it might produce abnormal protein and disturb body normal functioning (Cooper et al., 2003; Daly, Rioux,

Schaffner, Hudson, & Lander, 2001; Lander, 1996).

The genome sequence of an organism is useful to understand the function of individual genes and their network for

explaining evolutionary relationships and processes, and for depicting unknown regulatory mechanisms that coordinate

the activities of genes (Bevan & Uauy, 2013). The genome-based approaches have multiapplications, for the disease

diagnosis and treatments and for the improvement of food crops and fuel production. Genomics is an emerging and

complex subject that can be categorized into different groups to make the study easy.

1. Cognitive genomics: It is the branch of genomics where we study the change in cognitive processes associated with

genetic profiles.

2. Comparative genomics: It is the branch of genomics where we study structures and functions of different genomes

of several biological species and relate them for comparative study. The comparison might be between DNA

sequence, genes, gene order, regulatory sequence, and other genomic structures (Hardison, 2003).

3. Functional genomics: It is the branch of genomics where we study the function of genes, proteins, and their interac-

tions. Functional genomics is often termed transcriptomics. Functional genomics makes use of vast data generated

from genomics and transcriptomics projects (Schuler & Reichhart, 2003).

4. Metagenomics: It is the branch of genomics where we study the genetic materials recovered directly from environmental

samples. Metagenomics is also referred to as environmental genomics, ecogenomics, or community genomics.

5. Neurogenomics: It is the branch of genomics that deals with the study of genetic materials that influences the struc-

ture and function of nervous system.

6. Pangenomics: It is the branch of genomics where we study the entire collection of genes and genomes found within

a given species. The pangenome includes the core genome containing genes present in all strains within the clade.

7. Personal genomics: It is the branch of genomics which is concerned with the sequencing and analysis of the genome

of an individual. Personal genomics is also called consumer genetics.

8. Epigenomics: It is the branch of genomics that deals with the study of supporting structure of genomes, including

protein and RNA binders, alternative DNA structures, and modification on DNA.

9. Nucleomics: It is the branch of genomics that deals with the study of the complete set of genomic components that

form the cell nucleus as a complex, dynamic biological system.

5.1.2 DNA sequencing

DNA sequencing is a process of identification of exact order of bases in a DNA strand. Once one of the bases in a pair is

identified, there is no need to determine the order of other bases because the bases exist in a pair. It means that the determi-

nation of location and order of a base also determines the order of other bases (Metzker, 2005; Shendure & Ji, 2008).

FIGURE 5.1 Genomic studies the interactions like epistasis, pleiotropy, and heterosis.
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Several methods of sequencing are used worldwide today and among them, the most popular method is sequencing

by synthesis. In this method, DNA polymerase is used to synthesize a new strand of DNA of interest. Here the DNA

polymerase incorporates with the individual nucleotides of new DNA strand which have been chemically tagged with a

fluorescent level. When the reaction occurs, the nucleotide is excited by a light source and immediately fluorescent sig-

nal is emitted and detected. The fluorescent signal is different depending upon which of the four nucleotides was incor-

porated. This method can generate reads of 125 nucleotides in a row and billions of reads at a time (http://www.

genome.gov). To understand and assemble the sequence of a gene (large piece of DNA), researchers read the sequence

of overlapping segments which allows longer sequence to be assembled from shorter sequence (Table 5.1). In this pro-

cess, each base needs to read several times in the overlapping segments to ensure accuracy (Shendure & Ji, 2008;

Shendure, Balasubramanian, & Church, 2017).

DNA sequencing is used to search and identify any changes in genetic variations or mutations which might play

role in the development of a disease in an organism. Any addition, deletion, or substitution in the base pairs might be

harmful and could lead to serious diseases like cancer.

5.1.3 Research areas

Genomics has wide research areas, including structural and functional genomics, epigenomics, and metagenomics (Fig. 5.2).

5.1.3.1 Structural genomics

Structural genomics reports the three-dimensional structure of every protein encoded by a given genome (Brenner &

Levitt, 2000; Marsden, Lewis, & Orengo, 2007). This genome-based approach help to fix the structure with a high-

throughput method by a combination of both experimental and modeling approaches. Structural genomics tries to deter-

mine the structure of every protein encoded by a genome whereas traditional structural prediction focuses on a particu-

lar protein. With the availability of full genome sequencing, structural prediction can be done more quickly along with

an addition of experimental and modeling approaches. It is because the accessibility of a large number of sequenced

genomes and earlier solved protein structure assist scientists to model protein structures on the structure of earlier

solved homologs. Structural genomics applies a large number of techniques to deal with the structure of a new protein

including chemical and physical principles.

5.1.3.2 Functional genomics

Functional genomics deals with the function of DNA at the gene levels. It is a molecular biology that focuses on the dynamic

aspects such as gene transcription, translation, and protein�protein interactions. Functional genomics uses vast wealth of

data produced by genomic projects to describe gene and its interactions. The main characteristics include involving high-

throughput methods rather than a more traditional gene-by-gene approach. The full knowledge of genomics creates the

TABLE 5.1 Chronology of sequencing events.

SN Events Date References

1 Rosalind Franklin confirms the helical structure of DNA Ankeny (2003)

2 James D. Watson and Francis Crick published structure of DNA 1953 Ankeny (2003)

3 Fred Sanger published amino acid sequence of insulin 1955 Ankeny (2003)

4 Robert W. Holley published the first nucleic acid sequence (the ribonucleotide
sequence of alanine transfer RNA)

1964 Holley et al. (1965)

5 Marshall Nirenberg and Philip Leder determined the triplet nature of genetic
code

1965 Nirenberg et al. (1965)

6 Walter Fiers was first to determine the sequence of a gene, the gene of
bacteriophage Ms2 coat protein

1972 Min Jou, Haegeman,
Ysebaert, and Fiers (1972)

7 Walter Fiers and his colleagues determined the complete nucleotide sequence
of bacteriophage Ms2 RNA and simian virus 40

1976 and
1978

Fiers et al. (1976); Fiers et al.
(1978)
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possibility for the field of functional genomics and mainly concerns with the pattern of gene expressions during various con-

ditions. The important tools are microarrays and bioinformatics (Schuler & Reichhart, 2003).

5.1.3.3 Epigenomics

Epigenomics is the complete study of the epigenome. Epigenome is the complete set of modifications on the genetic

material of a cell (Francis, 2011). Epigenetic modifications are reversible where the genes are expressed without alter-

ing the DNA sequence. It occurs on the cell’s DNA or histones. The most important characteristics of epigenomics are

DNA methylation and histone modification. Epigenetic modification plays important role in the gene expression and

regulation and involves numerous cellular processes such as in differentiation and tumorigenesis. The study of epigene-

sis is being possible due to adaptation of genomic high-throughput assays (Callinan & Feinberg, 2006).

5.1.4 Model systems for the study of genome

5.1.4.1 Viruses and bacteriophages

Bacteriophages are playing a major role in the advancement of bacterial genetics and molecular biology. Earlier, bacte-

riophage was used to define gene structure and gene regulation. The first genome to be sequenced was also a bacterio-

phage. But bacteriophage did not lead genomic revolution and very recently the study on bacteriophage becomes

prominent which enables to understand the mechanism underlying phase evolution. Bacteriophage genome sequence

can be obtained through direct sequencing of isolated bacteriophages and can also be derived as a part of microbial gen-

omes. Bacterial genome analysis shows that microbial DNA consists of prophase sequence and prophase-like elements

(Canchaya, Proux, Fournous, Bruttin, & Brüssow, 2003; Metzker, 2005). The bacteriophage sequence mining helps to

understand the role of prophase in shaping the bacterial genome. Therefore this method verified many bacteriophage

groups and made a useful tool for predicting the relationships of prophase from bacterial genome (Fouts, 2006;

McGrath & van Sinderen, 2007).

5.1.4.2 Cyanobacteria

Right now there are 24 cyanobacteria for which the total genome is sequenced, and 15 of which come from marine

environment. These sequences could be used to infer important ecological and physiological characteristics of marine

cyanobacteria. The increase in genome information could also be used to address global problems through a compara-

tive approach. For example, identification of regulatory RNA genes enlight on evolutionary origin of photosynthesis,

and estimation of contribution of horizontal gene transfer to the genome that has been analyzed (Herrero & Flores,

2008).

5.2 Development of genomic resources

5.2.1 Molecular markers

Molecular markers give highly precise results and are widely used in genomic research because of its wider acceptance.

Molecular markers do not fluctuate with the environment, show high polymorphism, and most of them are codominant

FIGURE 5.2 Interrelation among functional, structural,

and comparative genomic approaches.
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in nature and give unbiased results. The first molecular marker discovered was hybridization-based DNA markers, that

is, restriction fragment length polymorphism (RFLP) followed by PCR-based (polymerase chain reaction) markers, ran-

dom amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple sequence

repeat (SSR) marker for genotyping (Kumar, Rajendran, Kumar, Hamwieh, & Baul, 2015). Among various PCR-based

markers, SSR markers significantly contributed to the development of different crops genome maps. Nowadays, these

PCR-based markers are rapidly replaced by DNA chip�based markers like single-nucleotide polymorphisms (SNPs).

SNPs are abundant in nature and are common even in legume genome (Chagne et al., 2007). Various technologies are

available for evaluation of SNPs loci and many of these are amenable to automation for allele calling and data collec-

tion. The availability of sequence database has started to exploit them as an HTP (highthrough phenotyping) marker

system for genome mapping studies (Kumar et al., 2015; Kumar, Gupta, Mishra, Modi, & Pandey, 2009). Recent

attempts of resequencing allele to discover SNPs in crop like lentil have facilitated automated high-throughput genotyp-

ing platforms and therefore SNPs are emerged as latent markers for NGS (next generation sequencing) approaches

(Kumar et al., 2015).

5.2.2 Transcriptome assemblies

Transcriptome assemblies provide good opportunity to identify expressed sequenced tags (ESTs) derived from SSR and

SNP markers and intron-targeted primers (Table 5.2). Earlier Sanger method of dideoxynucleotide chain termination

was used to sequence cDNA libraries and generate ESTs across several crops. ESTs are 150�400 bp short DNA

sequences from a cDNA clone that corresponds to a particular mRNA. Recently, the development of HTP functional

genomics approaches such as serial analysis of gene expression has led to the generation of more ESTs. The cDNA

clone that corresponds to the ESTs of interest can be used as RFLP- or CAP-based (catabolite activator protein) markers

(Varshney, Graner, & Sorrells, 2005). Thus EST sequence data is also used for identification of SSRs and SNPs. Earlier

when ESTs sequence was not available, the development of SSR and SNP markers was expensive, tedious and required

high-resource laboratories, but nowadays any individual can download the database and can use some special bioinfor-

matics program like MISA (a web server for microsatellite prediction) for SSR detection and Snipper for SNP discovery

(Varshney et al., 2005; Thiel, Michalek, Varshney, & Graner, 2003).

5.2.3 Biparental mapping populations

Mapping populations are developed to identify key traits in a crop. Mapping populations are of different types like

recombinant inbred line (RIL), near-isogenic line (NIL), multiparent advanced generation intercross (MAGIC), nested

association mapping (NAM), and F2 populations. Identification of markers linked to the genes/QTL (quantitative trait

TABLE 5.2 Transcription factor database in plants (Mochida & Shinozaki, 2010).

Database Species URL

RARTF Arabidopsis http://rarge.gsc.riken.jp/rartf/

AGRIS, AtTFDB Arabidopsis http://arabidopsis.med.ohio-state.edu/AtTFDB/

DATF Arabidopsis http://datf.cbi.pku.edu.cn/

DRTF Rice http://drtf.cbi.pku.edu.cn/

DPTF Poplar http://dptf.cbi.pku.edu.cn/

TOBFAC Tobacco http://compsysbio.achs.virginia.edu/tobfac/

SoybeanTFDB Soybean http://soybeantfdb.psc.riken.jp/

PlantTFDB 22 plant species http://planttfdb.cbi.pku.edu.cn/

PlnTFDB 20 plant species http://plntfdb.bio.uni-potsdam.de/v3.0/

GRASSIUS, GrassTFDB Maize, rice, sorghum, sugarcane http://grassius.org/grasstfdb.html

LegumeTFDB Soybean, Lotus japonicus, Medicago truncatula http://legumetfdb.psc.riken.jp/

DBD . 700 species http://dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?Home
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loci) governing target traits help in the development of genotype having high biomass at early stage. With the rapid

generation advancement technology and speed breeding, four to five generations of annual crops per year can be grown

which help in the development of much-needed genomic resources for genomics-enabled improvement (Kumar et al.,

2015; Watson, Ghosh, & Williams, 2018). Biparental populations have three major advantages (Scott, Ladejobi, &

Amer, 2020):

1. Relative simplicity of construction, that is, only two generations are needed for F2 populations and only six genera-

tions of inbreeding in self-pollinated species whose genomes are fixed are needed for making RILs.

2. The probability of QTL detection becomes high because of all allele frequencies which are typically close to the

optimal value of 50%.

3. The rate of linkage disequilibrium decay within the chromosomes becomes low because only one or two recombi-

nants per chromosomes arm mean only a few hundred genotyped markers are needed to map QTL.

5.2.4 Genetic linkage maps

Genetic mapping (linkage mapping) was first begun by Zamir and Ladizinsky (1984) and the first map comprising

DNA-based markers was given by Havey and Muehlbauer (1989). After that, several maps were produced. The increase

in number of markers was high across many crops, including lentil with the discovery of PCR-based markers (Kumar

et al., 2014). Mapping populations could be inter- or intraspecific but intraspecific mapping populations have been

found more practical utility in QTL identification than to tag desirable genes of interest (Kumar et al., 2015).

5.2.5 Comparative genome mapping

Different levels of genome conservation among crop species have been demonstrated by comparative genome mapping

during the course of evolution (Zhu, Choi, Cook, & Shoemaker, 2005). PCR-based markers have improved the transfer-

ability genetic information among species through comparative genomics and have facilitated the start-up of phyloge-

netic relationships in plant species. Comparative genomics provides opportunity for study of genetic diversity

(Hardison, 2003; Kumar et al., 2015).

5.2.6 Functional genomics

Genomic maps are used to identify genes/QTL of interest. Similarly, gene cloning approach helps to characterize and

reveal functions of gene/QTL being identified (Table 5.3). Thus the accumulative knowledge of gene cloned in a crop

facilitates the development of functional markers for MAS (marker assisted selection). With functional genomic

approaches, genes expressing differentially in contrasting genotypes can also be identified. Microarray is also used to

identify gene network underlying the expression of important plant traits (Kumar et al., 2015; Schuler & Reichhart,

2003).

5.3 Application of genomic resources for crop improvement

5.3.1 Genetic fingerprinting

Several crops’ genetic diversity has been studied using various molecular markers like RFLP, AFLP, and RAPD to

access genetic diversity and phylogenetic analysis within and among crop species. The diversity analysis and gene map-

ping help in genetic characterization of genotypes. Cluster analysis could be used to group the accessible germplasm

into certain clusters (Kumar et al., 2015).

5.3.2 Hybrid testing

When plants and its flowers are of small in size, then crossing becomes difficult and it increases the chance of selfing.

Similarly, differentiation of F1 plants from selfed ones also becomes difficult due to low phenotypic diversity between

the parents (Kumar et al., 2015). Molecular markers can reduce the time and money required to grow a population from

selfed or admixed plants and increase the efficiency of plant breeders in the selection of recombinant plants.
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TABLE 5.3 Crop of specific traits along with its particular gene/locus (Tao, Zhao, Mace, Henry, & Jordan, 2019).

Species Gene (Locus) Trait

Rice GW5/qSW5/GSE5 Grain size

Rice GL7 Grain size

Rice SGDP7 Grain size, grain number, yield

Rice Pikm1-TS Blast resistance

Rice Pikm2-TS Blast resistance

Rice Sub1A Submergence tolerance

Rice Pup1 Phosphorus-starvation tolerance

Rice SNORKEL1 Deepwater response

Rice SNORKEL2 Deepwater response

Rice qPE9�1 Plant architecture

Rice Pi21 Blast disease

Rice Sc Hybrid male sterility

Rice DPL1/DPL2 Hybrid male sterility

Rice S27/S28 Hybrid male sterility

Rice OsSh1 Shattering

Maize KRN4 Kernel row number

Maize ZmCCT10 Photoperiod sensitivity

Maize TB1 Apical dominance

Maize Vgt1 Flowering time

Maize qHSR1 Resistance to head smut

Maize Scmv1 Resistance to sugarcane mosaic virus

Maize ZmCCT9 Photoperiod sensitivity

Maize MATE1 Aluminum tolerance

Sorghum LGS1 Resistance to Striga

Sorghum Sh1 Shattering

Sorghum SbMATE Aluminum tolerance

Wheat Lr10 Leaf rust

Wheat Yr36 Stripe rust

Wheat Tsn1 Tan spot and Stagonospora nodorum blotch

Wheat FR-2 Cold tolerance

Wheat Vrn-A1 Vernalization

Wheat Ppd-B1 Photoperiod sensitivity

Wheat Rht-D1b Plant height

Barley FR-H2 Frost resistance

Barley Bot1 Boron-toxicity tolerance

Barley HvFT1 Flowering time

Soybean GmCHX1 Salt tolerance

Soybean Rhg1 Resistance to cyst nematode

(Continued )
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5.3.3 Marker-assisted selection

Marker-assisted selection uses molecular markers linked with desirable gene/QTL in many crops. Different types of

mapping populations are used for the identification of QTL. F2 population is heavily used for the identification of major

traits in lentil but it only identifies major QTL. Because QTL is highly influenced by both genotype and the environ-

ment but RIL or NIL populations are more suitable to identify quantitative traits and dissect their components. The

flanking markers have also been found promising for MAS and pyramiding of potentially different resistance genes into

elite background which are resistant throughout the cropping season (Kumar et al., 2009; Kumar et al., 2015).

5.3.4 Gene trait association analysis using natural diverse populations

Biparental mating approach could cause high chances of segregation distortion by favoring one parental allele over the

other. The molecular markers that show polymorphism within the interspecific populations might not show polymor-

phism at the species level as genetic background affects their utility in MAS process. An alternative approach like asso-

ciation mapping could address the shortcomings of biparental mapping. Association mapping does marker�trait

association and identifies QTL with high resolution using historical recombination in natural populations, landraces,

breeding materials, and varieties. Association mapping is of two types, genome-wide association studies (GWASs) and

candidate gene association mapping (Kumar et al., 2015). Any crop used for association mapping must be rich with

genomic resources.

5.3.5 Genetic transformations

Genetic transformation is a biotechnological approach that transfers functional genes to the target species that are not

available in the crossable gene pool. Thus for desired genetic manipulation, cloned genes are important genetic

resources. Mainly two approaches particle bombardment and Agrobacterium tumefaciens infection methods are used to

introduce genes with novel functions. With the availability of sequence information obtained through the database,

transformation systems become very useful to study gene function via RNA interference (knockout), T-DNA insertion,

or transforming a genotype which lack particular gene. Thus a robust transformation system combined with a protocol

to regenerate complete fertile plant from transformed cell is essential to fully study plant gene functions (Burt, 2003;

Kumar et al., 2015).

5.4 Genome analysis

Genome analysis of an organism involves major three components, that is, DNA sequencing, assembling (assembling

of DNA sequence to create representation of original chromosome), and annotation and analysis of that representation

(Table 5.4).

TABLE 5.3 (Continued)

Species Gene (Locus) Trait

Cucumber F Sexual production

Cucumber Tu Tuberculate fruit

Opium poppy NA Production of noscapine

Tomato SUN Elongated fruit shape

Tomato TMF Flowering

Potato R1 Resistance against late blight

Potato ELR Resistance against late blight
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5.4.1 Sequencing

DNA sequencing approaches fall into two broad categories: shotgun and high-throughput (next-generation) sequencing

(Shendure & Ji, 2008; Shendure et al., 2017; Shi & Anderson, 2003).

5.4.1.1 Shotgun sequencing

Shotgun sequencing is a sequencing method designed for the analysis of DNA sequences longer than 1000 base pairs

and might include sequencing of entire chromosomes (Staden, 1979). Because gel electrophoresis sequencing is used to

sequence only short base pairs (100�1000 base pairs), longer DNA sequences are broken into small random fragments

and are then sequenced to get new reads. Several rounds of fragmentation and sequencing are done to confirm reads of

multiple overlapping DNA. After that, computer programs use overlapping ends of different reads that assemble them

in a continuous sequence (Venter, Adams, & Sutton, 1998).

Shotgun sequencing is a random sampling process that requires large amount of sampling to ensure that a given

nucleotide is represented in the reconstructed sequence. Shotgun sequencing is a classical chain termination method

(Sanger method) that is based on the selective incorporation of chain-terminating dideoxynucleotides by DNA polymer-

ase during in vitro DNA replication (Sanger & Coulson, 1975). But nowadays, this method is incorporated with high-

throughput sequencing for large-scale automated genome analysis. Still Sanger method is widely used worldwide for

small-scale genome projects to obtain contiguous DNA sequence. Chain termination method requires a single-stranded

TABLE 5.4 Integrative databases in plants (Mochida & Shinozaki, 2010).

Database name Species URL

TAIR Arabidopsis http://www.arabidopsis.org/

SIGnAL Arabidopsis http://signal.salk.edu/

RARGE Arabidopsis http://rarge.psc.riken.jp/

Rice Genome Annotation Project Rice http://rice.plantbiology.msu.edu/

RAP-DB Rice http://rapdb.dna.affrc.go.jp/

SOL Genomics Network Solanaceae http://solgenomics.net/

Gramene Gramineae http://www.gramene.org/

GrainGenes Triticeae and Avena http://wheat.pw.usda.gov/GG2/
index.shtml

SoyBase Soybean http://www.soybase.org/

MaizeGDB Maize http://www.maizegdb.org/

CyanoBase Cyanobacteria http://genome.kazusa.or.jp/
cyanobase/

GDR (Genome Database for
Rosaceae)

Rosaceae http://www.bioinfo.wsu.edu/gdr/

Brassica Genome Gateway Brassica http://brassica.bbsrc.ac.uk/

Cucurbit Genomics Database Cucurbitaceae http://www.icugi.org/

Phytozome Plant species (whole-genome data available) http://www.phytozome.net/

PlantGDB Plant species (whole-genome and/or large-scale EST data
available)

http://www.plantgdb.org/

Ensembl Plants Plant species (whole genome data available) http://plants.ensembl.org/index.html

ChloroplastDB Plant species (Chloroplast genome data available) http://chloroplast.cbio.psu.edu/

KEGG Plant Plant species (whole-genome and/or large-scale EST data
available)

http://www.genome.jp/kegg/plant/

EST, Expressed sequenced tags.
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DNA template, DNA primer, DNA polymerase, normal deoxynucleoside triphosphates (dNTPs), and modified nucleo-

tides (dideoxyNTPs) which terminate DNA strand elongation. These chain-terminating nucleotides lack a 3-OH group

which is required for the formation of a phosphodiester bond between two nucleotides and cause DNA polymerase to

cease extension of DNA when a ddNTP is incorporated. The ddNTPs might be radioactively or fluorescently labeled

for the detection of DNA sequencers (Pevsner, 2009). These machines can sequence up to 96 DNA samples in a single

batch in up to 48 runs a day.

5.4.1.2 High-throughput sequencing

High-throughput sequencing is a low-cost sequencing technology that parallelizes the sequencing process and produces

millions of sequence at once (Church, 2006; Hall, 2007). This sequencing technique reduces the cost of DNA sequenc-

ing and produces all the possible results with standard dye terminator methods. Nearly 5,00,000 sequencing by synthesis

operations might be run in parallel by ultrahigh-throughput sequencing (ten Bosch & Grody, 2008; Tucker, Marra, &

Friedman, 2009).

High-throughput sequencing can be done in two ways: illumina dye sequencing and ion semiconductor sequencing.

The illumine dye sequencing method is developed by Pascal Mayer and Laurent Farinelli in 1996 at the Geneva

Biomedical Research Institute. This method is based on reversible dye terminators where DNA molecules and primers

are attached on a slide and are amplified with polymerase which forms local clonal bodies or DNA colonies. To deter-

mine the sequence of DNA colonies, four types of reversible terminator bases are added and non-incorporated nucleo-

tides are washed away. Then the DNA chains are extended with one nucleotide at a time and image acquisition is

performed later which allows large arrays of DNA colonies captured by sequential images taken from a single camera.

The optimal throughput and unlimited sequencing capacity with an optimal configuration are possible only by decou-

pling the enzymatic reaction and image capture capacity. The optimal throughput of the instrument depends on A/D

(addition/deletion) conversion rate of the camera where the camera takes image of the fluorescently labeled nucleotide

after that, the dye along with the terminal 30 blocker is chemically removed from the DNA which allows the next cycle

(Anders, Theodor Pyl, & Huber, 2015; Mardis, 2008).

The ion semiconductor sequencing is based on standard DNA replication which measures the release of hydro-

gen ion each time a base is incorporated. A template DNA is flooded with a single nucleotide in a micro-well

where a hydrogen ion will be released if the nucleotide is complementary to the template strand. This release of

hydrogen ion triggers an ISFET (ion-sensitive field-effect transistor) ion sensor. Multiple nucleotides will be

incorporated in a single flood cycle if a homopolymer is present in the template sequence and the detected electri-

cal signal will be higher.

5.4.2 Assembly

Sequence assembly is aligning and merging fragments of longer DNA sequence to reconstruct original sequence

(Pevsner, 2009). The current DNA sequencing technology reads small piece of sequences between 20 and 1000 bases

and cannot read much longer sequence (whole genome) as a continuous sequence. But the third-generation sequencing

technology like PacBio routinely generates sequencing reads .10 kb in length but they are having high error (approx.

15%) (https://www.pacb.com/). The short fragments of nucleotide called reads result from shotgun DNA sequencing.

5.4.2.1 Assembly approaches

Assembly approaches can be categorized into two types: de novo and comparative assembly. De novo assembly is used

for the genomes that are not similar to any sequenced in the past whereas comparative assembly uses the existing

sequence of a closely related organism as a reference (Pop, 2009). De novo assembly is computationally difficult and is

less favorable for short-read NGS technologies (Rahimi-Vahed, Rabbani, Tavakkoli-Moghaddam, Torabi, & Jolai,

2007).

5.4.2.2 Finishing

The genomes have single contiguous sequence with no ambiguities representing each replicon.
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5.4.3 Annotation

The genome sequence assembly needs additional analysis to get high value (Pevsner, 2009). Therefore genome annota-

tion is needed. Genome annotation is the process of attaching biological information to the DNA sequences which con-

sists of three steps (Stein, 2001):

1. Identification of portion of the genome which do not code for proteins

2. Identification of elements on the genome through a process called gene prediction and

3. Attachment of biological information to these elements

Nowadays, automatic annotation tools are available which perform above mentioned steps in silico. Earlier, manual

annotation (curation) applied that involved human expertise and experimental verification (Brent, 2008). Both these

approaches coexist and complement each other in the same annotation pipeline. Earlier, basic level of annotations was

done using BLAST for finding similarities and then annotating genomes based on homologs (Pevsner, 2009). But

recently, more information is added to the annotation platform. These more information allow manual annotators to

deconvolute discrepancies between genes that are given the same annotation. Some databases use genome context infor-

mation, similarity scores, experimental data, and integration of some other resources to provide genome annotations

through their subsystems approaches. Similarly other databases rely on curated data sources and a range of software

tools in their automated genome annotation pipelines (Flicek et al., 2013). In structural annotation, identification of

genomic elements, primarily ORFs (open reading frames) and their localization or gene structure, are done whereas in

functional annotation biological information are attached to the genomic elements.

5.5 Applications of genomics

Genomics has wide applications in several fields, including medicine, biotechnology, anthropology, and social sciences

(Barnes & Dupré, 2008). The major fields and its applications are discussed in the following sections.

5.5.1 Genomics in medicine

Clinicians and biomedical researchers are able to increase the amount of genomic data drastically collected on the large

study populations through next-generation genomic technologies (Hudson, 2011). These huge amounts of genomic data

are combined with new informatics approaches which integrate many kinds of data in disease research, and it allows

the researcher to better understand the genetic bases of drug response and disease (O’Donnell & Nabel, 2011; Lu,

Goldstein, Angrist, & Cavalleri, 2014). Euan Ashley applied genome to medicine and developed the first tool for the

medical interpretation of a human genome (Ashley et al., 2010; Dewey et al., 2011; Dewey et al., 2014).

5.5.2 Genomics in synthetic biology and bioengineering

The vast knowledge of genomics helps in sophisticated applications of synthetic biology (Church & Regis, 2012). The

creation of partially synthetic species of bacterium Mycoplasma laboratorium, derived from the genome of

Mycoplasma genitalium, was possible at J Craig Venter Institute in 2010 (Baker, 2011).

5.5.3 Conservation genomics

The information gathered through genomic sequencing is used to better evaluate the genetic factors key to species con-

servation. For example, genetic diversity of a population is used to understand whether an individual is heterozygous

for a recessive inherited genetic disorder (Frankham, 2010). Genomic data are also used to evaluate the effects of evolu-

tionary processes and to detect pattern in variation throughout a given population.

5.6 Next-generation genomics for crop improvement

Resequencing of genome-wide sequence variation significantly improves the availability of information that can be

used to develop genetic markers and, therefore, proceed the genetic mapping of agronomic traits. For example, only

less than 500 SNP markers were available in 2008, and SNP markers increased to 1536 in 2010, 10,000 in 2011, and

more than 90,000 in 2012 (Allen et al., 2011; Chao et al., 2008). This high-density SNP information is proving highly

useful to different systems like QTL mapping in biparental crosses and RILs, GWASs, mapping QTL in MAGIC lines.
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TABLE 5.5 Progress in crop genome sequencing (Bevan & Uauy, 2013).

Species

(common

name)

Genome

size

Ploidy Sequence strategy Publication

date

Assembly features

Oryza sativa
(rice)

389 Mb 2n5 2x5 24 BAC physical map,
Sanger sequencing

Aug 2005 Essentially complete chromosome
arm coverage

Populus
trichocarpa
(black
cottonwood)

550 Mb 2n5 2x5 8 BAC physical map,
WGS, Sanger
sequencing

Sep 2006 2447 c scaffolds containing 410
Mb, 82% of sequence genetically
anchored

Vitis vinifera
(pinot noir
grape)

475 Mb 2n5 2x5 36 WGS, Sanger
sequencing

Sep 2007 3514 c supercontigs containing
487 Mb, 69% of sequence
genetically anchored

Sorghum
bicolor
(sorghum)

700 Mb 2n5 2x5 20 WGS, Sanger
sequencing

Jan 2009 229 scaffolds containing 97% of
the genome, 88% of sequence
genetically anchored

Zea mays
(maize)

2300 Mb 2n5 2x5 20,
one a WGD
allotetraploid

BAC physical map,
BAC sequence 4�6x
deep

Nov 2009 2048 Mb in 125,325 b contigs
forming 61,161 scaffolds

Glycine max
(soybean)

1115 Mb Two WGD
2n5 2x5 40
allopolyploid

WGS, Sanger
sequencing

Jan 2010 397 scaffolds containing 85% of
the genome, 98% of sequence
genetically anchored

Malus x
domestica
(apple)

750 Mb One WGD
2n5 2x5 34

WGS, Sanger,
Roche 454

Oct 2010 1629 c metacontigs containing
80% of the genome, 71% of
sequence genetically anchored

Theobroma
cacao (cacao)

430 Mb 2n5 2x5 20 WGS, Sanger,
Illumina, Roche 454

Dec 2010 524 scaffolds containing 80% of
the genome, 67% of sequence
genetically anchored

Fragaria vesca
(woodland
strawberry)

240 Mb 2n5 2x5 14 WGS, Roche 454,
Illumina, SOLiD

Dec 2010 272 scaffolds containing 95% of
the genome, 94% of sequence
genetically anchored

Phoenix
dactylifera
(date palm)

658 Mb 2n5 2x5 36 WGS, Illumina June 2011 57,277 scaffolds containing 60%
of the genome

Solanum
tuberosum
(potato)

844 Mb 2n5 4x5 48 Double monoploid
DM and diploid RH,
WGS, Illumina,
Roche 454

July 2011 443 superscaffolds containing 78%
of the genome, 86% of the
assembly genetically anchored

Brassica rapa
(Chinese
cabbage)

485 Mb Three WGD
2n5 2x5 20

WGS, Illumina, BAC
end Sanger
sequencing

Aug 2011 288 Mb in scaffolds, 90% of the
assembly genetically anchored

Medicago
truncatula
(alfalfa
relative)

375 Mb WGD
2n5 2x5 16

BAC physical map,
Sanger, Illumina

Dec 2011 8 pseudomolecules containing
70% of the genome, 100% in
optical map

Manihot
esculenta
(cassava)

770 Mb 2n5 2x5 36 WGS, Roche 454,
BAC end Sanger
sequencing

Jan 2012 12,977 scaffolds containing 80%
of the genome

Cajanus cajan
(pigeonpea)

833 Mb 2n5 2x5 22 WGS, Illumina Jan 2012 137,542 scaffolds containing 73%
of the genome

(Continued )
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TABLE 5.5 (Continued)

Species

(common

name)

Genome

size

Ploidy Sequence strategy Publication

date

Assembly features

Setaria italica
(foxtail millet)

500 Mb 2n5 2x5 18 WGS, Sanger,
Illumina, BAC end
sequence

May 2012 597 scaffolds containing 80% of
the genome, 99% of the assembly
genetically anchored

Solanum
lycopersicum
(tomato)

900 Mb 2n5 2x5 24 WGS, Roche 454,
Illumina and SOLiD,
BAC end Sanger
sequencing

May 2012 91 scaffolds containing 85% of the
genome, 99% of the assembly
genetically anchored

Cucumis melo
(melon)

312 Mb Three WGD
2n5 2x5 24

WGS, Roche 454,
BAC end
sequencing

July 2012 1584 scaffolds containing 83% of
the genome, 88% of the assembly
genetically anchored

Musa
acuminate
(Cavendish
banana)

523 Mb 2n5 2x5 22 WGS, Roche 454,
Sanger, Illumina

Aug 2012 24,425 contigs containing 90% of
the genome, 70% of the assembly
genetically anchored

Citrus sinensis
(Valencia
sweet orange)

367 Mb 2n5 2x5 18 Dihaploid WGS,
Illumina

Jan 2013 4,811 scaffolds containing 82% of
the genome, 73% of the assembly
genetically anchored

Gossypium
raimondii
(D genome
cotton)

880 Mb 2n5 2x5 26 WGS, Illumina Aug 2012 4,715 scaffolds containing 85% of
the genome, 73% of the assembly
genetically anchored

Hordeum
vulgare
(barley)

5100 Mb 2n5 2x5 14 WGS, Illumina, BAC
physical map, BAC
sequence (Roche
454, Illumina)

Nov 2012 Physical map (4.98 Gb), BAC
sequence (1.13 Gb), WGS
assemblies (1.9 Gb); integrated by
physical map and syntenic order

Triticum
aestivum
(bread wheat)

17,000
Mb

2n5 6x5 42
allopolyploid

WGS, Roche 454 Nov 2012 Orthologous group assembly, 437
Mb

G. raimondii
(D genome
cotton)

880 Mb 2n5 2x5 26 WGS, Sanger,
Roche 454, Illumina

Dec 2012 1084 scaffolds containing 86% of
the genome, 98% anchored and
oriented to genetic map

Gossypium
hirsutum
(upland
cotton)

AtDt
allopolyploid

Illumina 82x coverage

Cicer
arietinum
(chickpea)

738 Mb 2n5 2x5 16 WGS, Illumina BAC
end sequence

Jan 2013 7163 scaffolds containing 64% of
the genome

Phyllostachys
heterocycla
(bamboo)

2 Gb 2n5 2x5 48 WGS, Illumina BAC
end sequence

Apr 2013 80% of the 2.05 Gb assembly
maps to 5499 scaffolds of less than
62 kb

Picea abies
(Norway
spruce)

20,000
Mb

2n5 2x5 24 Fosmid pools with
both haploid
(megagametophyte)
and diploid WGS

May 2013 Merged assembly 12.0 Gb, with
4.3 Gb in $10 kb scaffolds

Pinus taeda
(Loblolly pine)

24,000
Mb

2n5 2x5 24 WGS single haploid
megagametophyte
assembly

In progress

(Continued )
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The resequencing approaches identify loci and causal genes for traits with relatively large phenotypic effects. By then

the genomic segments which contain desired allelic variation can be bred and combined in a single genetic background

by using markers to track the segments through marker-assisted breeding.

Some agronomical important traits like yield are the cumulative small effects of several loci which cannot be identi-

fied through QTL or GWAS approaches and their pyramiding through MAS will also be ineffective. Thus breeder

addressed these problems by developing the knowledge base of the associations of polymorphic markers with pheno-

types in breeding populations (Bevan & Uauy, 2013). These associations are used to develop a breeding model in which

the frequency of desired marker allele is optimized and, therefore, maximize the estimated breeding value (Xu, 2003;

Heffner, Sorrells, & Jannink, 2009). Therefore the rate of selection cycle is multiplied to accumulate favorable alleles

that are associated with desired phenotypes though no relationship between particular gene and the phenotype is estab-

lished. This approach is termed genomic selection (Eathington, Crosbie, Edwards, Reiter, & Bull, 2007). Genomic

selection is influenced by next-generation sequencing of parental lines in many ways, by continuing to identify poly-

morphism throughout the genome in both genic and intergenic regions which remove any limitations on marker density,

by providing estimates of gene expression levels, and by providing information on the epigenetic states of genes which

are genetic features and have predictive power for complex traits (Bevan & Uauy, 2013).

Conventional breeding uses naturally available allelic variation for crop improvement. But sequence variation can

be created artificially by using ethyl methane sulfonate to alkylate bases. By then, TILLING (targeted induced local

lesions in genomes) is used to screen the changes of bases in the genes of interest to access gene function and to apply

this for allele breeding (Uauy et al., 2009). Now it is possible to use genome capture to sequence an entire mutant popu-

lation and even the complex polyploidy genomes like wheat.

Genetic modifications or transfer of genes from one organism to the other by A. tumefaciens is fully developed tech-

nology and is well adapted for use in many of the crop species (Table 5.5). The precise modification in gene sequence

using zinc finger nucleases (ZNS) can be applied which recognize specific gene sequence with a target location in

maize (Shukla et al., 2009). CRISPR (clustered regularly interspaced short palindromic repeats), a new type of precision

tool for genetic engineering, is developed from prokaryotes, which is guided to specific target sequences for cleavage

by an RNA molecule (Jinek et al., 2012; Mali et al., 2013). Similarly, several types of genome editing are now possible

such as simultaneous editing of multiple sites, inducing deletions, and inserting new sequences by nick-mediated repair

mechanism (Bevan & Uauy, 2013).

TABLE 5.5 (Continued)

Species

(common

name)

Genome

size

Ploidy Sequence strategy Publication

date

Assembly features

Miscanthus sp.
(elephant
grass)

1500 Mb One WGD,
diploid
progenitors
2n5 2x5 38

WGS In progress

Elaeis
guineensis,
Elaeis oleifera
(oil palm)

1890 Mb 2n5 2x5 32
commercial F1
hybrids

WGS, BAC physical
maps

In progress

Saccharum
officinarum x
S. spontaneum
(sugarcane)

.15,000
Mb

Diploid
progenitors
x5 10; 2n5 80;
x5 8;
2n5 40�128

WGS In progress

a WGD alloploids have a whole-genome duplication in recent lineage. b A contig is an unambiguous linear assembly of sequences with no physical gaps in
coverage, but which can contain errors. c The terms supercontig, scaffold or metacontig are used interchangeably to describe a set of contigs that are linked
by a known physical distance but that contain sequence gaps. These scaffolds are usually created using mate-pair reads and BAC end sequences. d
Pseudomolecule is a term applied to a chromosome-scale assembly of contigs and scaffolds that is anchored to a long-range framework using genetic
markers and other chromosome features, including cytogenetic features and deletions. DM, disease causing Mutations; RH, rhesus factor; BAC, bacterial
artificial chromosome; WGS, whole genome sequencing.
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5.7 Genomic features for future breeding

The scope of genetics has radically altered with the introduction of genomics which provides a landscape of ordered

genes and their epigenetic states, makes access to enormous range of genetic variation, and possesses the potential to

measure gene expression with high precision directly. Genomics also facilitate systemic comparison of gene functions

across sequenced genomes which gives abundant knowledge of gene functions and network obtained in experimental

species and this can be used for crop improvement (Bustamante et al., 2011; Ogbe et al., 2016). The biological knowl-

edge and models of network across species can be integrated through a suitable cyber infrastructure in a two-way flow

from crop to experimental species and reverse again, which will generate new ways of knowledge which can be applied

for crop improvement. One layer is given by ENCODE analysis which helps in interpretation of gene function and vari-

ation and provides new information for the prediction of phenotype from the genotype (The ENCODE Project

Consortium, 2004). The other layer information is given by system-level integration of gene function into network, for

example, controlling flowering time with response to day length. This network is identified in rice and Arabidopsis.

Evolutionary processes like gene duplication and footprints of domestication can be mapped to network such as those

controlling flowering time (Lander, 1996; Yan et al., 2006; Higgins, Bailey, & Laurie, 2010). These types of system

breeding approaches use diverse genomic information to increase the precision by which phenotype is predicted from

genotype and thereby speed up crop improvement (Bevan & Uauy, 2013).
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6.1 Transcription factor: an introduction

RNA polymerases, basal transcription proteins, transcription factors (TFs), coactivators, corepressors, and chromatin-

related proteins such as histone acetyl transferases are key elements associated with gene expression and regulation at

transcriptional level. TFs are sequence-specific DNA-binding proteins playing significant role in the regulation of

diverse genes by targeting unique DNA sequences known as cis-elements present in the gene promoters. In general,

TFs possess DNA-binding domain (DBD), an oligomerization motif, a transcription regulatory (activation) domain, and

a nuclear localization signal. TFs show variability in DBDs by binding with specific DNA sequences present in the pro-

moters and modulate temporal and spatial expression of specific genes. The activation domain, which is distinct from

the DBD, is responsible for the combinatorial control of genes by a variety of TFs. TFs and regulatory elements interact

and form the complexes with other bound TFs and facilitate RNA polymerase II recruitment to complex and start gene

transcription. Application of next-generation sequencing techniques like transcriptome analysis and whole-genome

sequencing has led to identifying several TF gene families and its members with the aid of tools of bioinformatics. The

potential of these TFs gene families for crop improvement using biotechnological approach is emerging in the preset

era of omics. TFs account for about .7% of the coding sequences in plant genomes (Iida, Seki, Sakurai, & Satou,

2005; Udvardi, Kakar, Wandrey, & Montanari, 2007), and substantial efforts have been made to elucidate the functions

of TFs in biological processes during the last two decades.

6.2 Plant transcription factors and its multifarious applications

Plant-specific TFs are involved with diverse functions associated with the growth and development of plants. It is

associated with several functions like morphology, inflorescence/flower formation, reproduction, embryogenesis,

fruit development and ripening, plant morphology, organ development, senescence, signaling, metabolism, and abi-

otic and biotic stress responses (Yadav, Malviya, Nasim, & Kumar, 2016). TF families such as APETALA2 (AP2)/

ethylene-sensitive factor (ERF), basic-domain leucine zipper (bZIP), basic helix�loop�helix (bHLH), DNA bind-

ing with one finger (Dof), myeloblastosis (MYB), MADS, NAM/ATAF/CUC (NAC), WRKY, and zinc fingers are

briefly discussed. These TF families have a significant number of members and play several essential roles exclu-

sively observed in plants. Large numbers of TF family genes in plant genomes occurred due to a higher rate of

expansion in specific TF families compared to those in other biological kingdoms (Yadav et al., 2016).

This expansion in TF family genes has allowed functional divergence and acquisition of novel and adaptive roles
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in plants. In general, TFs are classified based on the unique DBD, and some of the important plant-specific TFs

revealing the diversity of DBDs, DNA-binding sequences, and predicted three-dimensional (3D) structures are

shown in Table 6.1. A brief introduction to some of the important plant TF gene families with major emphasis on

bioinformatics studies is highlighted.

6.2.1 AP2/ERF family

The AP2/ERF TF family is one of the largest plant-specific TF groups comprising two subfamilies AP2 and ERF

(ethylene-responsive element-binding factors). It has a highly conserved 58-amino-acid long AP2/ethylene-respon-

sive element-binding domain. It is associated with several functions like flower development, cell proliferation,

secondary metabolism, and abiotic and biotic stress responses (Agarwal, Gupta, Lopato, & Agarwal, 2017; Feng,

Hou, Xing, & Liu, 2020; Xie, Nolan, Jiang, & Yin, 2019). Substantial bioinformatics-based structural and func-

tional characterization of identified AP2/ERF gene families from sequenced genomes of many crops has been

reported in recent years. A bioinformatics-based genome-wide mining of durum wheat genome revealed a total of

271 members of AP2/ERF genes, many of them associated with abiotic stresses (Faraji, Filiz, Kazemitabar, &

Vannozzi, 2020). Similarly, in silico analysis of genomes of rice, Brassica oleracea, sunflower, Tartary buckwheat,

sugarcane, and pineapple identified 170, 226, 288, 218, and 97 genes, respectively (Li, Chai, Lin, & Huang, 2020;

Li, Fan, Yang, & Hu, 2020; Liu, Ma, Sun, & Huang, 2019; Liu, Sun, Ma, & Zheng, 2019; Najafi, Sorkheh, &

Nasernakhaei, 2018; Rashid, Guangyuan, Guangxiao, Hussain, & Xu, 2012; Thamilarasan, Park, Jung, & Nou,

2014; Zhang, Pan, Liu, & Lin, 2021).

TABLE 6.1 Some of the important transcription factors with DNA-binding domains, probable DNA-binding

sequence, and predicted three-dimensional (3D) models.

Sl.

no.

Type of TF No. of A.A. residues in

DNA-binding domain

Probable DNA-binding sequence Quick access to

predicted 3D model

1. bZIP 60 (T/G/C) ACGTG https://www.rcsb.org/
3d-view/6IAK

2. bHLH 18 G-box DNA sequence motif (CACGTG) https://www.rcsb.org/
3d-view/5GNJ

3. Zinc finger 50�80 (in C2H2 type) A(G/C)T repeat, TGCTANNATTG, TACAAT,
A[AG/CT]-CNAC, etc. are possible binding

sites

https://www.rcsb.org/
3d-view/6JNN

4. Trihelix
(HLHLH)

70 Photo responsive GT element: 50-G-Pu-(T/
A)-A-A-(T/A)-30

https://www.rcsb.org/
3d-view/2JMW

5. HMG box 75�80 AT-rich region in minor groove of DNA https://www.rcsb.org/
3d-view/1J5N

6. Homeodomain
(HD)

60 CAAT(A/T)AYYG or CAAT(G/C)AYYG https://www.rcsb.org/
3d-view/6ES3

7. MADS-box 50�60 CA-rich G-box
CC(A/T)6GG

https://www.rcsb.org/
3d-view/4OX0

8. MYB protein Three copies of 53 AA
repeat

AACNG, H-box: (CCTACC) https://www.rcsb.org/
3d-view/6KKS

9. HSFs 7�21 HSE: nTTCnnGAA-nnTTCn https://www.rcsb.org/
3d-view/1FBS

10. AP2/EREBP 68-AA repeat unit (in AP2)
59-AA (in EREBP)

GCC-box of EREBP gene https://www.rcsb.org/
3d-view/5WX9

HSE, Heat shock element; EREBP, ethylene responsive element binding protein.
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6.2.2 bHLH family

This family is prevalent among eukaryotes, including plants and animals, following an independent evolutionary event.

The conserved domain is made up of 60 amino acids with an N-terminal stretch of 18 hydrophilic and essential amino

acids associated with DNA binding and a helix�loop�helix (HLH) domain of hydrophobic residues separated by an

intervening loop that forms homo- or heterodimers with interacting proteins (Feller, Machemer, Braun, & Grotewold,

2011; Fernández-Calvo, Chini, & Fernández-Barbero, 2011). These TFs are involved in diverse biological processes

like metabolite biosynthesis, carpel and fruit development, suppression of seed germination cotyledon expansion, antho-

cyanin biosynthesis, growth, JA (Jasmonate)-mediated defense processes, and abiotic and biotic stresses. Genome-wide

identification and characterization using bioinformatics tools have been attempted in several crops. An analysis of rice

genome revealed 167 bHLH genes, and its comparison with Arabidopsis formed 25 subfamilies supported by phyloge-

netic tree (Li, Duan, Jiang, & Sun, 2006). Mining of genomes of wheat, ginseng, potato, and Dendrobium officinale, a

traditional Chinese herb, identified 225, 169, 124, and 98 bHLH genes, respectively (Chu, Xiao, Su, & Liao, 2018; Guo

& Wang, 2017; Wang & Liu, 2020; Wang, Zhao, Kong, & Lu, 2018). Using comparative genomic approach, functional

analysis of 183 rice, 231 maize, and 571 wheat bHLH genes has also been reported using bioinformatics tools recently

(Wei & Chen, 2018).

6.2.3 bZIP

bZIP TFs represent an important TF family ubiquitously found in all eukaryotes, and plants possess several family

members with a high level of diversity (Riechmann, Heard, Martin, & Reuber, 2000). It comprises a conserved domain

of 60�80 amino acids with two distinct regions, namely, a basic region followed by leucine zipper. The basic region

contains the N-x7-R/K-x9 motif involved with DNA binding and nuclear localization, while leucine zipper is associated

with homo- and heterodimerization (Jakoby, Weisshaar, Dröge-Laser, & Vicente-Carbajosa, 2002). bZIP TFs in

Arabidopsis are categorized into ten classes based on structural and functional characteristics (Jakoby et al., 2002).

Plant bZIPs bind to the (T/G/C) ACGTA cis-element preferentially; group A members, such as ABRE-binding factor,

identify the ABRE (PyACGTGG/TC) cis-element and mediate ABA (abscisic acid)-mediated expression of stress-

responsive genes. Diverse functions like organ growth, floral development, cell cycle, seed maturation and germination,

photomorphogenesis, light signaling, and responses to stresses are regulated by this TF (Ali, Sarwat, Karim, & Faridi,

2016; Alves, Dadalto, Goncalves, & De Souza, 2013). Using bioinformatics approach, several sequenced plant genomes

have been characterized for the presence of multiple bZIP genes. Genome mining of strawberry revealed 54 bZIP genes

(Lu, Wang, Zhang, & Feng, 2020). Similarly, 50 and 45 bZIP genes identified from genomes of Arachis duranensis

and Arachis ipaensis were functionally characterized for elucidating its role in seed development and response to salt

stress (Wang, Yan, Wan, & Huai, 2019; Wang, Zhang, Hu, & Guo, 2019). A total of 191 bZIP genes identified from

genome of wheat were analyzed for its role in abiotic stress tolerance recently (Agarwal, Baranwal, & Khurana, 2019).

Similarly, genome-wide bioinformatics analysis of celery, an important vegetable revealed 62 bZIP genes that were

functionally characterized for its role in abiotic stresses (Yang, Feng, Xu, & Duan, 2019).

6.2.4 DNA binding with one finger family

It is an important plant-specific TF with 50�52 amino acids long conserved DBD at the N-terminus and a transcrip-

tional regulatory domain at the C-terminus. The CX2CX21CX2C motif of DBD has been predicted to form a single

zinc finger mediated by four conserved cysteine (Cys) residues and belongs to C2C2 Zn finger family, and, therefore,

named Dof domain proteins (Kushwaha, Gupta, Singh, Rastogi, & Yadav, 2011; Yanagisawa, 2002). Four Cys residues

in the DBD mediate sequence-specific identification of the cis-element and the variable C-terminal, which is responsi-

ble for di- or oligomerization and protein�protein interactions (Yanagisawa et al., 2002; Gupta, Malviya, Kushwaha, &

Nasim, 2015; Gupta, Arya, Malviya, Bisht, & Yadav, 2016). Dof TFs recognize the AAAG or CTTT sequences located

in the promoters of Dof target genes. It is associated with several functions like seed storage protein accumulation, seed

dormancy, photosynthetic control, flowering, phytohormone reaction, and biotic and abiotic stress responses (Gupta

et al., 2016; Noguero, Atif, Ochatt, & Thompson, 2013).

Attempts have been made for in silico prediction of Dof gene families for genome-sequenced crops. The variable

number of Dof genes reported in various plant species, namely, Hordeum vulgare, Triticum aestivum, Sorghum bicolor,

Zea mays, Brachypodium distachyon, Solanum lycopersicum and Saccharum officinarum, Chinese cabbage, Vitis vinif-

era, Phaseolus vulgaris, and Solanum melongena is 24, 31, 28, 54, 27, 34, 25, 76, 25, 36, and 29, respectively
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(Cai, Zhang, Zhang, & Zhang, 2013; da Silva, da Silveira Falavigna, Fasoli, & Buffon, 2016; Gupta, Kushwaha, Singh,

& Bisht, 2014; Hernando-Amado, González-Calle, Carbonero, & Barrero-Sicilia, 2012; Jiang, Zeng, Zhao, & Zhang,

2012; Kushwaha et al., 2011; Ma, Li, Wang, Tang, & Xiong, 2015; Moreno-Risueno, Martinez, Vicente-Carbajosa, &

Carbonero, 2007; Shaw, McIntyre, Gresshoff, & Xue, 2009; Wei et al., 2018).

6.2.5 MADS family

The MADS TF family is widely observed in eukaryotes and possesses a conserved MADS DBD. The name MADS

was coined using the initials from first four identified members of this family; MAINTENANCE OF

MINICHROMOSOME1 (Saccharomyces cerevisiae), AGAMOUS (Arabidopsis thaliana), DEFICIENS

(Antirrhinum majus), and Serum Response Factor (Homo sapiens). The family of MADS-box TFs expanded in

flowering plants during their evolution. The MADS box genes possess a highly conserved 55�60 amino acids long

DBD, named MADS domain at N-terminal. MADS TFs recognize the 10-base-pair AT-rich motif CArG-box as

dimers (Kappel, Eggeling, Rumpler, & Groth, 2021). This TF plays an important role in developmental regulations,

changes in vegetative phase, specification of floral organs, ovule and female gametophyte development, fruit ripen-

ing, and root growth (Muino, Smaczniak, Angenent, Kaufmann, & van Dijk, 2014). Genome-wide studies using

bioinformatics approach have been reported in several plants in recent years. In rice a total of 75 MADS box genes

have been identified, and its involvement in reproductive development and stress has been attempted (Arora,

Agarwal, Ray, & Singh, 2007). A total of 131 and 91 MADS-box genes were predicted from genomes of S. lyco-

persicum and B. oleracea genomes and were characterized for elucidating its role in floral development (Sheng,

Zhao, Wang, & Yu, 2019; Wang, Yan, et al., 2019; Wang, Zhang, et al., 2019). Similarly, genome mining of lotus

genome revealed 44 genes, many of which were involved in floral development (Lin, Cao, Damaris, & Yang,

2020). Genome analysis of pomegranate identified 36 MIKC-type MADS box genes, and its role in the peel and

inner seed coat development was reported recently (Zhao, Wu, Zhang, & Wang, 2020; Zhao, Ye, Wang, Wang, &

Chen, 2020; Zhao, Zhao, Wang, & Zhang, 2020).

6.2.6 Myeloblastosis family

The MYB TF is ubiquitously found in most of the eukaryotes, including plants. The DBD, known as MYB repeat,

consists of two helices bound by a turn known as the helix-turn-helix motif. The domain has one to four conserved

MYB repeats (R) of 52 amino acids at N-terminus (Jia, Tong, & Wang, 2004). This TF family on the basis of num-

ber and position of repeats has four groups, 1R-MYB, R2R3-MYB, R1R2R3-MYB, and 4RMYB (Dubos, Stracke,

Grotewold, & Weisshaar, 2010). This family serves many functions in plants, including primary and secondary

metabolism, plant growth, leaf polarity, trichome development, cell fate, cell wall biogenesis, hormone signal

transduction, and abiotic and biotic stress responses (Baldoni, Genga, & Cominelli, 2015; Dubos et al., 2010; Li,

Xiong, Li, & Ye, 2019). In silico genome-wide identification and characterization of MYB family genes from sev-

eral sequenced plant genomes have been reported. A comparative genome-wide identified 155 and 197 MYB genes

from rice and Arabidopsis has been substantially characterized using bioinformatics tools for several attributes

(Katiyar, Smita, Lenka, & Rajwanshi, 2012). Genome mining of cotton revealed 524 genes, many of which were

associated with fiber development (Salih, Gong, He, & Sun, 2016). Similarly, genome-wide studies of potato and

Physcomitrella patens identified 158 and 116 MYB genes, respectively (Pu, Yang, Liu, & Dong, 2020; Sun, Ma,

Chen, & Liu, 2019). A genome-wide comparative analysis of Musa acuminata and Musa balbisiana genomes

revealed 305 and 252 MYB genes, respectively. Its role in fruit ripening was also elucidated (Tan, Ijaz, Salih, &

Cheng, 2020).

6.2.7 NAM/ATAF/CUC family

NAC is an important plant-specific TF having NAC domain of 150 amino acids with 5 subdomains designated as

(A�E) at N-terminus and a variable C-terminal domain. The NAC DBDs undergo dimerization and form a central

semi-β-barrel with seven twisted antiparallel β-strands along with three α-helices and strands of β-sheets are asso-

ciated with DNA-binding function (Chen, Wang, Xiong, & Lou, 2011). It has been observed that few NAC TFs

have more than one NAC domain and nuclear localization signals as monopartite, bipartite, or multipartite. It

encodes up to 45 chimeric proteins, including WRKY, TIR, LRR, protein kinase, peptidase A1, DNAJ, ZF B, and

other domains, which might enable them to control a complex interacting network (Mohanta, Yadav, Khan, &
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Hashem, 2020). NAC TFs could function as both a TF and an enzyme. The ABI, MYB, DREB2, WRKY,

JUMONJI, and KNAT TFs interact with the NAC TFs (Mohanta et al., 2020). It is involved with several plant-

specific functions like flowering, anther dehiscence, lateral root growth, and biotic and abiotic stresses (Agarwal,

Shukla, Gupta, & Jha, 2013). Genome-wide bioinformatics assessment of genomes of Medicago truncatula and

Medicago sativa revealed 97 and 113 NAC genes, respectively (Ling, Song, Wang, & Guo, 2017; Min, Jin, Zhang,

& Wei, 2020). Similarly, genome mining of pepper identified 104 genes (Diao, Snyder, Wang, & Liu, 2018). In

wheat a total of 488 NAC genes were identified from the genome and in silico characterized for its role in drought

and heat stresses (Guerin, Roche, Allard, & Ravel, 2019). A total of 102 NAC genes were identified from genome

of cocoa tree, a major beverage crop recently (Shen, Zhang, Shi, & Sun, 2019). In a genome-wide analysis of

Tartary buckwheat, a medicinal plant showed 80 NAC genes, and many of them were associated with fruit devel-

opment (Liu, Ma, et al., 2019; Liu, Sun, et al., 2019).

6.2.8 WRKY family

It has a conserved DBD at N-terminal with WRKYGQK motif and a putative zinc finger motif at its carboxyl ter-

minal and recognizes the W-box (C/T) TGAC(T/C) of target genes predominately associated with abiotic stress

(Chen et al., 2012; Duan, Nan, Liang, & Mao, 2007). Plant growth and development, trichome development,

embryogenesis, seed coat, secondary metabolism, and abiotic and biotic stress tolerance are all controlled by

WRKY TFs (Wei, Chen, Chen, Wu, & Xie, 2012). Genome-wide identification of WRKY genes from genomes of

several crops revealed diversity in terms of variability in the number of genes. Genome mining of lotus and culti-

vated strawberry identified 65 and 47 WRKY genes (Chen & Liu, 2019; Li et al., 2019). Bioinformatics-based

identification and functional characterization under abiotic stresses in potato, chickpea, and buckwheat of 79, 70,

and 78 WRKY genes, respectively, have been reported recently (He, Li, Chen, & Yang, 2019; Waqas, Azhar,

Rana, & Azeem, 2019; Zhang, Wang, Yang, & Kong, 2017). Genome mining of wheat genome for WRKY genes

and its characterization exclusively for its role in abiotic stress have been attempted (Gupta, Mishra, Kumari, &

Raavi, 2019). In cucumber and Artemisia annua, a total of 61 and 122 WRKY genes were identified from the

genome using bioinformatics approach (Chen, Chen, Han, & Lu, 2020; De Paolis, Caretto, Quarta, & Di

Sansebastiano, 2020).

6.2.9 Zinc fingers

Zinc finger protein (ZFP) TF family is a predominant eukaryotic TFs family first reported from Xenopus oocytes as

TFIIIA (Miller, McLachlan, & Klug, 1985). Plants, unlike animals, seem to have evolved to various specialized roles

by adapting conventional zinc-finger motifs and evolving new zinc finger domains. ZFPs possess a zinc finger motif

that binds to DNA by means of Cys and histidine (His) residues and forms finger-like projections that bind the DNA.

C2H2-type ZFPs are the well-studied ZFPs in plants, with a DBD of 30 amino acids with 2 conserved Cys and His resi-

dues attached to 1 zinc ion tetrahedrally (CX2�4CX3FX5-LX2HX3�5H). Some zinc finger motifs, such as GATA and

PHD, are associated with DBD of TFs, while others, such as LIM and RING-finger, mediate protein�protein interac-

tions. Other motifs with zinc fingers, such as Dof and WRKY, have been held as separate families due to the unusual

spacing between cytosines in Dof and Zn chelating residues in WRKY, as well as the absence of two hydrophobic

amino acids (F and L) present in the C2H2/TFIIIA type. It is associated with several functions influencing plant growth

and development, plant architecture, trichome development, hormone signaling, and stress responses (Liu, Liu, Hu, &

Hua, 2017).

In the recent years with the availability of genome sequences, several bioinformatics studies targeting on

genome-wide identification and characterization of ZFPs TF from several crops have been reported. Using compar-

ative genomics approach, attempts have been made to characterize 68 and 67 CCCH-type zinc finger TF genes of

Arabidopsis and rice, respectively (Wang, Guo, Wu, & Yang, 2008). Genome mining of chickpea identified 58

CCCH-type zinc finger TF genes, many of which were associated with abiotic stress (Pradhan, Kant, Verma, &

Bhatia, 2017). In grapevine a total of 98 C2C2 zinc finger TF genes were analyzed by genome mining, and its role

in pollen development was studied (Arrey-Sales, Caris-Maldonado, Hernandez-Rojas, & Gonzales, 2021).

Genome-wide study of M. truncatula revealed 218 C2H2-type zinc finger TF genes (Jiao, Wang, Du, & Wang,

2020), while 118 genes were identified from genome of tobacco (Yang, Chao, Wang, & Hu, 2016). Using RNA-

seq data, a total of 32 C2H2-type zinc finger TF genes were characterized from tomato, and its role in biotic

and abiotic stress was deciphered (Zhao, Wu, et al., 2020; Zhao, Ye, et al., 2020; Zhao, Zhao, et al., 2020).
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A comparative analysis of 386, 196, and 195 C2H2-type zinc finger TF genes of Gossypium hirsutum, Gossypium

arboretum, and Gossypium raimondii, respectively, has been attempted using bioinformatics approach to reveal its

role in fiber development (Salih, Odongo, Gong, He, & Du, 2019).

6.3 Transcription factors for biotic and abiotic tolerance

The biotechnological approaches for crop improvement mainly target toward the development of stress-tolerant crops

as huge losses due to several biotic and abiotic stresses are observed in several crops. Plant TFs have great potential to

develop stress-tolerant crops, and these special classes of TFs are also referred to as stress responsive, which may show

synergistic or antagonistic effect based on the regulation of activator or repressor elements as shown in Fig. 6.1. The

involvement of TF for developing stress-tolerant crops is supported by some examples as shown in Table 6.2.

6.4 Transcription factor databases

In the recent years, several sequenced plant genomes were annotated for the presence of different types of TFs using

bioinformatics tools based on the presence of unique DBD sequences (Riechmann et al., 2000). Crop-specific databases

have been created for the benefit of the researchers like Arabidopsis genome sequencing initially revealed more than

1500 TFs representing 30 different TF families (Riechmann et al., 2000). Some of the important plant-specific TF data-

bases are listed in Table 6.3.

6.5 Bioinformatics tools used for structural and functional analysis of transcription
factor gene families

For the characterization of TF gene families, bioinformatics tools targeting for genome-wide identification, phyloge-

netic, 3D structural prediction, and validation and in silico expression profiling have been developed (Fig. 6.2). The

steps of major bioinformatics analysis are described in Flow Charts 1, 2, 3 and 4.

FIGURE 6.1 Schematic representation of

plant-specific TF showing stress responsiveness.

TF, Transcription factor.
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TABLE 6.2 Important plant transcription factors associated with biotic and abiotic stress tolerance.

Sl.

no.

TF gene

family

Stress

type

Examples Stress Target plant References

1. bZIP Biotic StbZIP61 Phytophthora
infestans

Solanum
tuberosum

Zhao, Wu et al. (2020), Zhao, Ye et al.
(2020), Zhao, Zhao et al. (2020)

Abiotic GmbZIP44 Salinity, freezing Arabidopsis
thaliana

Liao, Zou, Wei, and Hao (2008)

2. bHLH Biotic OsHLH96 Brown plant hopper Oryza sativa Wang, Yan et al. (2019), Wang, Zhang
et al. (2019)

Abiotic AtMYC2 Osmotic stress A. thaliana Abe et al. (2003)

3. Zinc finger Biotic VvZFP11 S.A., methyl
jasmonate, Erysiphe
necator

Vitis vinifera Yu, Li, and Wu (2016)

Abiotic Alfin1 Salinity Alfalfa Bastola, Pethe, and Winicov (1998)

CaZF Salinity Tobacco Jain, Roy, and Chattopadhyay (2009)

OSISAP2 Freezing Xu and Cui (2007)

ZPT2�3 Drought Petunia Sugano, Kaminaka, Rybka, and Catala
(2003)

ZAT7 Salinity Arabidopsis Ciftci-Yilmaz, Morsy, Song, and Coutu
(2007)

ZAT12 Light stress Davletova, Schlauch, Coutu, and Mittler
(2005)

4. Trihelix
(HLHLH)

Biotic OsRML1 Magnaporthe grisea O. sativa Wang, Chen et al. (2004), Wang, Hong
et al. (2004)

Abiotic GmGT-2A
and 2B

Salt, drought, and
freezing

Glycine max Xie, Zou, Lei, and Wei (2009)

5. WRKY Biotic CsWRKY50 Pseudoperonospora
cubensis

Cucumis
sativus

Luan, Chen, Liu, and Li (2019)

Abiotic GmWRKY21 Freezing A. thaliana Zhou, Tian, Zou, and Xie (2008)

6. Homeodomain
(HD)

Biotic StWRKY1 P. infestans S. tuberosum Yogendra, Kumar, Sarkar, and Li (2015)

Abiotic GmPHD2 Salt stress Arabidopsis
(transgenic)

Wei, Huang, Hao, and Zou (2009)

7. NAC Biotic OsNAC6 M. grisea O. sativa Nakashima, Tran, Nguyen, and Fujita
(2007)

Abiotic AtNAC2
AtNAC019
AtNAC055

Drought A. thaliana Tran, Nakashima, Sakuma, and Simpson
(2004)

ONAC045
SNAC1

Drought, salinity O. sativa Zheng, Chen, Lu, and Han (2009)

8. MYB protein Biotic AtMYB102 GPA A. thaliana Zhu, Guo, Ma, Wang, and Zhou (2018)

TaRIM1 Rhizoctonia cerealis Triticum
aestivum

Shan, Rong, Xu, and Du (2016)

Abiotic OsMYB4 Drought Lycopersicon
esculentum

Vannini, Locatelli, Bracale, and Magnani
(2004)

9. AP2/ERF Biotic TaPIEP1 Bipolaris sorokiniana T. aestivum Dong, Liu, Lu, and Du (2010)

Abiotic OsDRAP1 Drought O. sativa Huang, Wang, Wang, and Zhao (2018)

ZmERFB180 Waterlogging Zea maize Yu, Liang, Fang, and Zhao (2019)

GPA, Green peach aphid.
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TABLE 6.3 List of plant-specific transcription databases.

Sl.

no.

Database

name

Basic features References

1. Phytozome � It is a platform of comparative genomics.
� v11.0 gives access to 65 sequenced and annotated genomes of

green plants.
� v12.0 contains 93 assembled and annotated genomes from 82

Viridiplantae species.
� v13 is the latest, known as “Phytozome-Next” that contains 224

assembled and annotated genomes from 128 Archaeplastida spp.
� This new version comes with the capability of “clade-cutting.”
� Web: https://phytozome-next.jgi.doe.gov/

David et al. (2012)

2. PlantTFDB � This TF database of plants contains information related to different
species with and without their genome sequences, TF family,
number, annotation, orthologous group, phylogenetic trees, etc.

� v4.0 presents a collection of TFs. for 165 plant species. TF
prediction server is upgraded for previous TF families, and four new
tools are introduced for regulation prediction and functional
enrichment analysis.

� An updated annotation for the TFs as well as TFex module
(extended TF repertoire) of newly sequenced species have been
added in v5.0.

� Web: http://planttfdb.gao-lab.org/

Jin, Tian, Yang, and Meng
(2017)

3. PlnTFDB � It is plant TF database that provides a basic description for each TF
family from literature reference.

� New version (3.0) provides a complete set of putative TFs, genome
of which is totally sequenced.

� There are more rules set up for the classification of transcription
factors.

� 16 more plant families have been added in v3.0.
� Web: http://plntfdb.bio.uni-potsdam.de/v3.0/

Perez-Rodriguez, Riano-
Pachon, Correa, and Rensing
(2009)

4. JASPAR � It provides full accessibility to carefully arranged eukaryotic TFs,
their binding profile and their TF flexible models across six
taxonomic groups, vertebrata, nematode, insect, plantae, fungi, and
urochordata.

� JASPAR-2016: released with expanded CORE collection of 494
new TFBP of which 164 for plants.

� JASPAR-2018 (seventh release): comes with 322 new PFMs of
which 262 for plants.

� JASPAR-2020 (eighth release): the latest version, introduced with
updated CORE collection, includes 245 new PFMs/TFBPs of which
42 for plants.

� Web: http://jaspar.genereg.net/

Fornes, Castro-Mondragon,
and Khan (2019)

5. TRRD � It is transcription regulatory region database and generally
incorporates only experimentally confirmed structure.

� The regulatory units included in this database are cis-acting DNA
elements, composite elements, promoters, enhancer, silencers, etc.

� Website “http://www.mgs.bionet.nsc.ru/mgs/gnw/trrd/whats_new.
shtml” contains no new information about any latest release after
v7.0, September 2005.

� v7.0 released with a new feature “TRRDSTARTS” that contains
information of experimentally determined transcription start site.

Kolchanov, Ignatieva,
Ananko, and Podkolodnaya
(2002)

6. PlantCARE � It is a database associated with plant cis-acting regulatory elements.
It is generally used for the analysis of promoter sequences.

� Web: http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

Lescot, Hais, Thijs, and
Marchal (2002)

7. HEATSTER � Heat stress�responsive TFs database.
� Web: https://applbio.biologie.uni-frankfurt.de/hsf/heatster/

Scharf, Berberich,
Ebersberger, and Nover (2012)

(Continued )
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TABLE 6.3 (Continued)

Sl.

no.

Database

name

Basic features References

8. GreenPhyl � This database is created to assist the comparative functional
genomics in plants species (from algae to higher).

� Version 5.0 possesses a list of gene families with 19 pangenomes
(e.g., rice, maize, banana, grape, and cacao) and 27 reference
genomes of around 46 species.

� Web: https://www.greenphyl.org/cgi-bin/index.cgi

Guignon, Toure, Droc, and
Dufayard (2020)

9. LegumeTFDB � This database makes users accessible to specific collection of TFs of
three legumes, Glycine max, Lotus Japonicus, and Medicago
truncatula.

� The database holds information related to TF genes, sequence
features, promoters, Gene Ontology assignment, etc.

� Web: http://legumetfdb.psc.riken.jp/

Mochida, Yoshida, Sakurai,
and Yamaguchi-Shinozaki
(2010)

10. PvTFDB � This is the database of TFs of common bean, that is, Phaseolus
vulgaris.

� It came into existence after the publication of common bean
genome sequence.

� Reviews on this database assert that it holds information regarding
49 TF families classified from predicted set of 2370 TFs.

� Web: http://www.multiomics.in/PvTFDB/

Bhawna, Bonthala, and
Gajula (2016)

11. SoybeanTFDB � It is constructed by computationally analyzing the genome
sequence data of soybean.

� A total of 61 TF families have been classified by identifying 4342
gene loci responsible to encode 5035 TF models.

� Now this Japanese database has been closed.
� Web: http://soybeantfdb.psc.riken.jp/index.pl

Mochida, Yoshida, Sakurai,
and Yamaguchi-Shinozaki
(2009)

12. SoyDB � It is a database of soybean TFs, which was prepared by the Dept. of
Energy-Joint Genome Institute (DOE-JGI).

� It holds information related to protein sequences, predicted tertiary
structures, putative DNA-binding sites, domains, etc.

Wang, Libault, and Joshi
(2010)

13. CicerTransDB � It is the TF database of Chickpea made by NIPGR, India to facilitate
the comprehensive study of TFs in this genus.

� The developers classified 1124 TFs of chickpea into 47 families.
� This platform is not limited to sequences of genes, proteins, and

promoters rather it provides accessibility to motifs, domains, Gene
Ontology, and homologs in PlantTFDB as well as TAIR.

� Studies carried out to develop this database explored 68 more TFs
in chickpea, which was not reported previously in PlantTFDB.

� Web: http://www.cicertransdb.esy.es/index.html

Gayali, Acharya, and Lande
(2016)

14. PpTFDB � Pigeonpea transcription factor database.
� Web: http://14.139.229.199/PpTFDB/Home.aspx

Singh, Sharma, Singh, and
Sharma (2017)

15. GRASSIUS � It is publicly available online resource created by the integration of
databases (GrassTFDB) plus computational and experimental
datasets.

� GrassTFDB is an all-inclusive compilation of MaizeTFDB;
RiceTFDB; SorghumTFDB; SugarcaneTFDB; and
BrachypodiumTFDB.

� They plan to include more grasses in their databases, when
sequence information of these grasses will become available.

� Apart from TF database, they are trying to construct TF ORFome
collection (under development).

� Web: https://grassius.org/

Yang, Li, Jiang, and Yu (2017)

16. RiceSRTFDB � This database gives expression information of TFs involved in stress
conditions and various developmental processes in rice.

� Web: http://www.nipgr.res/RiceSRTFDB.html

Priya and Jain (2013)

(Continued )
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TABLE 6.3 (Continued)
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17. RicetissueTFDB � This database provides expression information of TFs of rice but in
a tissue-specific manner.

� It contains 59 families of TFs classified by validating 1087 TFs after
the analysis of 3078 TFs.

� Web: http://221.237.158.212.50009/index

Chen, Chen, Luo, and Liao
(2019)

18. GramineaeTFDB � It is portal for comparative and functional genomics which includes
all putative TFs from six grass species.

� Each TF contains specific details of sequence feature, promoter
region, domain alignment, GO assignment, etc.

� Users can search putative cis-elements of promoter sites of TFs
whose genome is sequenced.

� The given hyperlinks make users capable of accessing the
expression profile of TF genes in maize, rice, and barley.

� Web: http://gramineaetfdb.psc.riken.jp

Mochida, Yoshida, Sakurai,
and Yamaguchi-Shinozaki
(2011)

19. RED (Rice
expression
database)

� This Chinese database is a collection of gene expression profile
obtained from RNA sequence data of 284 high-quality RNA-Seq
experiments.

� The v2.0 comes with a new annotation system IC4R-Seq.
� Web: http://expression.ic4r.org/

Xia, Zou, Sang, and Xu (2017)

20. RiceXPro � Rice Expression profile (RiceXPro) database is a collection of gene
expression profiles obtained from microarray of rice plant tissues
grown in natural field conditions.

� Web: https://ricexpro.dna.affrc.go.jp/

Sato, Takehisa, Kamatsuki,
and Minami (2013)

21. DRTF � Database of rice TFs contains putative TFs of O. sativa (subspecies
indica and japonica) scattered in 63 families.

� Web: http://drtf.pku.edu.cn

Gao, Zhong, Guo, and Zhu
(2006)

22. CamRegBase � Camelina gene regulation database is the collection of RNA-Seq
experiment data.

� v1. Includes collection of TFs and coactivators of Camelina.
� Web: https://camregbase.org/

Gomez-Cano, Carey, Lucas,
and Garcı́a Navarrete (2020)

23. AGRIS � Arabidopsis Gene Regulatory Information Server (AGRIS)-2019
comprises three databases:

AtcisDB: includes about 33,000 upstream regions of annotated genes.
AtTFDB: database of 1770 TFs.
AtRegNet: information related to 1,638,778 interactions between
promoter and TF.
� Web: https://agris-knowledgebase.org/

Yilmaz, Mejia-Guerra, Kurz,
and Liang (2011)

24. ATR (Sheen lab) � Arabidopsis transcription regulators database is a classified
collection of TF gene family.

� Web: http://genetics.mgh.harvard.edu/sheenweb/AraTRs.html

Yoo, Cho, and Sheen (2007)

25. wDBTF � This wheat TF database contains 40 families and 84 subfamilies
created by analyzing 7112 gene sequences (contigs and singletons)
of wheat.

� Web: http://wwwappli.nantes.inra.fr:8180/wDBFT/

Romeuf, Tessier, and
Dardevet (2010)

26. TreeTFDB � This database contains the TF repertoires of six plant species,
Jatropha curcas, Carica papaya, Manihot esculenta, Populus spp.,
Ricinus communis, and Vitis vinifera.

� Main features: sequences, domain alignment, Gene Ontology
assignment, etc.

� Additional features: full-length cDNAs, cis-motifs located in
promoter, their id, and positions.

� Web: http://treetfdb.bmep.riken.jp/index.pl

Mochida, Yoshida, Sakurai,
and Yamaguchi-Shinozaki
(2013)
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27. DPTF � Populus transcription factor.
� Web: http://dptf.cbi.pku.cn

Zhu, Guo, Gao, and Zhong
(2007)

28. STIFDB � Stress-responsive Transcription factor database is a collection of
genes and TFs responsive to several abiotic stresses.

� Web: http://caps.ncbs.res.in/stifdb/brows.html
� v2.0 includes some biotic stresses too.
� Web: http://caps.ncbs.res.in/stifdb2/

Shameer, Ambika, Varghese,
and Karaba (2009)

29. Stress2TF � Database for both biotic and abiotic stresses.
� Web: http://csgenomics.ahau.edu.cn/Stress2TF

Zhang, Yao, Fu, and Xuan
(2018)

30. iTAK � This program recognizes transcription factors, transcriptional
regulators, and protein kinases from nucleic acids and protein
sequences.

� In v1.6, rules have been updated for some TF families like HB and
LIM.

� This version fixes bugs in TFs/TRs classification to generate zip files.
� v1.7 removed PCC classification.
� Web: http://itak.feilab.net/cgi-bin/itak/index.cgi

Zheng, Jiao, Sun, and Rosli
(2016)

31. AthTF � This database offers predicted 3D models of TFs in Arabidopsis.
� It possesses 2918 model structures having high confident score.
� Web: http://sysbio.unl.edu/AthTF/

Lu, Yang, Yao, and Liu (2012)

32. AthaMap � It is whole-genome map of Arabidopsis TFs and small RNA-binding
sites.

� It represents a full list of 211 TFs with their references and
screening results available on documentation page.

� v7.0 (2012) includes micro-RNA target tool to identify miRNA in
Arabidopsis genome.

� Total identified TFBS in v7.0 is 13 107.
� v8.0 (2016) is the latest with 53 107 TFBS of 207 different TFs and

32 TF families in database.
� Web: http://www.athamap.de/

Steffens, Galuschka,
Schindler, Bülow, and Hehl
(2004)

33. EXPath � This portal maintains the expression data of model crops generated
by microarray technique under different developmental and stress
conditions.

� In v2.0, the number of crops increased from three to six.
� It provides tools for promoter analysis (PlantPAN) and compares

expression profile by analyzing RNA-Seq and microarray data.
� Correlation network construction within a gene group under

various situations as well as information related to TFs of metabolic
pathways also integrated into it.

� Web: http://expath.itps.ncku.edu.tw/

Tseng, Li, Hung, and Chow
(2020)

34. FootprintDB � It is the collection of 2422 TF sequences, 10,112 DNA-binding
sites, and 3662 DNA motifs.

� Web: http://floresta.eead.csic.es/footprintdbb

Sebastian and Contreras-
Moreira (2014)

35. CGDB � Coriander Genomics Database is the repository of genomic,
transcriptomic, metabolomic, and functional data of coriander and
carrot plant.

� It includes 63 TF families of coriander and 61 of carrot.
� Web: http://cgdb.bio2db.com/

Song, Nie, and Chen (2020)

36. RARTF � RIKEN Arabidopsis TF database.
� Web: http://rarge.gsc.riken.jp/rartf/

Iida et al. (2005)

37. DATF � Database of Arabidopsis TF. Guo, He, Liu, and Bai (2005)

(Continued )
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� Web: http://datf.cbi.pku.edu.cn/

38. TOBFAC � Tobacco TF database contains a list of 2513 TFs classified in 64
gene families.

� Web: http://compsysbio.achs.virginia.edu/tobfac/

Rushton, Bokowiec,
Laudeman, and Brannock
(2008)

39. CnTDB � Coconut Transcriptome Database has been developed to identify
better traits against biotic stresses imposed by different pathogens.

� It contains data of TF gene families, their expression, and role in
different metabolic pathways.

� Web: http://webtom.cabgrid.res.in/cntdb/

Verma, Jasrotia, Iquebal, and
Jaiswal (2017)

40. DBD � DNA-binding domain database is helpful to predict sequence-
specific TFs in available genomic sequences.

� Web: http://www.transcriptionfactor.org/index.cgi?Home

Kummerfeld and Teichmann
(2006)

41. realDB � It is genome cum transcriptome database of red algae
(Rhodophyceae).

� Web: http://realdb.algaegenome.org/

Chen, Zhang, Chen, and Li
(2018)

42. YEASTRACT1 � Yeast Search Transcriptional Regulators And Consensus Tracking is
a regulatory network database of Saccharomyces cerevisiae.

� Web: http://www.yeastract.com/

Monteiro, Oliveira, Pais, and
Antunes (2020)

43. RegulatorDB � This database is a collection of tools to contemplate and explore
expression profile of regulatory proteins in yeast mutants.

� Web: http://wyrickbioinfo2.smb.wsu.edu/cgibin/RegulatorDB/cgi/
home.pl

Kemmeren, Sameith, van de
Pasch, and Benschop (2014)

44. YeTSFaSCo � This database contains yeast TFs in position frequency matrix (PFM)
or position weight matrix (PWM) formats.

� Web: http://yetfasco.ccbr.utoronto.ca/

Lee, Tillo, Bray, and Morse
(2007)

45. YeasTSS � It is Yeast Transcription Start Site database
� Web: http://www.yeastss.org/

McMillan, Lu, Rodriguez,
Ahn, and Lin (2019)

46. ScerTF � Saccharomyces cerevisiae Transcription Factor database is a
collection of 196 TFs of yeast in PWMs format.

� Web: http://stormo.wustl.edu/ScerTF/references/

Spivak and Stormo (2012)

47. TRANSFAC � It is Eukaryotic TF database having their DNA-binding site-related
information.

� Web: https://genexplain.com/transfac/

Wingender, Dietze, Karas,
and Knüppel (1996)

48. GTRD � Gene Transcription Regulation Database.
� Web: http://gtrd.biouml.org/#

Kolmykov, Yevshin,
Kulyashov, and Sharipov
(2021)
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FLOW CHART 1 Genomic data analysis.

FIGURE 6.2 Genome-wide analysis of transcription factors.
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FLOW CHART 2 Phylogenetic studies.
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FLOW CHART 3 Tertiary structure

predictions.
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FLOW CHART 4 Expression analysis.

The bioinformatics tools both online and offline, which are commonly used for the analysis of TF, are shown in

Table 6.4.

6.5.1 Data mining by National Center for Biotechnology Information

Data mining includes sets of bioinformatics tools associated with deciphering important attributes from collected data

which are generally sequences. There exist several databases varying in structure, design, and applications that could be

processed and analyzed based on specific applications (Yang, Li, & Liu, 2020). The National Center for Biotechnology

Information is one of the most commonly used platforms comprising a large collection of online resources exclusively

for biological information and data. It includes GenBank and PubMed for the nucleic acid sequences and citations and

abstracts published in life science journals, respectively. In this database, there is a provision for search and retrieval of

desired information using Entrez system connected to around 34 different databases using E-utilities (Sayers, Beck,

Bolton, & Bourexis, 2021).
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TABLE 6.4 Some of the important bioinformatics tools used for the assessment of transcription factor gene families.

Sl.

no.

Task Mode Bioinformatics tools

1. Data mining Online NCBI
http://www.ncbi.nlm.nih.gov/

2. Homology search Online BLAST
http://blast.ncbi.nlm.nih.gov/Blast.cgi

3. Multiple sequence alignment Online Clustal
http://www.ebi.ac.uk/Tools/msa/clustalo/

Muscle
http://www.ebi.ac.uk/Tools/msa/muscle/

Kalign
http://www.ebi.ac.uk/Tools/msa/kalign/

Mafft
http://www.ebi.ac.uk/Tools/msa/mafft/

T-Coffee
http://www.ebi.ac.uk/Tools/msa/tcoffee/

Offline Clustal

4. Protein domain functional analysis Online Motif Scan
http://myhits.isb-sib.ch/cgi-bin/motifscan

InterPro
http://www.ebi.ac.uk/interpro/

Pfam
http://pfam.sanger.ac.uk/search

Prosite
http://prosite.expasy.org/

ScanProsite
http://prosite.expasy.org/scanprosite/

Smart
http://smart.embl-heidelberg.de/

5. Conserved domain search Online CD search
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

6. Physical and chemical properties search Online ProtParam
http://web.expasy.org/protparam/

7. Motif search Online MEME
http://meme-suite.org/tools/meme

MAST
http://meme-suite.org/tools/mast

Tomtom
http://meme-suite.org/tools/tomtom

8. Ancestral sequence construction Online FASTML
http://fastml.tau.ac.il/

9. Adaptive and purifying selection analysis Online DATAMONKEY
http://www.datamonkey.org/

10. Gene structure display Online GSDS
http://gsds.cbi.pku.edu.cn/

11. Physical properties and representation server Online Protscale
http://web.expasy.org/protscale/

(Continued )
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TABLE 6.4 (Continued)
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12. Location of signal peptide Online SignalP
http://www.cbs.dtu.dk/services/SignalP/

13. Subcellular location Online TargetP
http://www.cbs.dtu.dk/services/TargetP/

14. 3D structure prediction Online I-TASSER
http://zhanglab.ccmb.med.umich.edu/I-TASSER/

Offline MODELLER

15. Ab initio protein folding and protein structure
prediction

Online QUARK
http://zhanglab.ccmb.med.umich.edu/QUARK/

16. Protein structure prediction Online LOMETS
http://zhanglab.ccmb.med.umich.edu/LOMETS/

17. Protein�ligand-binding site prediction Online COACH
http://zhanglab.ccmb.med.umich.edu/COACH/

18. Structure-based function prediction Online CO-FACTOR
http://zhanglab.ccmb.med.umich.edu/COFACTOR/

19. Fragment-guided MD simulation Online FG-MD
http://zhanglab.ccmb.med.umich.edu/FG-MD/

20. Ramachandran plot analysis Online RAM PAGE
http://mordred.bioc.cam.ac.uk/Brapper/rampage.php

21. Ramachandran plot and secondary structure
analysis

Online PDBsum
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
Generate.html

22. Homology modeling Online SWISS-MODEL
http://swissmodel.expasy.org/

23. Sterio-chemical quality of 3D structure Online PRO-CHECK
http://services.mbi.ucla.edu/PROCHECK/

24. Protein structure verification by
crystallography

Online ERRAT
http://services.mbi.ucla.edu/ERRAT/

25. Verification of 3D structure Online VERIFY 3D
http://services.mbi.ucla.edu/Verify_3D/

26. 3D structure visualization Offline Discovery studio

27. 3D structure minimization Offline Chimera

28. Gene Ontology annotation Online AgBase
http://www.agbase.msstate.edu/

29. Secondary structure prediction Online PSIPRED
http://bioinf.cs.ucl.ac.uk/psipred/

APSSP
http://www.imtech.res.in/raghava/apssp2/

Jpred
http://www.compbio.dundee.ac.uk/jpred/

SOPMA
https://npsaprabi.ibcp.fr/cgibin/npsa_automat.pl?
page5 npsa_sopma.html

30. Protein domain classification Online CATH
http://www.cathdb.info/

(Continued )
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6.5.2 BLAST tool

BLAST (basic local alignment search tool) is an important bioinformatics tool commonly used for identifying the simi-

larity among different sequences through a web interface or by means of an independent tool for comparing a user’s

query to the existing database of sequences (Altschul, Madden, Schaffer, & Zhang, 1997). Comparisons between pairs

of sequences, and searches for regions of local similarity can be performed by BLAST (Pertsemlidis & Fondon III,

2001). By performing sequence similarity searches, identification of “homologous” proteins or genes can be achieved

and common ancestry can be predicted. Homology among sequences gives an idea that sequences may be related by

divergence from a common ancestor, or it may share common functional characteristics. Sequence homology searches

serve as a key computational tool of molecular biology. They are very important, as their products and their high scor-

ing alignments are used in a broad range of areas, from the assessment of evolutionary histories to the prediction of

functions of genes and proteins, to the identification of possible drug targets (Bailey & Gribskov, 1998; Bayat, 2002;

Pearson, 2013).

6.5.3 Multiple sequence alignment

Multiple sequence alignment identifies the presence of specific patterns or motifs based on the comparison of sequences

revealing homology between new sequences and existing families of sequences. In most of the cases the query

sequences are the proteins that are assumed to have evolutionary relationship based on conserved regions and share a

common lineage that originates from the common ancestor. There is also provision of prediction of secondary and ter-

tiary structures based in alignment for molecular evolutionary studies. Some of the tools used are T-Coffee, MAFFT,

and ClustalW.

TABLE 6.4 (Continued)

Sl.

no.

Task Mode Bioinformatics tools

Gene3D
http://gene3d.biochem.ucl.ac.uk/Gene3D/

31. Protein structural classification Online SCOP
http://clavius.bc.edu/Bclotelab/DiANNA/

32. Cysteine state and disulfide bond partner
prediction

Online DiANNA
http://clavius.bc.edu/Bclotelab/DiANNA/

33. Plant small RNA target analysis Online PsRNA Target
http://plantgrn.noble.org/psRNATarget/

34. miRNAs prediction Online MiREval
http://mimirna.centenary.org.au/mireval/

35. Docking Online Molecular docking
http://www.dockingserver.com/web

Offline AutoDock

36. Cis-regulatory element analysis Online PLACE
http://www.dna.affrc.go.jp/PLACE/

Online PlantCARE
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

37. Gene prediction Online SOFTBERRY
http://www.softberry.com/

38. Substitution analysis Offline Ka�Ks calculator

K-Estimator

DnaSP
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6.5.3.1 MAFFT

MAFFT is known to be highly accurate and possesses good-quality algorithm for multiple sequence alignment. It uses

two innovative techniques, the fast Fourier transform (FFT) and fundamental scoring system. The FFT identifies homol-

ogous regions, while fundamental scoring system reduces time taken by CPU and increases the accuracy of alignments.

It uses two-cycle heuristics, including the progressive method, that is, FFT-NS-2, and iterative refinement method, that

is, FFT-NS-I (Katoh, Misawa, Kuma, & Miyata, 2002).

6.5.3.2 T-Coffee

T-Coffee stands for tree-based consistency objective function for alignment evolution. It uses an iterative multiple

sequence alignment algorithm involving data sources from both global and local pairwise alignments. It is compara-

tively better than ClustalW with reference to the level of accuracy though has disadvantage of weak scalability. It can

align a maximum of 100 sequences (Daugelaite, O’ Driscoll, & Sleator, 2013).

6.5.3.3 Clustal

The Clustal programs like ClustalW can perform automatic multiple alignment of sets of nucleotide or amino acid

sequences using a user-friendly simple text menu system portable to almost all computer systems (Thompson, Higgins,

& Gibson, 1994). In Clustal X a graphical user interface is used to perform multiple alignments. Clustal W and Clustal

X have been developed with the provision of similar version-numbering system for synchronizing changes like bug fix-

ing, improvements, and additions (Thompson, Gibson, Plewniak, Jeanmougin, & Higgins, 1997). Clustal Omega aligns

two profile Hidden Markov Models (HMMs), instead of a profile�profile comparison and has improved sensitivity and

alignment quality (Soding, 2005).

6.5.3.4 MUSCLE

MUSCLE stands for Multiple Sequence Comparison by Log-Expectation. It operates by using two distance measures,

kmer distance and Kimura distance, exclusively for unaligned and aligned pairs of sequences, respectively. Further it

involves the preparation of guide trees by UPGMA (unweighted pair group method with arithmetic mean) method.

Kimura distance method is preferred as compared to kmer (Edgar, 2004).

6.5.3.5 Kalign

Kalign algorithm is used for performing multiple sequence alignment using standard progressive methods such as pair-

wise distances. It uses k-tuple method for calculations as adopted from ClustalW and involves construction of guide

tree using either neighbor-joining method or UPGMA. It uses Wu�Manber approximate string-matching algorithm is a

unique feature (Daugelaite et al., 2013).

6.5.4 Physicochemical properties analysis

Based on the protein sequences, in silico prediction of several physicochemical features like molecular weight, pI, total

number of negative charged residues, total number of positively charged residues, extinction coefficient, instability

index, aliphatic index, and GRAVY (Grand average of hydropathy) can be determined. The ExPASy (Expert Protein

Analysis System) is a web server that provides access to a variety of databases and analytical tools useful for proteins

and proteomics. It includes SWISSPROT and TrEMBL, SWISS-2D PAGE, PROSITE, ENZYME, and the SWISS-

MODEL repository. Some of the analytical tools commonly used are Compute pI/MW, ProtParam, PeptideMass,

PeptideCutter, ProtScale, etc. (Gasteiger et al., 2005).

6.5.5 Motif and domain prediction

The functional identity of the protein is based on short conserved sequences referred to as motifs and domains.

Domains are typically longer than motifs. Motifs are often associated with a distinct structural site performing a particu-

lar function as in the case of TFs like Zn finger motif having 10�20 amino acids. A domain also reflects a compara-

tively larger conserved sequence pattern with a distinct functional and structural unit. TF prediction from genomes

sequences is based on conserved domain sequences of respective TFs.
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6.5.5.1 InterPro

InterPro is a web-based tool used for the identification of protein domains and various functional sites using several

databases like PROSITE, PRINTS, ProDom, Pfam, and SMART (Simple Modular Architecture Research Tool). The

pattern matching is accomplished by the combination of expressions, fingerprints, profiles, and HMMs. An InterPro

search provides a graphical output summarizing motif matches (Biswas, O’Rourke, Camon, & Fraser, 2002).

6.5.5.2 SMART

SMART comprises HMM profiles constructed from manually refined protein domain alignments. Here, alignments are

mainly constructed based on tertiary structures or based on PSI (position specific iterative)-BLAST profiles. The

SMART database consists of several independent collections of HMMs with greater emphasis on signaling, extracellu-

lar, and chromatin-associated motifs and domains. Graphical representation of domains is the output of sequence search

(Xiong, 2006).

6.5.5.3 MEME Suite

The MEME Suite web server serves as an integrated portal for elucidating motifs and domains. It can reveal sequence

motifs with DNA-binding sites and also protein interaction domains. The upgraded version involves GLAM2 algorithm

that allows the discovery of motifs containing gaps. It uses three different sequence scanning algorithms, MAST (motif

alignment and search too), FIMO (find individual motif occurrence), and GLAM2SCAN (scanning with gapped motifs).

It is frequently used for the analysis of TF motifs, and further functional elucidation can be achieved by Gene Ontology

(GO) terms using the motif-GO term association tool GOMO (gene ontology for motifs). The output of this web server

can be represented by means of sequence LOGOS for each discovered motif.

6.5.6 In silico structure prediction of proteins

The knowledge of 3D structure of a protein provides an insight into the function of the protein, and there exist both

experimental methods like X-ray crystallography, NMR and in silico based methods like homology modeling, thread-

ing, and ab initio modeling.

6.5.6.1 I-TASSER

I-TASSER stands for the iterative threading assembly refinement server used for automated protein structure and func-

tions prediction. It is based on the sequence-to-structure-to-function pattern determination. It first generates 3D atomic

models utilizing multiple threading alignments and iterative structural assembly simulations using amino acid

sequences. The function of the protein is then determined by structurally comparing the 3D models with other available

known proteins. The output is represented by full-length secondary and tertiary structure predictions, functional annota-

tions on ligand-binding sites, GO terms, and enzyme commission numbers (Roy, Kucukural, & Zhang, 2010).

6.5.6.2 Modeller

In the case of lack of experimentally determined structure, comparative or homology modeling is an important tool for

the determination of 3D model for a protein (Misura, Chivian, Rohl, Kim, & Baker, 2006). It predicts the 3D structure

of a given target protein sequence on the basis of its alignment to one or more proteins of known structure. It comprises

four steps, fold assignment revealing similarity between target and known template structure, alignment, building

model, and predicting model errors (Marti-Renom, Stuart, Fiser, & Sanchez, 2000).

6.5.6.3 PDBsum

It is a web server revealing image-based structural information like protein secondary structure, protein�ligand and pro-

tein�protein interactions about the entries of Protein Data Bank. It includes a complete PROCHECK assessment of

each protein’s geometry (Laskowski, MacArthur, Moss, & Thornton, 1993). The Ramachandran plot in PDBsum can

validate the predicted 3D structure and can be explored interactively in RasMol, PyMOL, and a JavaScript viewer

called 3Dmol.js. (Laskowski, Jabłońska, Pravda, Vařeková, & Thornton, 2018).
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6.5.7 Gene predictions

Analyzing genome sequences to fish out genes needs computational methods. Bioinformatics tools are available for the

prediction of genes from the sequences provided by identifying some of the essential attributes of genes. This tool

should provide information about the protein coding regions along with several functional sites. Computational gene

prediction methods are based either on sequence similarity searches or gene structure and signal-based searches popu-

larly referred to as ab initio gene finding. Sequence similarity search-based gene prediction can provide an insight into

similarity in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the input genome.

It relies on the fact that those functional exon regions are more conserved evolutionarily than nonfunctional intergenic

or intron regions. The second method uses gene structure as a template to detect genes and depends on two types of

sequence information, signal and content sensors. Signal sensors basically refer to short sequence motifs like splice

sites, branch points, polypyrimidine tracts, start codons, and stop codons. Content sensors are generally used for exon

detection and have the provision for separating coding sequences from the surrounding noncoding sequences using

appropriate statistical detection algorithms (Wang, Chen, & Li, 2004; Wang, Hong, & Han, 2004).

6.5.8 Gene duplication and functional divergence studies

The nonsynonymous (Ka) and synonymous (Ks) substitution rates provide an insight into evolutionary dynamics of

protein-coding sequences across closely related and yet diverged species (Fay & Wu, 2003; Kimura, 1983; Li, He,

Wang, & Wang, 2013). Based on values of Ka and Ks and their ratio (Ka/Ks), information about neutral mutation

(Ka5Ks), negative (purifying) selection (Ka less than Ks), and positive (diversifying) selection (Ka exceeds Ks) can

be obtained. Ka/Ks_Calculator is software that calculates nonsynonymous (Ka) and synonymous (Ks) substitution rates

through model selection and model averaging (Zhang et al., 2006). Gene duplication events in the protein family can be

tested by type I functional divergence through Diverge version 2.0 software. Three methods such as single likelihood

ancestor counting, fixed-effect likelihood, and random-effect likelihood are generally employed to select individual

codons, using the default settings of the DataMonkey web-based server (Delport, Poon, Frost, & Kosakovsky Pond,

2010).

6.6 Conclusion

TFs are known to be an important element associated with gene regulation by interacting with specific sequences of

promoters of the concerned genes. The importance of TF in gene expression and regulation was realized based on the

fact that 5%�10% of whole-genome sequence represents genes coding for TFs. There are several types of TFs, some

are common in plants and animals, while there exist plant-specific TFs known to be associated with functions influenc-

ing growth and development of plants. The presence of specific type of DBD in the TFs is considered to be one impor-

tant criterion for classification of TFs. Bioinformatics-based assessment of these plant-specific TFs gained momentum

with the development of crop-specific TF databases, freely available to the researchers. The reports of genome-wide in

silico prediction, bioinformatics-based sequence characterization, wet lab�based cloning, and expression profiling of

several plant-specific TFs, representing crops, genome sequences of which have been deciphered, are substantially

increasing. The potentials of stress-responsive TFs in developing biotic- or abiotic-tolerant crops by transgenic approach

have been realized by the plant biotechnologists and are being investigated extensively.
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7.1 Introduction

Because of climate change and associated effects of global warming, and an exponentially growing population (reach-

ing around 7.8 billion), food security is now one of the major concerns of discussion globally. However, the past few

decades have witnessed an increase in world food production because of the exploitation of different biological

approaches. As per an estimate by the Food and Agriculture Organization, the future consumption of cereals will ele-

vate by 70% by 2050 because of expanding populations and a shrinkage in the area of agricultural lands along with an

increased severity of many (a) biotic stresses. Nowadays, feeding people with nutritious food and fulfilling their basic

requirements of shelter and clothing at an affordable price has become a great challenge. Plants support all of these

human requirements by providing food, fodder, fiber, and a framework for the shelter in the form of bamboo and wood

derived from several other plants. Therefore agriculture is majorly based on fulfilling these human requirements and

the topmost cultivated plants include rice, wheat, maize, soybean, tomato, mustard, grape, potato, sugarcane, and cotton

(Fig. 7.1).

Rice, wheat, and maize account for half of the total calories consumed by the world’s population (Maclean et al.,

2002). Thus rice and other grain crops such as wheat, maize, and others require utmost consideration of scientists/

breeders in both fundamental and applied research (Sarkar et al., 2014). However, the crops, including rice, wheat, and

maize, are relatively more susceptible to the abiotic stresses which affect multiple aspects of plants’ life cycle starting

from the germination to seed development, and that is also reflected at the level of the proteome (Agrawal & Rakwal,

2006, 2011; Agrawal et al., 2006; Agrawal, Jwa, & Rakwal, 2009; Rakwal & Agrawal, 2003; Sarkar et al., 2014).

Output results from the experimental data of model plants can be applied to agriculture crops to unravel the questions

faced in the agriculture field (Agrawal et al., 2012; Jorrin-Novo et al., 2009), including enhanced crop tolerance to envi-

ronmental stresses and enhancing the quality in terms of nutrition values and yield of agricultural production to confirm

food safety and security (Vanderschuren, Lentz, Zainuddin, & Gruissem, 2013).

Proteomics refers to the comprehension of the global protein expression in an organism (Aebersold & Mann, 2003;

Gupta, Wang, et al., 2015). Identifying and analyzing the proteins and their expression in different organisms under dif-

ferent physiological conditions helps plant biologists to better understand the adaptive response of those organisms

under that particular stress. Proteomics is a rapidly growing and advancing field of science as a better understanding of

the proteins enables one to better understand the complex metabolic processes, protein interaction, and the regulatory

pathways, which later can be altered according to our needs. In the case of plant science, understanding the proteins

involved and their interaction in the adaptive response to various abiotic and biotic stresses is useful in creating
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transgenic plants better adaptive to the external environmental stresses. In the case of agricultural crops, the majority of

the proteomics studies have been carried out on the rice (Kim, Kim, Agrawal, Kikuchi, & Rakwal, 2014; Meng et al.,

2019; Vanderschuren et al., 2013), wheat (Komatsu, Kamal, & Hossain, 2014), maize (Pechanova, Takáč, Šamaj, &

Pechan, 2013), soybean (Min, Gupta, Agrawal, Rakwal, & Kim, 2019), and tomato (Ghatak et al., 2017) because of the

obvious reasons of their consumption (Fig. 7.2A) and the number of proteomics studies on these crops have progres-

sively increased in the last decade (Fig. 7.2B) because of the advancements in proteomics technologies. This knowledge

from these proteomics studies has been applied to some extent to improve the agricultural output and reduce the loss

caused due to abiotic or biotic stresses. The tools applied to study proteins are either gel-based techniques or gel-free

analysis. Gel-based techniques include two-dimensional gel electrophoresis (2DGE) or difference-in-gel electrophoresis

(DIGE) for protein separation and quantification and, on the other hand, gel-free techniques omit the separation of pro-

teins on the gels and the isolated proteins are directly subjected to the protein digestion followed by liquid chromatogra-

phy (LC) and then mass spectrometry (MS) identification (Champagne & Boutry, 2013). Gel-based techniques are

usually used to get a visual pattern of the protein changes in response to an external or internal stimulus on the poly-

acrylamide gels. In a gel-free technique, either labeling followed by identification is followed or procedures such as

multidimensional capillary LC coupled to nano-ESI tandem MS to separate, and then identification is followed (Riter

et al., 2011). However, both techniques have their limitations. For example, 2DGE which is used for separation can

only separate about 30%�40% of the total proteome also, strongly alkaline proteins with pH. 9.5 are also difficult to

focus (Chevalier, 2010). The limitations of gel-based techniques led to the advancement of gel-free techniques. Gel-free

procedures should be chosen according to the requirement and aims of the experiment and the sample being used. The

latter technique is better as they are more reproducible and accurate than the former. Advancements in proteomics

approaches and recent progress in the plant proteomics research have been elegantly discussed previously (Agrawal &

Rakwal, 2008).

7.2 Gel-based proteomics

Gel-based proteomics remained the method of choice for proteome analysis of plant samples in the last two decades

(Liu et al., 2019; Righetti, 2014). It primarily involves the resolution of proteins on gels prior to their trypsin digestion

and identification by MS (Fig. 7.3). For protein separation, multiple options, including sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) or one-dimensional gel electrophoresis, 2DGE, and DIGE, are avail-

able of which 2DGE has been primarily utilized for the plants (Fig. 7.3). In general, gel-based proteomics involves the

resolution of isolated proteins from control and treated samples on polyacrylamide gels that separates the proteins based

FIGURE 7.1 The top-10 valued agricultural crops where proteomics has been utilized. The size of each crop represents the total number of proteo-

mics studies published on that particular crop.
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FIGURE 7.2 (A) Number of proteo-

mics studies carried out to date in differ-

ent crop plants. (B) An overview of

the proteomics studies carried out in

different crops in the last 10 years. Data

were retrieved from the PubMed on

July 28, 2020.

FIGURE 7.3 An overview of the proteomics technologies utilized so far for the comparative proteome analysis of the crop plants.
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on their molecular weight and/or charge. The gels are then stained with the protein staining dyes to visualize the protein

bands as in the case of SDS-PAGE or protein spots in the case of 2DGE and 2D-DIGE. The obtained gel pictures are

digitized and the differential expression of proteins is determined with the help of sophisticated software. Identified dif-

ferential proteins are excised from the gels, destained, and digested by proteases, most commonly with the trypsin to

generate a set of peptides that are then identified by MS (Fig. 7.3). Just in the case of rice and wheat, more than 950

studies have been published on the 2DGE analysis to decipher the molecular mechanisms of the stress response, growth,

and development, highlighting the central role of gel-based proteomics in the crop proteomics (Agrawal et al., 2013;

Komatsu et al., 2014).

7.2.1 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

Development of SDS-PAGE by Laemmli (1971) was a major breakthrough in the life science research which involves

the separation of proteins based on their molecular weight on a polyacrylamide gel. Each protein in this method is

labeled with the SDS which imparts a negative charge to all the proteins rendering their usual charge insignificant and

therefore protein separation takes place solely based on their sizes. This method involves first the reduction of all the

disulfide bonds in the isolated proteins either by DTT or β-mercaptoethanol followed by boiling to break down the pro-

teins into corresponding polypeptides that appear as bands on the SDS-PAGE after the staining. However, the resolution

of the SDS-PAGE is limited and each band is often a mixture of several polypeptides of the same size. In the case of

proteome analysis, the only way to use SDS-PAGE is the resolution of polypeptides on the gel followed by cutting each

sample lane in 5�6 segments, all of which are then subjected to in-gel trypsin digestion followed by protein identifica-

tion by MS. This method of proteome analysis has been used majorly in rice to identify the different fungal and bacte-

rial responsive proteins in the apoplast and symplast (Wang et al., 2017). However, since this method alone cannot

be used for the quantification of proteins, it is often combined with the label-free quantitative proteomics to identify

the stress-responsive proteins in a high-throughput manner (Gupta et al., 2016a, 2016b). The benefit of using this

method is the fractionation of proteins prior to their digestion to reduce the complexity of peptides that hinder protein

identification by MS.

7.2.2 Two-dimensional gel electrophoresis

2DGE was first introduced by three scientists, including Klose, O’Farrell, and Scheele independently in 1975 (Klose,

1975; O’Farrell, 1975; Scheele, 1975). 2DGE involves the resolution of proteins in two dimensions where the first sepa-

ration is based on the isoelectric point or charge of the proteins while the second-dimensional separation is based on the

molecular weight. Immobilized pH gradient strips have been developed for the separation of proteins based on their

charge and are available in a variety of configurations and sizes as per the requirement (Bjellqvist et al., 1982). These

strips are available as pH 3�7 nonlinear and linear gradient and 4�7 linear gradient starting from 7 cm to as large as

24 cm. In contrast, the second-dimensional separation can be carried out as a routine SDS-PAGE. This two-dimensional

separation of proteins separates different proteins as individual spots that can be visualized using a variety of staining

techniques, including silver staining, Coomassie brilliant blue (CBB), and colloidal CBB, among others. Besides, fluo-

rescent stains such as Sypro Ruby have also been developed with improved sensitivity than CBB and colloidal CBB.

However, the silver staining method is the most sensitive method developed so far for the detection of proteins on the

gels and is able to detect proteins even in nanograms (Wray, Boulikas, Wray, & Hancock, 1981). This 2DGE-based

framework provides a snapshot of the total proteome of tissue at a given time and permits an immediate examination of

the treated sample with control (Gupta, Min, et al., 2015). This method provides accurate and reliable differences

between stress-treated samples with the control and includes quantification of proteins on the foundation of the spot

intensities. A single 2DGE gel can resolve up to 10,000 spots representing 1000 proteins, highlighting its excellent reso-

lution power (Abdallah, Dumas-Gaudot, Renaut, & Sergeant, 2012). However, 2DGE has limitations in protein solubi-

lizing, reproducibility, detection of low-abundant proteins, and resolution of highly acidic or basic proteins (Anguraj

Vadivel, 2015), yet it has remained the method of choice for the analysis of plant proteomes, especially rice and wheat,

to identify the differential proteins in response to various biotic and abiotic stress conditions.

7.2.3 Two-dimensional-difference-in-gel electrophoresis

2D-DIGE, a variant of 2DGE, was first introduced by Unlu et al. (1997), 22 years later than the introduction of classical

2DGE. 2D-DIGE involves the separation of control and treated samples on the same 2DGE gel, thereby reducing the
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gel-to-gel variations, which is a major drawback of the classical 2DGE system. DIGE is based on the labeling of control

and treated samples with fluorescent dyes, named CyDyes. The NHS-ester reactive group of these dyes covalently

attaches to the ε-amino group of lysine residues of the proteins via an amide linkage. At present, there are three

CyDyes available named Cy2, Cy3, and Cy5 in which the control sample is usually labeled with Cy3, treated with Cy5,

and pooling of both the samples as an internal standard with Cy2. The internal standard helps in spot normalization and

provides a snapshot of all the resolved proteins from control and treated samples. Since these are the florescent dyes,

the spots in the gels can only be visualized using a fluorescence imager such as Typhoon variable mode imager by GE

Healthcare. Despite the significant advancements in the gel analysis and spots detection, DIGE has been poorly utilized

for the analysis of proteomes of rice and wheat. In case of rice, DIGE has been used for the comparative proteome anal-

ysis of different rice cultivars (Teshima, Nakamura, Satoh, & Nakamura, 2010), low-level gamma radiation (Hayashi

et al., 2015; Rakwal et al., 2018), heat-responsive proteins (Zhou et al., 2019), analysis of secreted proteins in response

to salt stress (Song et al., 2011), and Xanthomonas oryzae pv. oryza infection (Chen, Deng, Yu, Yan, & Chen, 2016).

7.3 Gel-free proteomics

7.3.1 Multidimensional Protein Identification Technology

Multidimensional Protein Identification Technology (MudPIT) is a gel-free relatively advanced technique that was

developed in the Yates Laboratory. MudPIT is an high-performance liquid chromatography (HPLC)-based peptide sepa-

ration approach coupled with MS which requires digested protein samples into peptides before the separation steps

(Washburn, Wolters, & Yates, 2001). This technique works based on the combination of strong cation exchange and

reverse-phase chromatography to accomplish two-dimensional separation prior to MS analysis (Garcı́a, Senis,

Tomlinson, & Watson, 2007). To overcome the issue with 2-DE, MudPIT was introduced which is a robust and broadly

recognized method for protein recognition from a wide variety of samples. This gel-free technique is capable of separat-

ing individual components of protein and peptides from complex mixtures, resulting in a high number of protein identi-

fications, including low abundant ones. MudPIT is an excellent tool for both qualitative and quantitative proteomic

analyses and is mainly appropriate for the identification of hydrophobic proteins (Rossignol et al., 2006). However, its

use in plants, especially for the crops, is still limited. At first, Koller et al. (2002) reported the use of both MudPIT and

2DGE to characterize the proteome of different rice tissues, including leaves, roots, and seed tissues of rice. Further,

the MudPIT approach was also applied to identify potential targets to prevent the population expansion of phytophagous

mite in rice plants (Blasi et al., 2017). However, they also identified the expression pattern of proteins in the infested

leaves of rice, and results indicate that the acceptor side of photosystem II is probably the major susceptible target in

the photosynthetic apparatus (Buffon et al., 2016). In addition, Maor et al. (2007) applied the MudPIT approach to

investigate the protein ubiquitination in various plant species (Maor et al., 2007).

7.3.2 Sequential window acquisition of all theoretical mass spectra

The term “sequential window acquisition of all theoretical mass spectra (AP-SWATH)” was first used by Gillet et al.

(2012). AP-SWATH is relatively a recent technique based on data-independent acquisition, introduced to extend the

proteome coverage of shotgun proteomics (Tsou et al., 2015). In principle, the SWATH method can perform label-free

quantification in a multiple reaction monitoring such as fashion, which has higher quantification accuracy and precision.

AP-SWATH exhibits a high rate of accuracy, sensitivity, and reproducibility for evaluating the whole proteome. In con-

trast to other techniques, the main requirement for this method is the creation of a comprehensive spectral library (Yin,

He, Gupta, & Yang, 2015). Since it is a relatively recently introduced technique, its application to the crop species is

yet limited. SWATH-MS approach was used in different rice varieties to check the quality and proteins associated with

nutritional values (Sew et al., 2020). Moreover, the SWATH-MS approach was also employed for analysing proteins

quantitatively which were present in both inferior and superior spikelets of rice plants in the course of the grain filling

period (Zhu et al., 2016). During the germination of rice, Zhang, Wang, et al. (2016) studied the dynamic protein car-

bonylation and found the involvement of carbonylated proteins in reactive oxygen species (ROS) homeostasis, stress

hormones, and seed reserves via AP-SWATH label-free technique. To examine the protein profiles of a variety of

japonica rice plants during grain filling stages under normal as well as under stress (moderate soil drying) conditions,

the SWATH-MS method was used. Results obtained suggested that the remobilization of rice straw carbon reserve was

a mainly due to the altered gene expression during grain filling period in response of moderate soil drying conditions

(Wang et al., 2020).
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7.3.3 Label-free quantification

Currently, there are two main approaches to analyze the relative abundance of proteins in two or more biological sam-

ples. The first approach is label quantification in which the target proteins are labeled with a stable isotope whereas sec-

ond approach include label free quantification that works on the principle of peptide intensity profiling. To calculate

the relative abundance of the target modified peptide, the area under its peak is integrated and then is divided by the

total area of the target peptide in unmodified and all modified forms. In label-free quantification, there are two com-

monly used quantitative schemes: (1) mass spectral peak intensities and (2) spectral counting and it has been observed

that the amount of protein correlates well with peak intensities or spectral counts of peptides unique to a specific protein

(Fig. 7.3). Li, Chen, He, and Yang (2020) applied a label-free quantification technique to investigate and characterize

the importance of Ca21 ions in rice seed germination. Label-free proteomic analysis was applied to organic and conven-

tional rice (Meng et al., 2018; Wang et al., 2017; Xiao, Li, & Ma, 2019) and soybean samples (Gupta, Min, Kramer,

et al., 2018). The label-free qualitative proteomics showed that photosynthesis-related pathways and ribosomal path-

ways were significantly inhibited in OsCpn60β1 mutants of rice plants (Wu et al., 2020). To compare protein expres-

sion patterns in anthers during development, the relative quantity of proteins was estimated based on spectral counts,

which is a label-free method (Bridges et al., 2007; Zhu, Smith, & Huang, 2010). The 2019 study investigated temporal

changes in the abundance of the apoplastic fluid proteome of resistant and susceptible wheat leaves infected with

Puccinia triticina race-1, using a label-free LC-MS-based approach (Rampitsch & Huang, 2019). The main advantages

of label-free quantification are that it is cheap, achieves high-proteome coverage, and does not require laborious label-

ing workflows.

7.3.4 Isobaric tags for relative and absolute quantitation

Isobaric tags for relative and absolute quantitation (iTRAQ) is a technique of peptides labeling that uses isobaric

reagents yielding amine-derivatized peptides. The reagents were developed by Darryl Pappin and colleagues at Applied

Biosystem (Ross et al., 2004). Utilizing peptide fragments and low mass reporter ions, this approach allows quick pro-

tein identification and relative quantification at the MS/MS level (Evans et al., 2012). Chances of peak overlapping

while analyzing the results are reduced due to the unique design of isobaric mass tags. During MS/MS analysis of

iTRAQ-tagged peptides, the mass balancing carbonyl moiety is released as a neutral fragment and remaining isotope-

encoded reporter ions are used for the relative quantification of protein (Fig. 7.3). Because of the availability of up to

eight different iTRAQ reagents, a comparative analysis of multiple samples can be carried out in a single MS run

(Wiese, Reidegeld, Meyer, & Warscheid, 2007). In plant science, this technique is used extensively and frequently to

study adaptive stress responses in plants. For example, iTRAQ proteome was used to study the mechanism of ethylene-

dependent salt response in bread wheat (Ma, Shi, Su, & Liu, 2020). Moreover, the technique was useful in analyzing

new metabolic pathways of wheat seedling which were grown under hydrogen peroxide stress (Ge et al., 2013). In the

case of rice, the technique was used to quantitatively compare the rice leaves of noninfected and infected plants (Wang,

Ren, Lu, & Wang, 2015). Also, the technique was useful in providing insight into the molecular mechanism of cold-

tolerance response in japonica rice (Jia et al., 2020).

7.3.5 Tandem mass tag

The use of tandem mass tag (TMT) serves to be a novel strategy for the accurate quantification of peptides and associ-

ated proteins. These new tags and their analysis protocols allow peptides from different samples to be identified based

on their relative abundance. This method allows the simultaneous identification and estimation of relative abundances

of peptides or proteins, facilitated by collision-induced dissociation-based analysis (Schlosser & Lehmann, 2000). This

MS/MS-based detection protocol is known to have wider applications in peptide isolation methods when compared to

the MS mode measurement, and the same is justified by the high signal-to-noise ratio achieved in MS/MS-based

approach, allowing the exclusion of untagged materials, which helps in greatly improving the data quality. The TMT-

based technique is analogous to other peptide isotope labeling techniques but offers additional advantages such as

providing more precise reciprocal internal standards, which leads to more accurate quantification (Gupta et al., 2020;

Gupta, Min, Kim, & Kim, 2019; Min et al., 2020). Also, the reagents used to apply to any peptide isolation protocols

for in vitro labeling techniques. Robustness of the analysis and sensitivity of the TMT-based protein analysis help in

obtaining efficient and accurate results when compared to the orthodox isotope labeling methods (Thompson et al.,

2003). Liu et al. (2018) used the technique to analyze the response of tea plant to fluoride stress. Moreover, this
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technique was also applied to study chlorophyll synthesis and chloroplast structure in Brassica napus (Yang et al.,

2020). Moreover, Wu, Mirzaei, Pascovici, Haynes, and Atwell (2019) studied proteins from drought-resistant and

drought-sensitive rice plants using TMT to better understand the effects of soil drying on gene expression.

7.3.6 Stable Isotope Labeling by Amino acids in Cell Culture

It is another technique used for comparative analysis of the cellular proteome. SILAC stands for Stable Isotope

Labeling by Amino Acids in Cell Culture and was developed by Matthias Mann, of the University of Southern

Denmark, and colleagues in the year 2002. It is a method of metabolic labeling using stable isotope. The isotope-

labeled amino acids are mixed in the cell culture which is then incorporated in the proteins of the live cells (Ong et al.,

2002). Since only selected amino acids are labeled, the quantification and comparison of the incorporated amino acids

into the proteins is easier and accurate as well. For example, natural isotope and heavy isotope medium are allowed to

grow for a few generations depending upon the protein formation and degradation process. After a few cycles, all the

proteins in light, medium with natural isotope amino acids will have the natural isotope only, whereas in case of heavy,

medium with stable isotope-labeled amino acids will have the proteins with the heavy isotope. The complex protein

samples are then digested into peptides and analyzed. The signal intensities from light and heavy samples allow for a

quantitative comparison of their relative abundances in the mixture (Chen, Wei, Ji, Guo, & Yang, 2015). For labeling

of amino acids, the ones which are essential amino acids are preferred making sure that the only source of these amino

acids is from the provided media. Leucine (Foster, De Hoog, & Mann, 2003; Ong et al., 2002), lysine (Everley,

Krijgsveld, Zetter, & Gygi, 2004), and methionine (Ong, Mittler, & Mann, 2004) have been previously used providing

promising results in SILAC labeling. The technique is quantitatively accurate, reproducible, and can even be used to

analyze changes of posttranslational modifications (PTMs) and protein turnover (Chen et al., 2015). The applications of

the technique are diverse and therefore it has also been used to identify protein effectors in the wheat-Fusarium grami-

nearum pathosystem (Lecomte et al., 2014).

7.4 High-throughput posttranslational modification proteomics

Proteins are synthesized through translation from mRNAs in the form of nascent polypeptide chains on ribosomes.

After translation, many proteins undergo chemical modifications or PTMs to form mature proteoforms that accumulate

in the cells (Smith et al., 2013). Generally, these modifications take place in the Golgi apparatus and endoplasmic retic-

ulum. PTMs are noticed throughout the life cycle of proteins. In all eukaryotic cells, more than 50% of total proteins at

some point in their life cycle undergo PTMs (Cruz, Nguyen, Nguyen, & Wallace, 2019).

There are many forms of PTMs such as the addition of chemical groups (methylation, phosphorylation, and acetyla-

tion), the addition of complex molecules (AMPylation, glycosylation, and ADP-ribosylation), the addition of polypep-

tides (SUMOylation and ubiquitination), direct modification of amino acids (elimination and deamidation), and

cleavage of protein by proteolytic mechanisms (Spoel, 2018). For example, 461 types of modified amino acids of

eukaryotic proteins are deposited in the UniProt database (Bateman, et al., 2017) and newly identified PTMs are contin-

uously being added to the list. These modifications of proteins affect their stability, activity, interactions, and the locali-

zation (Bateman et al., 2017). Proteins can exhibit different types of PTMs, including phosphorylation, acetylation,

glycosylation, acylation, ADP-ribosylation, amidation, proteolytic processing, sulfation, disulfide bond formation, meth-

ylation, ubiquitylation, nitrosylation, sumoylation, γ-carboxylation, and β-hydroxylation (Villafañez, Gottifredi, &

Soria, 2019; Walsh & Jefferis, 2006). These PTMs can be broadly classified into four groups based on their activities,

namely, the addition of a peptide or protein, addition of a functional group, structural modification of a protein, and a

change in the chemical nature of its amino acids (Ytterberg & Jensen, 2010). PTMs can either be of just one type or

can be of various combinational types of modification that are highly specific and regulated to cellular requirements.

These modifications are mainly specific to some cellular signals and are spatial (dependent on its location) and temporal

(time-dependent) in nature. These modifications may also be influenced by the developmental stage and various types

of abiotic and biotic factors. Some PTMs are irreversible for the lifetime of a protein such as glycosylation or cleavage

of a signal peptide, while some modifications are reversible and quick in nature, for example, phosphorylation (Webster

& Thomas, 2012). PTMs are very diverse and can regulate the function of proteins and their interacting partners

through controlling the protein�protein interactions (Duan & Walther, 2015). It activates various biosynthetic path-

ways, namely, biotinylation of carboxylases, phosphopantetheinylation of fatty acid synthase, lipoylation of α-keto acid

dehydrogenase, polyketide synthases, and nonribosomal peptide synthetases (Perham, 2000). These enzymatic activities

play a major role in the regulation of various biological pathways for the proper functioning of cells.
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Plants require very quick cellular sensing mechanisms because they are immobile and persistently exposed to vari-

ous environmental changes (Dai Vu, Gevaert, & De Smet, 2018). Therefore various PTMs regulate metabolic pathways

and functional traits during adverse conditions, which have been confirmed through a comprehensive analysis of plant

quantitative proteomics data (Friso & Van Wijk, 2015). PTMs also enhance tolerance against several abiotic stresses,

including salinity (Forment, Naranjo, Roldán, Serrano, & Vicente, 2002), freezing (Kim, Kim, & Kang, 2005), oxida-

tive (Sunkar, Kapoor, & Zhu, 2006), cold (Kim et al., 2007), drought (Ko, Yang, & Han, 2006), heat, and osmotic

(Kant, Kant, Gordon, Shaked, & Barak, 2007) stresses. Interestingly, most therapeutic proteins may also undergo sev-

eral PTMs for their stability, pharmacokinetics, solubility, and bioactivity (Gomord & Faye, 2004). Various PTM-

related databases have been generated from the information of Ms experiments of many model organisms, for example,

PhosphoELM (Via et al., 2010), PHOSIDA (Gnad, Gunawardena, & Mann, 2010), PhosphoGRID (Sadowski et al.,

2013), dbPTM (Kao et al., 2015), and iPTMNet (Huang et al., 2017). All of the developed proteomics techniques in

principle can be utilized for the detection of PTMs in crops, including both gel-based and gel-free approaches

(Hashiguchi & Komatsu, 2016).

7.4.1 Phosphorylation

Phosphorylation of proteins is a reversible attachment of phosphate group(s) to the serine, threonine and tyrosine of the

proteins by the activity of kinases. In other words, protein phosphorylation is a reversible PTM of protein that regulates

the important events of plants’ life such as cellular signaling processes under normal as well as stress conditions

(Gupta, Min, Meng, Agrawal, et al., 2018; Gupta, Min, Meng, Jun, et al., 2018). In phosphorylation, phosphoryl group

from ATP (also from ADP) is transferred to the hydroxyl group of serine, threonine, or tyrosine residues of their target

protein and these reactions are catalyzed by protein kinases (Champion, Kreis, Mockaitis, Picaud, & Henry, 2004). In

the reverse process, the phosphorylated residues of modified proteins are removed by phosphatase activity (Friso & van

Wijk, 2015). Hydroxylated amino acids such as serine (75%�80%), threonine (15%�20%), and tyrosine (1%�5%)

majorly participate in phosphorylation of proteins (Champion et al., 2004). Apart from these hydroxylated amino acids,

histidine and aspartic acid can also phosphorylate (Ciesla, Frączyk, & Rode, 2011). The protein kinases and phospha-

tases are the regulators of phosphorylation and these gene families are abundant in plants. For instance, Arabidopsis

genome encodes for 162 phosphatases and 1052 protein kinases (Wang et al., 2014), undeniably showing the signifi-

cance of phosphorylation. Mammalian genomes encode half of the protein kinases compared to plant genomes

(Zulawski, Braginets, & Schulze, 2013). The role of protein kinase and phosphatase gene families in the regulation of

phosphorylation have been extensively studied in crop plants such as wheat and maize (Singh, Giri, Kapoor, Tyagi, &

Pandey, 2014; Wang et al., 2016; Wei & Pan, 2014).

Protein phosphorylation is essential for the proper regulation of photosynthesis in plants (Kwon, Choi, Choi, Ahn, &

Park, 2006). Several other biological processes such as development differentiation, intracellular regulation, and cell

maintenance are also dependent on phosphorylation and kinase activities (Vandamme, Castermans, & Thevelein, 2012).

Phosphorylation regulates most of the physiological and metabolic pathways in plants, for example, RNA metabolism

(van Bentem et al., 2006), defense (Jones, Bennett, Mansfield, & Grant, 2006; Nühse, Bottrill, Jones, & Peck, 2007),

root growth (Zhang et al., 2013; Zhang, He, et al., 2016), and carbon metabolism (Wu, Sklodowski, Encke, & Schulze,

2014). The major function of protein phosphorylation is in the metabolic and signal transduction pathways by the alter-

ation of protein activities such as protein interactions, subcellular localization, or protein (Mithoe & Menke, 2011;

Schönberg & Baginsky, 2012; Silva-Sanchez, Li, & Chen, 2015; van Wijk, Friso, Walther, & Schulze, 2014).

Phosphorylation also plays an important role during abiotic and biotic stresses. Many phosphorylation experiments have

been performed under salt and drought stresses on crop plants such as wheat, sugar beet, maize, and several beans

(Kumar et al., 2014; Lv et al., 2016; Yu et al., 2016; Zhang et al., 2014; Zörb, Schmitt, & Mühling, 2010). In the case

of biotic stress such as host�pathogen interaction, it influences plant survival (Gupta et al., 2018; Xing, Ouellet, &

Miki, 2002). Due to the enormous function of this PTM, several databases such as PhosPhat (Zulawski et al., 2013) and

P3DB (Yao et al., 2014) have been specifically generated to store and retrieve phosphorylation information. These data-

bases are very important for the understanding of phosphorylation mechanisms in the model and nonmodel plants.

7.4.2 Glycosylation

Glycosylation of protein is the most common and widespread PTM in plants and all other eukaryotes. It is an essential

cotranslational modification and PTM that occurs in membrane and secreted proteins. In this chemical modification, the

sugar molecule adds to the specific amino acids of the protein through enzymatic activity. This is found in natural
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proteins as well as in biopharmaceutical proteins, for example, around 50% proteins are glycosylated in humans (Wong,

2005). As per the Swiss-Prot protein database, more than 50% of all eukaryotic proteins and one-third biopharmaceuti-

cals protein are glycoproteins (Apweiler, Hermjakob, & Sharon, 1999; Walsh & Jefferis, 2006). Glycosylation is of

two types and is classified based on the bond between the amino acid and carbohydrate (glycan) residues, O- and

N-glycosylations. In N-glycosylation, N-glycans attached to the amide group of asparagine and O-glycans,

O-glycosylation, attached to the hydroxyl group of serine, threonine, hydroxyproline, or hydroxylysine residues in the

protein chain (Gomord et al., 2010; Williams, 2006). N-glycosylation starts in the endoplasmic reticulum and proces-

sing occurs in the Golgi apparatus while O-glycosylation occurs in the Golgi apparatus and endoplasmic reticulum

(Gomord et al., 2010). N-Glycosylation plays a pivotal role in the regulation of several biological processes such as

protein�protein interactions, protein folding, protein stability, and glycan-dependent activities in the endoplasmic retic-

ulum (Hebert, Lamriben, Powers, & Kelly, 2014; Moremen, Tiemeyer, & Nairn, 2012). In Arabidopsis thaliana, more

than 1000 N-glycosylated proteins have been noticed (Song et al., 2013; Zielinska, Gnad, Schropp, Wisniewski, &

Mann, 2012) and these proteins contain one or several N-glycan.

Based on findings from A. thaliana (Strasser, Altmann, Mach, Glössl, & Steinkellner, 2004; von Schaewen, Sturm,

O’Neill, & Chrispeels, 1993), it has been hypothesized that complex N-glycans are not essential for the development

and reproduction of plants when grown under normal environmental conditions. Some investigations suggested that the

N-glycans are not essential for the reproduction and development in A. thaliana under optimum environmental condi-

tions (Strasser et al., 2004; von Schaewen et al., 1993). However, N-glycan modifications are conserved across land

plants—from flowering plants to distantly related mosses, for example, Physcomitrella patens (Fitchette et al., 1999;

Viëtor et al., 2003; Wilson et al., 2001). N-glycosylation plays an important role in many abiotic stresses.

The β1,2-xylosyltransferase enzyme catalyzes the transfer of xylose subunit to the N-glycans but the loss of function

of this enzyme causes impaired root aerenchyma formation. The nonfunctional β1,2-xylosyltransferase enzyme in rice

mutant is susceptible to osmotic stresses and low heat (Takano et al., 2015). Similarly, the α1,3-fucosyltransferase
enzyme catalyzes the transfer of fucose to the N-glycan cores. The α1,3-fucosyltransferase enzyme in mutant rice

showed a reduced gravitropic response because this enzyme is essential for the transfer of fucose to the N-glycan

(Harmoko et al., 2016). The N-glycosylation affects several aspects which include plant metabolism, development,

growth, stresses (biotic and abiotic responses), and enzyme functions (Friso & van Wijk, 2015). As a comparison to

N-glycosylation, O-glycosylation has not been properly understood. This protein modification is mostly found in the

cell wall and nearly 10% of cell wall proteins are O-glycosylated (Friso & van Wijk, 2015). In plants, two O-GlcNAc

transferase enzymes (namely, SPINDLY and SECRET AGENT) regulate O-glycosylation, the double mutants of these

enzymes (not functional) showed embryo lethality (Friso & van Wijk, 2015).

7.4.3 Acetylation

Acetylation is another important PTM of proteins. In acetylation modification, the acetyl group of acetyl-CoA is trans-

ferred to the amino acid (lysine) of protein by acetyltransferase enzymatic activity. This type of modification has been

noticed in proteins generally found in all kinds of organisms, across all kingdoms, and therefore has been speculated to

be universal (Choudhary, Weinert, Nishida, Verdin, & Mann, 2014; Jeffers & Sullivan, 2012). Protein acetylation can

be both reversible and nonreversible and is mainly involved in the regulation of gene expression. For instance, ε-amino

group modification of lysine (K) is a reversible process catalyzed by K acetyltransferases and K deacetylases, while

Nα-terminal modification is nonreversible process catalyzed by Nt-acetyltransferases (Nallamilli et al., 2014). In living

organisms, more than 80% of proteins undergo N-terminal acetylation (Bienvenut et al., 2012) but the functional rele-

vance of this PTM is not been properly understood so far. Previous investigations suggest that N-terminal acetylation is

a fundamental regulator of several aspects of plant development, growth, behavior, protein stability, and stress response

(Linster et al., 2015; Xu et al., 2015). Some plant growth regulators are up- and downregulators of this PTM, for exam-

ple, gibberellin stress hormone promotes the modification of histones through the acetylation and hence suppresses the

abscisic acid under note that both of these abiotic stresses (Hou et al., 2015). Linster et al. (2015) observed that downre-

gulation of N-terminal acetylation promotes abscisic acid level and thus provides the adaptation against drought stress.

The N-terminal acetylated protein in the Arabidopsis mutant lines showed growth defects and pleiotropic development

(Ferrández-Ayela et al., 2013) with low photosynthetic capacity (Pesaresi et al., 2003).

Acetylation and deacetylation processes have been reported in the genome of several plant species and both processes

are regulated by acetyltransferase and deacetylase enzymatic activities, respectively. Arabidopsis genome contains 12 genes

for histone acetyltransferases and 18 genes for histone deacetylases (Pandey et al., 2002). As a comparison, 7 histone

acetyltransferase and 19 histone deacetylase genes are present in the rice genome (Hu et al., 2009). Both histone and
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nonhistone proteins undergo acetylation; however, this modification is controlled by many factors, such as ROS, physio-

logical stresses, and infectious diseases. Histone acetylation regulates several significant cellular processes and metabolic

activities such as development, flowering time, cell cycle, and signal transduction (Servet, Conde, Silva, & Zhou, 2010).

For example, salt stress-induced histone-H3 levels via acetylation in maize plants ultimately balanced the cell wall pro-

teins (Li et al., 2014). Lysine acetylation is a reversible modification of protein which is catalyzed by lysine acetyltransfer-

ase and deacetylase enzymatic activities (Friso & van Wijk, 2015). This can be considered as an epigenetic modification

and extensively studied in plants as well as in other organisms (Berr, Shafiq, & Shen, 2011). Previous studies suggested

that another type of histone lysine acetylation plays a major role in plant tolerance response to different abiotic and biotic

stresses (Servet et al., 2010; Yuan, Liu, Luo, Yang, & Wu, 2013). Non-histone acetylation is widespread in mitochondria

and chloroplast; however, lysine acetylation occurs at basic pH in the chloroplast stroma and mitochondrial matrix (Friso

& van Wijk, 2015). In chloroplasts, several proteins such as Calvin cycle enzymes such as RuBisCO and some membrane

proteins were found acetylated (Finkemeier, Laxa, Miguet, Howden, & Sweetlove, 2011). In mitochondria, the tricarbox-

ylic acid cycle and some mitochondrial electron transport chain proteins are lysine-acetylated (König, Hartl, Boersema,

Mann, & Finkemeier, 2014; Papanicolaou, O’Rourke, & Foster, 2014). König et al. (2014) identified 243 distinct acetyla-

tion sites at 120 lysine-acetylated mitochondrial proteins involved in the tricarboxylic acid cycle and protein metabolism.

Mitochondrial acetylated proteins are also associated with many pathways such as histone/chromatin gene expression, sig-

nal transduction, and protein turnover (Anderson & Hirschey, 2012).

7.5 Conclusion

Proteomics has progressed at a rapid pace and a number of methods are now available for mapping the plant proteomes

and identification of stress-responsive proteins with a high degree of accuracy and reproducibility. The efficacy of the

majority of these methods has already been tested on the crop species; however, some of the recently developed meth-

ods such as AP-SWATH still needs to be fully utilized for the identification of protein candidates from the crops. Since

working on agricultural crops needs more time because of their specific growing seasons, the information generated on

the model plants can be translated on the agricultural crops to further understand their biology in greater detail.

Moreover, PTM analysis using high-throughput approaches can further lead to the understanding of supraregulation of

proteins in response to any external or internal factors and how their PTMs affect their functions and interaction with

other proteins. This global analysis of proteins and their modifications will deepen our understanding of how crop func-

tions and which kind of proteins needs to be targeted for the generation of improved cultivars with higher yield and

stress tolerance.
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Chapter 8

Metabolomics and sustainable
agriculture: concepts, applications, and
perspectives

Noureddine Benkeblia
Department of Life Sciences, The Biotechnology Center, The University of the West Indies, Kingston, Jamaica

8.1 Introduction

Although wild crops have been collected and eaten from more than 100,000 years ago, domestication of plants and ani-

mals and, development and dissemination of agricultural techniques occurred later from around 9500 BCE. From the

19th century and the Industrial Revolution, the so-called “conventional agriculture” or “industrial agriculture” paved

the way for new farming techniques and improved livestock breeding leading to greater food production. Beginning in

the mid-20th century, the Green Revolution leads to a great increase in food production resulting from the introduction

of new and high-yielding varieties, chemicals, and intensive mechanization. This modern agriculture that depends to

large extent on synthetic fertilizers and pesticides was viewing the farm as a factory with inputs and outputs with the

main goal is to prioritize higher yields. According to the World Bank, food production increased by 70%�90% in the

past 50 years resulting in conventional agriculture rather than greater cultivated acreage. Unfortunately, these new vari-

eties cropped intensively require large inputs including large amounts of fertilizers and pesticides, therefore raising

major concerns about harmful and negative impacts on the environment.

The term “sustainable agriculture” is a complex concept with environmental, economic, and social facets and its def-

inition is versatile. The concept of sustainable agriculture was first stated by Rodale (1988), and many other definitions

have been suggested. These suggestions were analyzed by Okigbo (1991) who defined “agricultural sustainability as

one that maintains an acceptable and increasing level of productivity that satisfies prevailing needs and is continuously

adapted to meet the future needs for increasing the carrying capacity of the resource base and other worthwhile human

needs,” and accordingly when resources, inputs, and technologies are within the abilities of the farmers to own, hire

and manage with increasing efficiency. Thus, desirable levels of production in perpetuity with minimal or no adverse

effects resources, environment quality and life will be the achievements of this concept. On the other hand, the US

Code defined “sustainable agriculture” as an integrated system of plant and animal production practices having a site-

specific application that will over the long term: (1) satisfy human food and fiber needs; (2) enhance environmental

quality and the natural resource base upon which the agricultural economy depends; (3) make the most efficient use of

nonrenewable resources and on-farm resources and integrate, where appropriate, natural biological cycles and controls;

(4) sustain the economic viability of farm operations; and (5) enhance the quality of life for farmers and society as a

whole (US Senate Committee on Agriculture, Nutrition, & Forestry, 1990). However, there is a general agreement that

interactions between farming systems, soil, water, biota, and atmosphere are more complex than they seem, and much

more is needed to be understood about their long-term interactions, and often environmental issues are intertwined with

economic and social concerns. It is well admitted that our natural resources are limited, and environmental degradation

progressed dangerously, hence the necessity in finding a solution to how to feed the growing population.

Indeed, sustainable agriculture depends greatly on natural resources’ preservation, environment quality, and manage-

ment and maintenance of ecosystems and soils. Because crops and animal products are the unique source of food, sus-

tainability became one of the major contemporary concerns. With the incommensurate development of biological

sciences, the outcomes of metabolomics—one among other omics technologies—are further translated to agricultural
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research and production technologies, and will help to examine the availability of the natural resources, their sustain-

ability, and their efficient management. This translation has shown its great efficiency in examining how natural

resources and environment would lead to reach the goal of sustainable agriculture. Thus, the principles regulating mod-

ern agricultural and food production systems include soil management and environment preservation and are considered

fundamental rules to the philosophy of sustainability.

During the 20th century, the effects of intensive agricultural production on resource degradation have been of

intense concern. Thus, the term of “sustainable agriculture” began to enter the vocabulary of the people responsible for

agricultural research resource allocation (Dorfman, 1991; Ruttan, 1992). The present period is known as an important

“turn” for agriculture and the trend is to move from an industrial to a sustainable agriculture which focuses on the abil-

ity to sustain the growth in the demands and this is considered maybe the most remarkable transition in the history of

agriculture (Dorfman, 1991; Horrigan, Lawrence, & Walker, 2002). Because our future depends primordially on the

wellbeing of our planet and what it offers us, we need to think of new opportunities for advancing agricultural research

to reverse the urgency of the concerns. Since advances in metabolomics are occurring rapidly, they should be immi-

nently translated to agricultural research and production technologies, and this translation could be a key answer to

address these concerns.

8.2 Sustainable agriculture and agro-production systems

The agro-production systems offer a valuable entry point in exploring the challenge of achieving sustainable production

patterns, and the goals of sustainable agro-systems aim to improve the quality of life while ensuring social, environmen-

tal, and economic sustainability. Indeed, the greatest challenge is to protect and sustainably manage the natural

resource, and in parallel feeding and housing the growing world population.

Intensive agriculture (IA) tends to produce cheaper and more abundant food crops; however, the environmental

impacts and social costs of this agriculture are increasingly apparent.

First, IA has significantly contributed to degrading soils, and the area of cropland per capita has been steadily

declining, from 0.43 ha in 1961 to about 0.24 ha in 2004 (UN, 1991; UNDP, 1998). From the 1950s, c. 5�6 million

hectares are lost each year due to soil degradation, and c. 2 billion hectares became uncultivated because of poor agri-

cultural practices (WRI, 1998), and, the dramatic rise in grain yields during the 1960s and 1970s tended to outweigh

the loss of arable land. On the other hand, rather than protection arable land, millions of hectares of cropland continue

to be lost at a serious rate due to urbanization and building new cities.

Second, IA is also associated with extensive chemical inputs and the resulting higher yield outputs are the

depletion of soils fertility, creation of pesticide-resistant pests, and environmental and health impacts. For example,

the use of nitrogen fertilizers increased by fivefold during the 40 last years; contaminating surface and groundwater

with nitrates presently considered the most common chemical contaminants in drinking water. Of course, organic

farming (OF) has been seen as a good approach to dramatically reduce chemicals dependency, improve the fertility

and structure of soils by using crop rotation, recycling crop residues, and applying organic manures and mulches.

OF system has also shown to protect surface and groundwater and help preserve biodiversity, making this agroeco-

logical system more conserving of the environment and natural resources. Indeed, this system is based on different

pillars consisting of integrating natural processes such as regeneration and minimizing the use of nonrenewable

inputs (pesticides and fertilizers).

Unfortunately, only a small percent of agricultural producers are organic farmers, and the challenge is to find the

strategy by which sustainable agriculture can successfully make the transition to become the standard operating frame-

work for producing food and achieving sustainable food security. Biotechnology is another controversial development

of industrial agriculture by integrating genetically modified (GM) food into the global food system. According to the

FAO (2000), the application of biotechnology to agriculture might enhance food security; however, GM organisms are

still under intense debate.

8.3 Concepts of metabolomics and their applications to agriculture

The term metabolomics derives from metabolites and is resulting from the interaction of the system’s genome with its

environment (GxE), and this discipline entails the study of global metabolite profiles in a system (cell, tissue, or organ-

ism) under a given set of conditions (Fell & Wagner, 2000; Glassbrook, Beecher, & Ryals, 2000; Goodacre,

Vaidyanathan, Dunn, Harrigan, & Kell, 2004; Mitchell, Holmes, & Carmichael, 2002; Schmidt, 2004). For simplicity,

metabolomics aims to “measure the time-related multiparametric metabolic responses of a biological system to a

124 SECTION | I Bioinformatics and next generation sequencing technologies



physiological or environmental stimulus or genetic modification” (Mitchell et al., 2002; Nicholson, Lindon, & Holmes,

1999). By analyzing the complete range of metabolites present within a biological system, a clear biological face of this

system at a defined developmental stage or under specific environmental factors should be reflected (Brown et al.,

2005). To achieve this, several comprehensive technologies, such as chromatographic techniques coupled to mass-

spectrometry are employed to study these wide arrays of metabolites (Dunn & Ellis, 2005). Metabolomics was first

described in the 1950s, and afterward, it developed during the four following decades. With the development of analyti-

cal technologies, metabolomics knew a tremendous development during the last 20 years, and it became an area of

major research interest.

From the ancient time, plants have provided a major part of human food, and cereals and other starchy plants

are a major source of energy. To feed and support the growing human population, plant breeding focused on

increasing the yield per hectare and crops protection from pests and diseases and also reduces losses during culti-

vation, harvesting, handling, transportation, and storage. The first research on horticultural crops aimed to improve

their utility for processing rather than their nutritional values. However, in the early 1960s with the discovery of

new varieties and the development of metabolomics and other omics technologies, these aims were extended to

physiological and biochemical attributes (Mertz, Bates, & Nelson, 1964; Rochfort, 2005). These technologies and

their products are of crucial importance within the context of sustainable development and agricultural genomics,

especially for breeding programs in crop and crop genetic engineering and overcoming biotic and abiotic stresses

are one of the greatest ultimate impacts (Fig. 8.1). Therefore sustainable agriculture should be considered as a “key

target” in the “gene revolution” since the cost of developing new concepts is much less compared to the cost of

“damage reparation” caused by these stresses.

FIGURE 8.1 A proposed framework to integrate untargeted metabolomic analysis in biotech crops risk assessment. This multitiered framework is

subdivided into four main stages. An initial collection of the available biological information regarding a new trait allows an assessor to predict poten-

tial effects on the crop metabolome (if any). An exhaustive set of references representative of the existing genetic diversity of a crop species is

included in the study design to estimate natural metabolic diversity within the species. Information collected in the first stage is used to guide the

choice of a dedicated protocol of untargeted metabolomic analysis (metabolite fingerprinting and/or profiling). Statistical analysis of the metabolomic

data and partial identification of metabolite features lead to an initial characterization of the potential risk linked to the identified metabolic alterations.

This initial risk characterization can then trigger further in-depth hazard characterization and exposure assessment. CRISPR, Clustered regularly inter-

spaced palindromic repeats; TALENs, transcription activator-like effector nucleases; ZFNs, zinc finger nucleases. From Christ, B., Pluskal, T., Aubry, S.,

& Weng, J. K. (2018). Contribution of untargeted metabolomics for future assessment of biotech crops. Trends in Plant Science, 23, 1047�1056, with

permission of Elsevier.
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8.4 Bridging metabolomics to sustainable agriculture

Comprehensively, metabolomics is considered a valuable approach to understand growth, development, response to

stresses, and resistance and resilience of plants to environmental changes. By understanding the multiple mechanisms

regulating these numerous processes, more efficient strategies can be developed to improve crops production, soil con-

servation, and, therefore, ensure the sustainability of the agroecosystems.

8.4.1 Metabolomics for biotic and abiotic stresses assessment

The agronomic fall of sustainable agriculture can be biotic or abiotic (Jahangir, Abdel-Farid, Kim, Choi, & Verpoorte,

2009; Shao, Chu, Abdul Jaleel, & Zhao, 2008; Shao et al., 2007). These stresses cause significant losses in crops and

might significantly affect productivity. Thus metabolomics is one of the scientific strategies to elucidate the molecular

genetic basis of stress response and resistance of crops (Fig. 8.2). By deciphering the mechanisms regulating the

FIGURE 8.2 Schematic representation of the suggested experimental workflow for the metabolomics-assisted study of crops and abiotic stresses.

The process starts with the cultivation experiments, which must include at least two different conditions (e.g., stress and control) and a representative

number of biological replicates. Depending on the study, different genotypes, varieties, or mutants, susceptible or tolerant, can be arranged and

exposed to the experimental conditions. As pointed out by Sanchez et al. (2012), 19 more than two tolerant and sensitive species/ cultivars should be

included to avoid a misunderstanding between natural variation and metabolic tolerance. During this phase, the physiological parameters can be moni-

tored and registered. The next step is harvesting. The plant material (shoots, roots, seed, flowers, stems, or others) is harvested and promptly frozen in

liquid nitrogen to avoid enzymatic reactions and degradations. In the sequence, the samples can be stored in a freezer at 280�C, dried (usually freeze-

dried), or directly extracted from the fresh tissue. Before extraction, the samples must be powdered, homogenized, and weighted. The best extraction

protocol must be chosen according to the desired purpose (e.g., considering targeted metabolomics analysis or metabolic profiling/fingerprinting) and

also considering the different classes of metabolites that can be extracted. Usually, internal standardization is required for subsequent normalizations

and data analysis. Then, samples are subjected to chemical analysis (using different analytical platforms). In general, most of the metabolomics proto-

cols include a separation step (by LC or GC, mainly) hyphenated to the detection technique of choice (usually Ms or NMR in different arrays). After

data acquisition, the raw files are exported for data analysis. The high-throughput process considers several steps such as the conversion to

suitable formats, preprocessing, normalizations, data cleaning, alignment, and corrections, among others. Multivariate data analysis methods can be

used to evaluate the quality of the acquired data. Additionally, compounds can be annotated by comparing the obtained spectra with those available in

mass spectral reference libraries. Still, if necessary, the compounds can be identified by complete structural elucidation (which requires, most of the

time, isolation and purification). During this process, the information can be analyzed by different statistical, univariate, or multivariate data analysis

tools. Finally, the metabolomics results can be integrated with transcriptomics or proteomics data and/or with the corresponding physiological data for

biological interpretation. From Bueno, P. C. P., & Lopes, N. P. (2020). Metabolomics to characterize adaptive and signaling responses in legume

crops under abiotic stresses. ACS Omega, 5, 1752�1763, with permission under an ACS AuthorChoice License.
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expression of stress-related genes, scientists would have better insights into fundamental issues in plant biology which

are required for the genetic improvement of food crops (Dita, Rispail, Prats, Rubiales, & Singh, 2006).

So far, water limitation is likely the major concern for agriculture and the concern is worsened by climate change since

drought is among the effects of impending this change. Water scarcity is predicted to have a profound impact on crop pro-

ductivity and yield, and will affect many regions worldwide (Shanker et al., 2014). On the other hand, plants developed dif-

ferent strategies to cope with water scarcity, and one of these mechanisms is the production and accumulation of organic

compounds which act as osmoregulators, osmoprotectants, and/or turgor maintenance. To improve tolerance and coping of

plants with drought, a deeper understanding and elucidation of the metabolic pathways producing and regulating these com-

pounds constitutes one of the most promising alternatives (Bueno & Lopes, 2020). Therefore, metabolomics approach is con-

sidered an effective strategy to explore system responses to drought. Interestingly, drought stress was the most investigated

stress comparatively to other abiotic stresses and extensive literature is readily available on the subject. For example, metabo-

lomics analysis showed abundant changes in amino acids, organic acids, sugars, and phenolic compounds under water defi-

ciency in wheat (Michaletti, Naghavi, Toorchi, Zolla, & Rinalducci, 2018), sesame (You et al., 2019), eggplant (Mibei,

Owino, Ambuko, Giovannoni, & Onyango, 2018), cowpea (Goufo et al., 2017), pea (Charlton et al., 2008), rice (Ma et al.,

2016), soybean (Das, Rushton, & Rohila, 2017), oat (Sánchez-Martı́n et al., 2015), barley (Chmielewska et al., 2016; Hong,

Ni, & Zhang, 2020), pepper (Vı́lchez, Niehaus, Dowling, González-López, & Manzanera, 2018), sugarcane (Budzinski, de

Moraes, Cataldi, Franceschini, & Labate, 2019), peanut (Gundaraniya, Ambalam, & Tomar, 2020), maize (Yang et al.,

2018), and white clover (Li et al., 2019). Indeed, these and future studies will be imperative in understanding drought to

maintain yield and productivity, and therefore, secure food supplies for the future.

Pests and diseases are the major biotic stresses affecting cultivated crops, and their severity and effects are variable,

while some of them affect large areas and cause considerable losses in quantity and quality (Nene & Reddy, 1987;

Rubiales, Emeran, & Sillero, 2002; Warkentin, Rashid, & Xue, 1996). Soilborne diseases are also very common in crops

and most of them attack seedlings causing damping-off and might result in up to 80% of plants death (Denman,

Knoxdavis, Calitz, & Lamprecht, 1995; Kolkman & Kelly, 2003; Navas-Cortés, Hau, & Jimenez-Diaz, 2000; Wang,

Hwang, Chang, Turnbull, & Howard, 2003; Wang, Okamoto, Xing, & Crawford, 2003). On the other hand, viral diseases

cause heavy losses for most crops, and many have been considered the most important yield-limiting factor (Coyne et al.,

2003), while insects cause important damages both through direct feeding or by transmission of pathogens (Garza,

Cardona, & Singh, 1996; Romero-Andreas, Yandell, & Bliss, 1986; Yoshida, Cowgill, & Wightman, 1997). Abiotic stres-

ses such as cold, drought, waterlogging, and salinity affect c.a. 90% of arable lands which experience one or more envi-

ronmental stresses, and drought, extreme temperature, and high salinity have been shown to dramatically limit crops

productivity (Dita et al., 2006). Water deficit constitutes the major abiotic factor affecting crops productivity (Sharma &

Lavanya, 2002), while waterlogging causes severe yield losses (Dennis et al., 2000) by limiting O2 diffusion of the soil

and subsequently inducing denitrification and/or nitrate ammonification (Laanbroek, 1990), hence, limiting potassium,

sodium, iron, and manganese uptake by plants which become more susceptible to diseases (McDonald & Dean, 1996).

As an efficient approach, metabolomics has been used to assess the involvement of subsets of metabolites in various stresses

(Urano, Kurihara, Seki, & Shinozaki, 2010). Several research works focused on phenolics accumulation observed in response to

pathogens infection (Baldridge, O’Neill, & Samac, 1998; Borejsza-Wysocki, Borejsza-Wysocka, & Hrazdina, 1997; Lozovaya,

Lygin, Li, Hartman, & Widhohn, 2004; Saunders & O’Neill, 2004; Shimada, Akashi, Aoki, & Ayabe, 2000). Many phenolic and

other compounds have been described as potential defense or signal molecules such as terpenoids (He & Dixon, 2000; Mithofer,

Muller, Wanner, & Eichacker, 2002), for example, copper or mercury stress induced the accumulation of phytoalexin (Wu &

VanEtten, 2004). Although significant advances have been achieved, still the roles of these molecules remain unclear and not

fully elucidated. However, an interesting hypothesis suggests that phenolic compounds act as attractants for natural predators of

herbivorous insects and as systemic signal defense. Nowadays, large-scale metabolomics analysis is providing large data sets help-

ing in identifying potential marker candidates to increase intrinsic resistance and tolerance levels of crops to these stresses.

8.4.2 Metabolomics for soils science and soil conservation

The term “macronutrient” refers to one of the nine elements needed by plants in larger quantities, namely, nitrogen,

phosphorus, sulfur, calcium, magnesium, potassium, carbon, hydrogen, and oxygen. However, only the first six that can

be supplied conveniently as fertilizers are ordinarily considered among the macronutrients (Broyer & P Stout, 1959).

Soil fertility is a continuous process beginning before crops establishment, and aiming to adjust soils conditions for an

optimal growth of plants, and this management is the key to sustainable agriculture. Although it seems simple, the con-

cept of soil fertility is difficult to explain, and some nutrients are more accessible in some soils than others, although

these later contain higher fertility resources (Cakmak, 2002; Loneragan, 1997; Tisdale, Nelson, & Beaton, 1985).
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The availability of nitrogen is considered as the major limiting factor in agricultural productivity, and its assimila-

tion is necessary for plant growth and development (Newbould, 1989). Hence, one of the driving forces behind agricul-

tural sustainability is the effective management of nitrogen through the biological nitrogen fixation (Bohlool, Ladha,

Garrity, & George, 1992; Vance & Graham, 1994), and 80% of this biologically fixed nitrogen which become available

to crops is performed by the soil bacteria, namely, Rhizobium, Bradyrhizobium, Sinorhazobium, and Azorhizobium-

Legume symbiosis (Peoples, Herridge, & Ladha, 1995; Vance, 1996, 1997). Phosphorus (P) is the second important

mineral for crops, and is present as mineral deposit, and presents the positive point to remain in soils. Phosphorus fixa-

tion often requires the addition of excess P fertilizers to meet the requirements of crops (Brady, 1990; Loneragan,

1997); however, only 15%�20% of the applied quantity would become available to crops (Prasad & Power, 1997). In

soils, potassium (K) is present in much large amount and fairly well distributed in soils (Prasad & Power, 1997), under

four different forms (Brady, 1990; Mulder, 1950; Sparks, 1987; Tisdale et al., 1985). Nevertheless, little is known on

potassium but genotypic difference in crop species with respect to potassium nutrition has been reported (Glass &

Perley, 1980). Calcium (Ca) was recognized a long time ago necessary for the growth of higher plants (Vance, 1997)

and required for structural roles in the cell wall and membranes, as well as its role as a counter-cation for inorganic and

organic anions in the vacuole, and as an intracellular messenger in the cytosol (Marschner, 1995; Martinoi, Maeshima,

& Neuhaus, 2007). However, the required levels of Ca and the tolerance of plants to their concentration in the rhizo-

sphere differ from species to species (Hepler, 2005; Martinoi et al., 2007; McLaughlin & Wimmer, 1999; Plieth, 2005;

White & Broadley, 2001). Similarly to calcium, magnesium (Mg) is fairly mobile in plants and the most abundant diva-

lent cation in a living cell, and share few traits with calcium such as (1) both are taken up by plants as cations, and (2)

they are basic or basic forming elements (Tisdale et al., 1985). Magnesium plays an even more prominent role in plants

as an essential component in the structure of chlorophyll and ribosomes; however, its uptake, transport, and homeostasis

in eukaryotes are poorly understood (Li, Tutone, Drummond, Gardner, & Luan, 2001; Matsumoto, 2000; Prasad &

Power, 1997; Rengel & Robinson, 1989; Tan, Keltjens, & Findenegg, 1991). Sulfur (S), another macronutrient, is the

least abundant in plants, and required in low levels by plants for their growth since it has numerous biological functions

(Leustek, Martin, Bick, & Davies, 2000; Schmidt & Jäger, 1992), for example, the biosynthesis of primary and second-

ary metabolites and coenzymes (Giovannoni, 2004; Hell, 1997; Leustek et al., 2000; Schmidt & Jäger, 1992).

One of the objectives of metabolomics approaches aims also to integrate with plant nutrition research to develop

new plant genotypes with greater uptake and acquisition efficiency of nutrients from soils, hence, contributing greatly

to reduce the massive addition of fertilizers. Imbalanced levels of essential or putatively nonessential microelements are

potentially toxic, and soils are contaminated as a result of mining or industrial and domestic activities and fertilization

(Cheng, 2003; di Toppi & Gabbrielli, 1999; Meharg, 2004; Nriagu & Pacyna, 1988). Some interesting studies have

been carried out to understand the effects of some nutrients’ uptake by plants during their growth and development.

Roessner et al. (2006) used a metabolomics approach to assess the effect of boron (B) on plant growth at either defi-

cient or toxic concentrations in soil by comparing metabolite profiles in root and leaf tissues. Postgenomic investiga-

tions have also been carried out to study the metabolism of sulfur (Hirai & Saito, 2004), and the metabolome of leaf

and root samples was analyzed (Hirai et al., 2004). Because the pattern of the gene expression is regulated by a metabo-

lite accumulation pattern and vice versa, metabolomics approaches could also be considered indispensable for the

understanding of the whole mechanism of sulfur (Hirai & Saito, 2004). The physiological responses of phosphorus

homeostasis were also evaluated by the shoot ionome of plants grown under different P conditions, and the results

showed that multivariable ionomics signatures are associated with mineral nutrient homeostasis (Baxter et al., 2008).

Although barely comparable, cadmium (Cd), one of the impurities of phosphatic fertilizers and one of the contaminants

in soils, affects the physiological condition of plants (Koeppe, 1977), and metabolomics contributed to understanding

the consequences of exposure of plants to cadmium (Cd) (Bailey, Oven, Holmes, Nicholson, & Zenk, 2003).

In 1904 Lorenz Hiltner was the first agronomist coining the term emphasizing the critical role of rhizosphere micro-

bial activities in the nutrition and health of plants and stating the nutrition of plants depends on the composition of the

soil flora in this soil system (Hartmann, Rothballer, Schmid, & Hiltner, 2008). The rhizosphere is the volume of soil

influenced by the root and the root tissues colonized by microorganisms which react to the metabolites released by plant

roots, and these interactions influence plants growth and development, change nutrient dynamics, and alter plants’ sus-

ceptibility to diseases and abiotic stresses (Barea, Pozo, Azcón, & Azcón-Aguilar, 2005; Linderman, 1988; Lynch,

1987; Morgan & Whipps, 2001; Morgan, Bending, & White, 2005; Pinton, Varanini, & Nannipieri, 2001; Smith, 2002).

The perpetual functioning of the rhizosphere ecosystem is crucial for soil sustainability and productivity, and under-

standing the processes occurring in this ecosystem is a key element in soils management practices and enable better

decision-making for sustainability concept (Schloss & Handelsman, 2003; Van Elsas, Wellington, & Trevors, 1997).

Consequently, these interactions have considerable potential for metabolomics exploration, however, identification,
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quantification, and measurement of the processes occurring in the rhizosphere are often difficult or tedious (Barea

et al., 2005; Johnson, Ijdo, Genney, Anderson, & Alexander, 2005).

8.4.3 Metabolomics for crops production

With the increasing world populations and more people moving from rural to urban areas, food production and food

security are becoming a task in reducing hunger, and malnutrition, and the consequences of climate change will make

this task even more difficult than it is today particularly in some regions of the world such as Africa and some Asian

countries. From the end of the 20th century, much efforts and new approaches have been put into plant breeding to

increase crops productivity and yield, and enhance the resistance of crops to pests and diseases that cause heavy damage

and losses during cropping, harvesting, handling, transportation, and storage. With the development of new analytical

techniques and technologies, these approaches began to change in the early 1960s with the discovery of new varieties

(Bailey et al., 2003; Baldridge et al., 1998; Barea et al., 2005; Baxter et al., 2008; Benkeblia, 2012; Bohlool et al.,

1992; Borejsza-Wysocki et al., 1997; Brady, 1990; Broyer & P Stout, 1959; Budzinski et al., 2019; Bueno & Lopes,

2020; Cakmak, 2002; Charlton et al., 2008; Cheng, 2003; Chmielewska et al., 2016; Christ, Pluskal, Aubry, & Weng,

2018; Coyne et al., 2003; Das et al., 2017; Denman et al., 1995; Dennis et al., 2000; di Toppi & Gabbrielli, 1999; Dita

et al., 2006; Garza et al., 1996; Giovannoni, 2004; Glass & Perley, 1980; Goufo et al., 2017; Gundaraniya et al., 2020;

Hartmann et al., 2008; He & Dixon, 2000; Hell, 1997; Hepler, 2005; Hirai & Saito, 2004; Hirai et al., 2004; Hong

et al., 2020; Jahangir et al., 2009; Johnson et al., 2005; Koeppe, 1977; Kolkman & Kelly, 2003; Laanbroek, 1990;

Leustek et al., 2000; Li et al., 2001, 2019; Linderman, 1988; Loneragan, 1997; Lozovaya et al., 2004; Lynch, 1987; Ma

et al., 2016; Marschner, 1995; Martinoi et al., 2007; Matsumoto, 2000; McDonald & Dean, 1996; McLaughlin &

Wimmer, 1999; Meharg, 2004; Mibei et al., 2018; Michaletti et al., 2018; Mithofer et al., 2002; Morgan & Whipps,

2001; Morgan et al., 2005; Mulder, 1950; Navas-Cortés et al., 2000; Nene & Reddy, 1987; Newbould, 1989; Nriagu &

Pacyna, 1988; Peoples et al., 1995; Pinton et al., 2001; Plieth, 2005; Prasad & Power, 1997; Rengel & Robinson, 1989;

Rochfort, 2005; Roessner et al., 2006; Romero-Andreas et al., 1986; Rubiales et al., 2002; Sánchez-Martı́n et al., 2015;

Saunders & O’Neill, 2004; Schloss & Handelsman, 2003; Schmidt & Jäger, 1992; Shanker et al., 2014; Shao et al.,

2007, 2008; Sharma & Lavanya, 2002; Shimada et al., 2000; Smith, 2002; Sparks, 1987; Tan et al., 1991; Tisdale et al.,

1985; Urano et al., 2010; Vance & Graham, 1994; Vance, 1996, 1997; Van Elsas et al., 1997; Vı́lchez et al., 2018;

Wang, Hwang et al., 2003; Wang, Okamoto et al., 2003; Warkentin et al., 1996; White & Broadley, 2001; Wu &

VanEtten, 2004; Yang et al., 2018; Yoshida et al., 1997; You et al., 2019). Indeed, the modern crop science production

aims to broaden our still limited knowledge on one hand, how genes can be “shaped” and consequently affect enzymes

and metabolites, and on the other hand, gene�enzyme�metabolite interactions and how their effects lead to “new”

crops possessing desirable agronomic, physiological, biochemical, and nutritional features. Indeed, the “road is still

long ahead” and the problem huge; however, metabolomics, and more generally omics technologies, are giving us hope

and researchers have started piecing together interesting clues (Alawiye and Babalola, 2021). These modern technolo-

gies led to give new insights into the mysteries of genes expression and function, metabolism and metabolic pathways,

and, more broadly, genetic diversity within and between plants, their responses to biotic and abiotic stresses, and their

limits in genetic modifications (Benkeblia, 2011). The achievements of these technologies have resulted in the genera-

tion of new research areas devoted to “looking from inside the smaller” rather than looking from the outside (Powell,

2007; Rezzi, Ramadan, Fay, & Kochhar, 2007; Rezzi, Ramadan, Martin et al., 2007; Rist, Wenzel, & Daniel, 2006;

Subbiah, 2006; Trujillo, Davis, & Milner, 2006). On the other hand, consequently to these new emerging methodolo-

gies, new possibilities are still arising to account for tailored food production methods to increase yield and productivity

of crops under adverse conditions. Therefore the good examples of the application of metabolomics are to combine it

with molecular biology, chemistry, agriculture, and food science to develop transgenic or GM crops (Chen & Lin,

2013; Engel, Frenzel, & Miller, 2002; Herrera-Estrella, 2000; McGloughlin, 2010; Phillips, 2008; Ruth, 2003; Schilter

& Constable, 2002). Besides these goals, metabolomics has also shown a great importance in the analysis of genetic

variation and traceability of crops, fruit development, maturation, and ripening and also in elucidating the response and

resilience of crops to the environment and stresses (Sousa Silva, Cordeiro, Roessner, & Figueiredo, 2019).

8.4.4 Metabolomics for crops quality

The food qualities and nutritional points of sustainable agriculture falls include content and quality of macronutrients

such as starch, protein, oil, and micronutrients (Mazur, Krebbers, & Tingey, 1999) and metabolomics could be consid-

ered as one of the foundations of sustainable agriculture and environment care (Campbell, Brunner, Jones, & Strauss,
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2003; Fernie & Schauer, 2009; Mazur et al., 1999; Somerville & Somerville, 1999). Metabolomics, combined with

other omics technologies, were used to enhance contents of essential and nonessential macronutrients and micronutri-

ents, such as vitamins (e.g., A, C, E, folate), minerals (e.g., iron and zinc), and proteins (Beyer et al., 2002; Oresic,

2009; Potrykus, 2001; Wu, Chen, & Folk, 2003; Zarate, 2010), while vitamin pathways have been designed for the syn-

thesis of many other “nonessential” compounds and macronutrients (DellaPena, 1999, 2001). Microbiology, both food

and general, is also profiting from metabolomics to study microbial metabolism which is of special interest concerning

human and animal health (Grivet, Delort, & Portais, 2003). Microbial metabolome also includes applications in basic

studies of foodborne pathogens and foods metabolism resulting from its microbial ecology such as cheeses ripening

(Rager, Binet, Ionescu, & Bouvet, 2000).

More recently, because foods or ingredients derived from GM crops were perceived disparagingly by consumers

because of concerns about unintended effects on human health (Frewer et al., 2004), risk assessment of potential

adverse effects on humans and the environment became a necessity since these changes are connected to changes in

metabolite levels in plants. Thus, metabolomics is offering a good tool for comparing conventional cultivars to those

genetically modified (Risher & Oksman-Caldentey, 2006). For example, Catchpole et al. (2005) reported that the appli-

cation of metabolomics methodology has been shown to be useful for the investigation of compositional similarity in

GM potatoes.

8.4.5 Metabolomics and postharvest crops science

Senescence is a natural process affecting fresh crops (Sacher, 1973), and metabolomics has been recently used to investi-

gate this process. To have a good insight into the metabolic mechanisms involved in fruit senescence, Yun et al. (2016)

compared the metabolic pattern of litchi pericarp and their findings showed that senescence is mainly resulting from an

oxidative process induced by abscisic acid including lipids, polyphenols, and anthocyanins oxidation. On the other hand,

genomics studies showed that gene expression resulting from crop�diseases interactions, physiological disorders, biotic

and abiotic stresses, or other inducing phenomena during the postharvest life of fresh commodities trigger the formation of

hundreds of different metabolites (Ding et al., 2015; Pech, Purgatto, Girardi, Rombaldi, & Latché, 2013). Some of these

metabolites are elicited during specific stresses and involved in accelerating undesirable disorders such as chilling injury

(CI) and browning and senescence, while other elicited compounds enhance the resistance of commodities to stresses.

Thus, metabolomics profiling is a good tool to identify the elicited marker metabolites resulting from different reactions,

leading to the development of optimal conditions of handling, minimally processing, and storage of fresh crops by either

diverting the metabolism toward desirable pathways or decelerating the production of undesirable metabolites (Fig. 8.3)

(Benkeblia, 2012; Hertog et al., 2011). By integrating metabolomics and storage technologies, this knowledge will be

facilitated, and further information will be available on the responses of fresh crops during the postharvest life from har-

vesting to the table (Fig. 8.4). Climacteric fruits are the most perishable commodities and ripen after harvesting and this

physiological process triggered by ethylene burst leads to the modification of color, firmness, texture, aroma, and nutri-

tional quality attributes of crops (Barry & Giovannoni, 2007; Bleecker & Kende, 2000; Giovannoni, 2004). Postharvest

metabolic changes in fresh crops have been extensively reported, but limited literature is available on metabolite profiles.

Interestingly, mannose, citrate, malate, gluconate, and keto-L-gluconate were identified as ripening marker metabolites of

tomato (Oms-Oliub et al., 2011). In avocado, the profiled metabolome showed a correlation between amino acids and dif-

ferential accumulation of linoleic acid during its ripening (Pedreschi et al., 2014). Similarly, among the 46 identified meta-

bolites in sapodilla (Manilkara zapota), 20 showed significant differences during the ripening process (Das & De, 2015),

and in capsicum (Capsicum annuum) carbohydrates pool and their derivatives significantly changed during the ripening

(Aizat et al., 2014). In another study, untargeted metabolome profile of kiwi fruit showed an increase of mono-, di-, and

tri-saccharides during ripening and a decrease in organic acids with loss of neutral pectic side chains (Mack et al., 2017).

Metabolomics studies also targeted specific metabolites as ripening markers and showed the role of malate in the metabo-

lism of starch during ripening and softening of tomato fruit (Centeno et al., 2011), and an increase of succinate,

γ-aminobutyric acid, and glutamine and a decrease of 2-oxoglutarate in stored citrus (Sun et al., 2013).

Harvested fresh crops are subject to numerous disorders, and biochemical studies have shown their limit in under-

standing the processes inducing these undesirable changes which deteriorate the organoleptic and visual quality attri-

butes of commodities. So far, CI is the most important physiological disorder affecting particularly tropical fruits.

Arabinose, fructose-6-phosphate, valine, and shikimic acid levels were associated with CI tolerance of tomato

(Luengwilai, Saltveit, & Beckles, 2012), and the profiled organic volatiles were also used as potential markers of CI in

fresh crops. In another study, a positive correlation was also noted between volatiles emission and CI of basil leaves

during storage (Cozzolino et al., 2016).
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Other disorders such as superficial scald, braeburn, and mechanical damages might affect commodities during their

postharvest life. Superficial scald is a disorder affecting stored pome fruits (Jackman, Yada, Marangoni, Parkin, &

Stanley, 1988) and is often associated with CI (Hariyadi & Parkin, 1991; Imahori, Takemura, & Bai, 2008; Sala, 1998)

and oxidative stresses. An increase of galactose, mannitol, sorbitol, xylose, and alanine and a decrease of malate and

sucrose were noted in apples affected by superficial scald (Hatoum, Annaratone, Hertog, Geeraerd, & Nicolai, 2014).

The symptoms of this disorder in apples were also predicted using metabolomics profiling of volatiles, and 6-methyl-5-

hepten-2-one, and 6-methyl-5-hepten-2-ol products known to be associated with superficial scald and resulting from of

α-farnesene, were identified (Rudell, Mattheis, & Hertog, 2009). A similar approach was used to assess the progression

of this disorder and three specific volatiles particularly 6-methyl-5-hepten-2-one (MHO) were identified and associated

with the symptomatic development of this disorder (Farneti et al., 2015). Furthermore, primary metabolites were pro-

filed after a mechanical impact and results showed noticeable changes in tricarboxylic acid cycle intermediates in potato

tuber tissue (Strehmel et al., 2010), and linoleic acid and pentadecanoic acid in mushrooms (O’Gorman, Barry-Ryan, &

Frias, 2012), while in cassava higher levels of phenolic acids, scopoletin, carotenoids, and proteins have been identified

in physiologically deteriorated tubers (Uarrota & Maraschin, 2015).

Normal 
Metabolism

Senescence
Metabolism

Freshness 
Sustaining

Metabolism
Classic PHT 
Technologies

FIGURE 8.3 The senescence metabolism pathway during the postharvest life and the

potential roles of metabolomics in extending the shelf-life of fresh crops.
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FIGURE 8.4 The role of metabolomics in the develop-

ment of postharvest technologies to extend the shelf-life of

fresh crops.
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Fresh commodities are also very susceptible to diseases during their handling and storage due to their high moisture

and nutrients. Decay and spoilage of fresh crops are observed when symptoms are visible; however, metabolomics

approach has been used in an attempt to predict earlier pathogens growth and spoilage (Pinu, 2016), and this approach

is based either on host- and pathogen-specific metabolites or the abundance of metabolites (Kushalappa, Vikram, &

Raghavan, 2008). In an interesting work, Li, Schmidt, and Gitaitis (2011) profiled volatile organic compounds and

interestingly 16 volatiles related to the postharvest spoilage of onion bulb by Botrytis allii and Burkholderia cepacia

were identified as biomarkers of spoilage.

8.5 Conclusions and future perspectives

At the turn of the 21st century, incommensurate progress is being made in the field of metabolomics, and more gener-

ally omics technologies, to increase crops production and their resilience to adverse conditions particularly under the

changing climate. However, work to date represents a few pieces of the big puzzle in the estimation of an enormous

number of species, genomes, and the complex and changing metabolic pathways. Despite the early struggle to under-

stand and elucidate the complex metabolome, metabolomics seems to suit well to tackle many questions. Using metabo-

lomics, many questions are nowadays being answered regarding the metabolome and the functional capabilities of

crops and soils, and the alterations in the metabolic profile in response to abiotic and biotic stresses. Because metabolo-

mics become integrative sciences that simultaneously adopt the tools of diverse scientific disciplines and impact diverse

scientific areas, the generated data will likely accelerate the discovery of the amazing diversity of the micro-life and

give new insights into crops functions, fill the gaps between the discoveries on the “microworld” which are much less

compared to those on the “macroworld” because the two are indissociable and each one depends on the other.

Of course, metabolomics is facing many challenges which are diverse and complex. The first challenge is the identi-

fication of the crops’ response to abiotic and biotic stresses and identifies the molecular markers of these stresses espe-

cially in the field of drought and diseases because this identification will be of great help in developing more resistant

and/or resilient varieties. The second challenge is the identification and quantification of the huge number of metabo-

lites of crops, and plants in general. Knowing that some metabolites are found at very low concentrations or have a

very short biological life, the analytical techniques should be improved to identify a wider range of metabolites and

quantify lower concentrations. This can be achieved by improving the sensitivity and the detection capacity of the ana-

lytical techniques which are continuously developed and improved to solve these problems.

Finally, sustainable agriculture does not aim to create new agroecosystems, but it targets preserving the environment

and its different systems including the biodiversity, lands, and water. To be simplistic, it is necessary to meet the needs

of the present without compromising the needs of the future. Because we cannot remake the world and the pressure on

our crop production systems is very high, the wisdom and science recommend to urgently embrace sustainable agricul-

ture to avoid at least unraveling our world.
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Chapter 9

Plant metabolomics: a new era in the
advancement of agricultural research
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Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India

9.1 An introduction to metabolomics

The processes that occur during the life cycle include synthesis and breakdown of major biological molecules such as

proteins, nucleic acids, and carbohydrates, termed metabolism. Metabolomics can capture the various biochemical,

nutritional, and toxicological features of an organism by taking into consideration the metabolite composition which

has a close relationship to the organism’s phenotype. Thus metabolomics serves as an important aid for the investiga-

tion of metabolic composition of the crops that are genetically modified (GM) (Li et al., 2018).

The exploitation of modern metabolomic platforms can explore the regulatory networks and explain the complex

biological pathways that are involved in the control of crop growth and development.

Metabolomics is an ultimate tool to understand the complex nature of biological systems. Metabolites in such sys-

tems, having molecular weight less than 1500 Da (sometimes 30�3000 Da) can be both identified and quantified

(Dunn, Bailey, & Johnson, 2005). Metabolome refers to the group of tiny molecules present in the cell of an organism

and consists of various molecules such as amino acids, peptides, carbohydrates, nucleic acids, vitamins, organic acids,

flavonoids, alkaloids, polyphenols, or any other compound that is synthesized or metabolized by a cell. Metabolites are

essential because they play an important part in the behavior of the individual containing them. Since these products

serve as the final products of the regulatory processes of the cell, they are responsible for the responses produced by the

biological systems to genetic changes. Due to this, metabolomics is taken as a link between phenotype and genotype

(Fiehn, 2002).

The basic idea of metabolomics is to deal with the genetic improvement of crops based on their chemical composi-

tion, which may be nutritional or functional aspect, or the activity of chemical compounds in providing resistance to

certain plant species. Metabolites are vital components of plant metabolism due to their effect on plant architecture and

their biomass. Subsequently, metabolomics has become one of the major breakthroughs in science, flooring a way of

accuracy for metabolite profiling in various organisms.

Metabolomics depicts the physiological state of a cell as well as helps to solve the gene’s function by depicting the

various layers of genes involved in the regulation and interception of metabolic pathways. An integrated approach with

various omics studies has allowed the researchers to improve the important traits in crop species by exploring the regu-

latory steps associated with them such as epigenetic regulation, posttranscriptional, and posttranslational modifications

(Parry & Hawkesford, 2012). Metabolomics possesses the potential to select superior traits and improve the breeding

materials by utilizing the available whole genome sequence and genome-wide genetic variants by effectively integrating

metabolomics in crop breeding programs. There are several methods and tools in metabolomics that are employed for

substantial improvement of crops such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy

(Farag, 2014). These tools and techniques allow large-scale metabolite surveys that result in a considerable amount of

data, supporting in plant improvement schemes.

Nevertheless, the integration of metabolic analysis with various omics data to understand plant development still

remains as a major challenge, as the relationship between these omics is complex in nature. Yet plant metabolomics has

developed itself as a powerful tool to explore the various aspects of plant physiology and biology, which ultimately
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enhance the knowledge of the metabolic and molecular regulatory mechanisms that regulate plant growth, development,

stress responses, and the improvement of crop productivity and quality (Schauer & Fernie, 2006).

9.2 Significance of metabolomics in plant biotechnology

Since the mid-1990s, metabolomics has been recognized in the field of plant biology as several studies were reported

for gene identification. Arabidopsis thaliana is a model plant as it has been the foremost thoroughly researched due to

the availability of its extensive resources for studying functional genomics (Benfey et al., 2007).

Metabolomics is counted as one of the most emerging and interesting approaches of omics tools for crop improve-

ment as it decrypts abiotic stress tolerance in plants. Both biotic and abiotic stresses play a significant role in the reduc-

tion of crop yield (Atkinson & Urwin, 2012) (Fig. 9.1). Although plants have a similar mechanism to respond to both

the types of stresses, yet these stresses produce different variations in plants’ physiological as well as biochemical

processes.

To impart stress resistance, the plant synthesizes phytohormones at the emergence of abiotic stress. The oxidative

stress brings a disturbance in the stomatal conductance of the plant and activates several signaling mechanisms

(Robinson, Heath, & Mansfield, 1998). Thus, in a particular plant species, the specific phenomenon of gene expression

profile depicts the precise and overall composition of metabolites. As a result, due to the activation of a particular meta-

bolic network, a unique bioactive agent is synthesized (Jamil, Riaz, Ashraf, & Foolad, 2011).

There has been tremendous progress in recent years in the field of metabolomics. However, some bottlenecks got to

be particularly addressed to take advantage of metabolomics to its full potential. Once these bottlenecks are removed,

new platforms could be explored for crop improvement, which will ultimately guarantee global food security (De

Filippis, 2018). As of now, the metabolomic analytical tools are still lacking to detect all the metabolites in sample tis-

sues. This drawback is due to the direct association with the cell’s biological modification and complex chemical nature

of metabolites in the plant metabolome. To identify the major pitfalls in metabolomics research and to understand

appropriately the whole metabolome profile, technical bottlenecks and biological bottlenecks are used for broad range

coverage and to draw efficient knowledge (Allwood, Vos, et al., 2011). It is nearly hard to spot the metabolites using

the current analytical techniques due to the wide range and diverse chemical composition. To bring precision for a

whole metabolite coverage, there has been an advancement in analytical instruments, such as improved NMR. This

FIGURE 9.1 Diagrammatic representation of biotic/abiotic stress in plants. The causative agents of biotic stress are commonly the living organisms

such as insects, microorganisms, bacteria, fungi, viruses that directly derive their nutrients from the host and can lead to death of plants. Abiotic stres-

ses severely affect all essential mechanisms in plants from germination to maturity.
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coverage is predicted to improve progressively with the advancement of technology. Still, the major problem in metabo-

lomics lies in the identification and interpretation of a huge number of unexplored plant metabolites (Monteiro,

Carvalho, Bastos, & Guedes de Pinho, 2013). Thus it is expected that while designing the advanced tools to beat these

hurdles, more sophisticated approaches will be used to explore the accurate features of any metabolite and elucidate its

biological function.

9.3 Technologies involved in metabolomics improvement

There has been an advancement in analytical techniques such as MS and NMR spectroscopy with bioinformatics, to study

metabolomics. To tackle abiotic/biotic stress in plants, metabolomics tools have been integrated with other omics-based

tools such as genomics, proteomics, and transcriptomics (Fukushima, Kusano, Redestig, Arita, & Saito, 2009) (Fig. 9.2).

Two important techniques of modern metabolomics platforms, NMR and MS, involve the generation of metabolome

data. The NMR-based metabolite detection depends upon the utilization of magnetic properties of nuclei of atoms under

the magnetic field. It is a nondestructive method and is extensively used to identify metabolites having lower molecular

weight protein. It reveals the structures of protein�ligand complexes and helps in direct binding of the target protein by

retaining its use over MS. The GC (gas chromatography)�MS platform is extensively used for nontargeted analysis

(Zhang, Sun, Wang, Han, & Wang, 2012). GC�MS approach includes derivatives of samples and then makes the com-

pounds volatile; due to which the underivative compounds (except hydrocarbon) remain unnoticed during analysis.

There has been an improvement in the separation of coeluting peaks (deconvoluted peak) with the introduction of GC

X GC�TOF (time-of-flight)�MS, which enhances higher sample throughput. Liquid chromatography (LC)�MS usu-

ally uses electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) and it has been widely

used for both targeted and nontargeted approaches to detect primary and secondary metabolites of higher mass, that is,

the exhaustive dataset that are generated from abovementioned high-throughput tools are processed through data proces-

sing platforms such as MET-COFEA, Met-XAlign, and ChromaTOF. This includes alignment, baseline correction, sep-

aration of coeluting peaks, normalization of data before the identification of compounds (Kim, Ouyang, Jeong, Shen, &

Zhang, 2014). For the identification of metabolites, there are many metabolome databases such as NIST, METLIN, and

GOLM. The identified metabolites are then further subjected to statistical analyses such as principal component analysis

(PCA), K-means clustering, correlation map, heat map, boxplot, and reconstructing metabolic pathways, by using tools

and software such as Cytoscape, MetaboAnalyst, and statistical analysis tool (Chong et al., 2018; Shannon et al., 2003).

These analyses are used to identify and monitor the metabolic markers related with varied agronomic traits.

Depending on the chemical nature of the compounds, technologies such as NMR, GC, and high-performance LC

(HPLC) coupled with MS, as well as capillary electrophoresis (CE) coupled with MS are used in metabolomics (Sato,

Soga, Nishioka, & Tomita, 2004). The application of NMR adapted in agriculture can be seen in quality control, analysis

of GM plants, chemotaxonomy (classification and characterization), besides the study of diseases in humans. The main

FIGURE 9.2 Flowchart of various steps technologies used in the improvement of plant metabolomics starting from sample preparation with its col-

lection, processing, storage to data acquisition with MS-/NMR-based techniques, data analysis for compound identification and biochemical interpreta-

tion. MS, Mass spectrometry; NMR, nuclear magnetic resonance.
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advantages of the NMR as compared to the rest of the analytical techniques are that it can detect a vast range of chemical

compounds of distinct nature, identification of metabolite is simple, quantification does not pose any issue and it is highly

reproducible. In addition to this, the most important point is that this method is quick and simple and does minimal dam-

age to the existing compounds during the preparation of the extracts (Serkova & Niemann, 2006). However, there is less

sensitivity to this technique. NMR is one of the major applications of chemotaxonomy because it is possible to classify

and identify plants and their derived preparations through the obtained metabolomics profiles. Examples of the application

of NMR in chemotaxonomy are the classification of Cannabis sativa, Ilex species, Ephedra, commercial samples of

Catuaba, and discrimination of commercial preparations of Matricaria.

Despite the technological advancements, it is practically not possible to determine the overall composition of a sin-

gle cell with a single analytical technique. To do this, coupled techniques are used, such as HPLC and GC coupled with

MS (Lopes, Santa Cruz, Sussulini, & Klassen, 2017; Vaclavik, Lacina, Hajslova, & Zweigenbaum, 2011). These analy-

ses are done by using analytical techniques involved in separation, identification, and quantification. These techniques

must have high resolution, high accuracy, and very sensitive and be able to analyze a wide range of compounds of vari-

ous chemical natures and origins. Such specifications are required because the structural complexity of many molecules

makes their study difficult.

Currently, we have various analytical techniques that are developing at a fast pace to obtain reliable data about the

behavior of a plant species or its response to the diverse climatic factors. Improvements in a wide range of applications

for genetic studies can be seen during the last years. The qualitative and quantitative analysis of metabolites is an

important aspect of the metabolomic study as it reveals the biochemical state of an organism (Oldiges et al., 2007).

This information can then be used to identify and evaluate the function of the gene and the various responses of the

organism in the conditions where it develops.

9.4 Metabolomics databases

The rapid development of metabolomic databases has been an aid in the metabolite annotation. Computational infor-

matics has become a prior requirement of metabolomic experiments. Different online web-based programs have been

designed during the last few years to aid metabolomics in data assessment, data mining, data processing, and data inter-

pretation (Sugimoto, Kawakami, Robert, Soga, & Tomita, 2012) (Table 9.1). The removal of accurate and monetary

assessable platforms has gigantically facilitated the design and maintenance of web tools that can be utilized by many

researchers with little bioinformatics knowledge and limited computational facilities.

wHowever, the Internet poses substantial drawbacks while handling the huge raw datasets frequently. An online

bioinformatics tool called XCMS allows the uploading of raw data directly and guides the user in statistical analysis

and data processing (Tautenhahn, Patti, Rinehart, & Siuzdak, 2012). But XCMS servers fail to deal with the huge

data files due to limited space. Recently, the establishment of a XCMS stream for programmed data transfer in

LC�MS experiments is done which reduces the data processing time and enhances the efficacy of an online system

(Montenegro-Burke et al., 2017). It also helps to detect mutative substances through MS tools by applying the

METLIN database (Guijas et al., 2018). To carry out statistical investigation and metabolite detection through the MS/

MS database and formula predictor, R-scripts are programmed in-house to get output comprising characteristics in the

formation via the XCMS package. Another online database called METLIN is applied in numerous studies related to

stress response metabolic profiling in plants. It helps in the metabolic profiling of specific metabolites and allows

immediate retrieval of LC/MS, MS/MS, and Fourier transform mass spectrometry (FTMS) analysis outcomes by per-

mitting its operator to put a query in the database through a programmed framework. Another web-based tool known

as MetaGeneAlyse is used for the implementation of the regular clustering technique like K-means and independent

component analysis. There has been an efficient modification of MetaboAnalyst, by integrating several tools such as

MSEA and MetPA. A significant web-based tool called MeltDB has been employed for assessing data, processing

them, and then carrying out statistical analysis in plant metabolomics (Neuweger et al., 2008). There are several other

databases which do not require any local installation and are operated by windows GUIs (graphical user interfaces)

that are iMet-Q, MetAlign, and MS-Dial. MZedDB and KEGG have been extensively used to study the metabolome

with a species-specific origin or species-nonspecific origin. A new tool has been developed recently called Galaxy-M,

for examining the untargeted metabolites using LC�MS techniques. Meta box is another online server that possesses

various uses in the elucidation of omics data. Two extensively used omics-based web tools that are used to perform

univariate and multivariate statistical analysis, interpretation of gene expression data, and visualization of metabolo-

mics data are GenePattern and Babelomics. As a result, an integrated analysis of the Arabidopsis metabolome, based

on the AtMetExpress database, and Arabidopsis transcriptome, based on the AtGenExpress database, has allowed a
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TABLE 9.1 Various tools used for data analysis in plant metabolomics that provides an invaluable help for researchers

to understand the biological mechanisms responsible for the variance in the experimental metabolomic profiles.

S.no Function Tools Weblinks

1 Data processing MeltDB 2.0 https://meltdb.cebitec.uni-bielefeld.de/cgi-bin/login.cgi

MetAlign www.metalign.nl

MET-COFEA http://bioinfo.noble.org/manuscript-support/met-cofea/

iMet-Q http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html

XCMS http://bioconductor.org/packages/release/bioc/html/xcms.html

MAVEN https://maven.apache.org/

MZmine2 http://mzmine.github.io/

MS-Dial http://prime.psc.riken.jp/compms/msdial/main.html

MaxQuant https://www.maxquant.org/

2 Data annotation MetaboSearch http://omics.georgetown.edu/metabosearch.html

MetiTree http://www.metitree.nl/

Metacrop 2.0 http://metacrop.ipk-gatersleben.de/apex/f?p5269:111

MetAssign http://mzmatch.sourceforge.net/

MZedDB http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html

MaxQuant https://www.maxquant.org/

3 Data analysis metaP-server http://metap.helmholtz-muenchen.de/metap2/

4 Statistical analysis MetaboAnalyst https://www.metaboanalyst.ca/

MetAlign www.metalign.nl

Babelomics 5.0 http://babelomics.bioinfo.cipf.es/

COVAIN http://www.univie.ac.at/mosys/software.html

GenePattern https://www.genepattern.org/

Cytoscape https://cytoscape.org/

MetaScape https://metascape.org/gp/index.html#/main/step1

5 Workflow analysis Galaxy-M https://github.com/Viant-Metabolomics/Galaxy-M

Metabox http://kwanjeeraw.github.io/metabox/

6 Pathway analysis MetExplore https://metexplore.toulouse.inrae.fr/index.html/

MetPA https://www.metaboanalyst.ca/

Mummichog https://shuzhao-li.github.io/mummichog.org/

7 Metabolite annotation METLIN http://metlin.scripps.edu

MetFrag https://ipb-halle.github.io/MetFrag/

MassBank https://massbank.eu/MassBank/Search

MarVis http://marvis.gobics.de/

MMCD http://mmcd.nmrfam.wisc.edu/

8 Metabolite identification CFM-ID https://cfmid.wishartlab.com/

9 Metabolite data analysis MetaGeneAlyse https://metagenealyse.mpimp-golm.mpg.de/
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holistic correlation between metabolite accumulation and gene expression, thus allowing the identification of related

metabolites and genes. These research strategies that are developed in Arabidopsis form the basic structure for the

metabolomic investigation in crops.

9.5 Metabolite profiling, identification, and quantification

The terms metabolomics, metabolic, or metabolite profiling are alternatively used to explain three kinds of approaches

like targeted metabolomics, semitargeted metabolomics, and untargeted metabolomics (Razzaq, Sadia, Raza, Hameed,

& Saleem, 2019). There are certain factors involved as a prerequisite of efficient metabolic profiling like methods for

sample preparation, the accuracy of the experiment, quantification and detection of metabolites, and evaluation of spe-

cific targets, whereas for an untargeted approach, it is necessary to detect the structural and chemical composition of

metabolites while performing targeted and semitargeted studies. This enables the evaluation of the chemical nature of

metabolites before data procurement.

With the advancement of technology, metabolite profiling is growing at a very fast rate and has become useful for

phenotyping as well as diagnostic analyses of plants (Kopka, Fernie, Weckwerth, Gibon, & Stitt, 2004). It has become

a key tool in understanding the cellular response to biological conditions. The aim of improving the compositional qual-

ity of crops has always been achieved by metabolomics approaches as they are used to assess the natural variance in

metabolite content between specific plants. Metabolite profiling has a huge contribution in various areas.

Metabolomics is species independent, that is, it can be used for a wide variety of species and comparatively requires

very little time for reoptimizing protocols for a new species. Earlier metabolite profiling made use of metabolite compo-

sition as a diagnostic tool to establish the equivalence of GM and conventional crops, the metabolic response to herbi-

cide, and the classification of plant genotypes. Recently, it is being abundantly employed in describing the response of

plants to a wide range of biotic or abiotic stresses (Piasecka, Kachlicki, & Stobiecki, 2019). Metabolite profiling is also

extensively used in deciphering gene function, investigating the metabolic regulation and analyzing the systemic

response to environmental or genetic perturbations. According to a recently published report in this area, it is seen that

the combination of metabolite profiling and marker-assisted selection proves extremely informative in a better under-

standing of the chemical composition of crop species.

One of the major challenges in metabolomics is the identification of metabolites. It becomes difficult to identify the

chemical and physical diversities of metabolites based on MS data. Currently, in untargeted metabolomics analysis, the

identification of metabolite is majorly done by a mass-based search which is followed by manual verification. The first

step is to search the m/z value of a molecular ion of interest against a database. Then there is retrieval of the metabo-

lites bearing molecular weights within a specified tolerance range to the query m/z value from the databases as putative

identifications. The actual compounds of these putative identifications are exposed to a tandem MS (MS/MS) experi-

ment along with the sample (Wang et al., 2017) (Fig. 9.3). Through the comparisons made in sample between the MS/

MS spectra and retention times of the authentic compounds with the molecules of interest, the identity of the molecules

is confirmed. Due to the existence of isomers and the restricted accuracy of mass spectrometers, putative identifications

from mass-based searches are rarely unique. At times, a certain molecule ion can have more than 100 putative identifi-

cations, thus making the manual verification expensive and difficult. Therefore this method is only intended for a lim-

ited number of molecules. A computational framework is rather suggested to improve the productivity of metabolite

identification for an enormous number of metabolites as it can decrease the number of putative identifications and prior-

itize them.

Quantitation of metabolites is one of the aims in metabolomics for the evaluation of changes occurring in response

to disease, treatment, environmental, and genetic disturbances. The use of QqQ-based LC�SRM (selected reaction

monitoring)�MS/MS has turned out to be of absolute choice for targeted metabolomics studies (Xiao, Zhou, &

Ressom, 2012). Due to the diverse chemical properties of metabolites and the magnitude difference in their concentra-

tion, it becomes one of the greatest challenges in such studies. So, it is nearly impossible to quantify all the metabolites

at once on any platform. However, metabolite quantitation is facilitated by coupling LC to MS, yet there is no single

LC method that may prove to be ideal for the separation of all classes of metabolites. Thus to detect a wider range of

metabolites from different biological samples, many efforts are being made to improve LC-separation capacity.

9.6 Metabolic engineering in plants

The framework analysis of networks for metabolite accumulation or gene expression has increased the understanding of

cellular processes and response of cells to biological perturbations (Ideker et al., 2001).
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Rice is an important cereal grain across worldwide by providing nutrients for both humans and animals, is found to

encode B32,000 genes in its genome. Yet the biological functions of more than half of these genes are still unknown.

The basic approach used to identify the novel genes in rice was gain- and loss-of-function approaches. To investigate

the direct relationships among metabolic composition, genotypes, and phenotypes for agronomical traits, association

analyses with the genetic core collections and segregating populations were employed. There is a varied usage of plant

species that are destined for agriculture, ranging from traditional foods to those possessing nutritional value, desirable

traits, and the different industrial products produced from them such as fibers, polymers, packaging materials, basic

chemical building blocks, and fuels (Sanderson et al., 2004). The basic aim of metabolomics tools in agriculture is to

identify the biochemistry and the functions of the species involved to use that knowledge for food and environmental

security as well as to utilize their potential in the improvement of nutrition, health and diets, to use them in plants for

genetic improvement by considering some of their remarkable characteristics. Due to the continuous rise of population

centers, there is a rapid increase in food demand which in turn is increasing the demand for productivity and diversity

of basic crops. Trials and studies of genetic improvement of crops are being conducted currently to increase the quantity

and quality of yield by avoiding damages caused by pests and by developing resistance to several factors, especially

environmental ones. The major crops involved in such trials are potato, rice, tomato, maize, etc.

The interaction between plant and pathogen is a unique feature in metabolomic engineering since plants are often

influenced by environmental factors (Bino et al., 2004). These factors make the plants to adapt and change parts of their

functioning such that they can protect themselves in most cases. One such interaction is the existence of plants with

microorganisms, which causes physiological and developmental changes in plants. An example is the interaction of

nitrogen-fixing bacteria with legumes. A visible change that occurs in plants during their interaction with a pathogen is

the production of various types of compounds that act as a type of defense repellents, attractants, feeding inhibitors or

the production of compounds that prove to be beneficial for human health. This provides an overview of the whole sys-

tem of the biochemical and physiological changes that occurs during the interaction. In a study conducted by the

researchers on plant�fungus interaction, in which MS using ESI was used to detect changes in the levels of lipids and

hormones, it was predicted that these molecules were involved in the interaction between Brachypodium distachyon and

Magnaporthe grisea (William Allwood, Ellis, Heald, Goodacre, & Mur, 2006). The main response of the plant to the

attack of the fungus was detected by a variation in the level of phospholipid. Both targeted and nontargeted studies can

be performed at the same time by using metabolomics, for example, the interaction between Lupinus angustifolius with

the fungus Colletotrichum lupini.
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(High Performance Liquid Chromatography)

CONFIRMATION OF METABOLITE 
IDENTIFICATION AND QUANTIFICATION

Fraction Collection
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METABOLITE TRACKING 
AND IDENTIFICATION

HPLC-HRMS

(High Performance Liquid Chromatography-

High Resolution Mass Spectrometry) and 

MS/MS
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FIGURE 9.3 Schematic representation of metabolite identification and quantification techniques to observe various metabolic activities of metabo-

lites containing a wide variety of physicochemical properties and to perform high-throughput analysis.
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By altering photosynthate levels the metabolic composition of fruit is significantly correlated with the fruit dimen-

sions, development, and weight. Gradually as the fruit develops, a substantial change of organic and sugars is seen that

determines the final quality of the ripe fruits. The development of fruits depends on the translocation of photoassimi-

lates of leaves than that of own photosynthesis products by acting as a sink. For example, the incubation of tomato plant

significantly reduces fruit size and shape in the dark due to the repression of cell cycle genes of fruit which severely

affects the cell number and cell (Gonzalez, Gévaudant, Hernould, Chevalier, & Mouras, 2007).

The evaluation of metabolite responses to stress has been geared up by the response of MS-based plant metabolo-

mics. For instance, the stress response hormone abscisic acid (ABA) signals shoot for antitranspiration activities like

stomatal closure during water deficit condition, reduction of leaf size, and facilitation of deeper root growth by chang-

ing the root architecture under a scarcity of water and nitrogen deficiency (Jackson, 1997).

Lack of vitamin A causes night blindness and in the long run, it might also lead to complete blindness. To reduce

the deficiency of vitamin A, β-carotene was targeted and used as provitamin A. The initiation of β-carotene as a supple-
ment of vitamin A was initiated by enrichment of rice endosperm to produce golden rice (Datta et al., 2007). This

approach includes the upregulation of carotenoid biosynthetic pathways in rice endosperm and transgene expression of

phytoene synthase and phytoene desaturase.

The increasing demand for biofuel demand burgeoning petroleum across worldwide has motivated the researchers in

metabolomics to explore renewable and alternative sources, such as biodiesel (Pandey, Venkata Mohan, Chang,

Hallenbeck, & Larroche, 2019). Currently a better understanding of biochemical pathways is being used to genetically

improve biodiesel crop species such as jatropha, pongamia, soybean, and mustard. The quality of the plant is deter-

mined by the composition of the oil. Jatropha curcas is being grown as an alternative source of energy as the oil con-

tent of its seeds is highly rich in polyunsaturated fatty acid mainly linoleic acid which harms the quality and is

vulnerable to oxidation. Seed oil as biodiesel has been extended to several plant species such as cotton, sunflower, and

mustard. Fermentation of sugars yielding alcohol such as ethanol and butanol also produces biofuels. As plants bear the

tendency of designing and producing multifarious chemical compounds that provide human beings as foods and medi-

cines, in plants associated with modern biotechnology will bring more benefits to mankind by effective engineering of

metabolic pathways.

9.7 Environmental and ecological metabolomics

The synthesis of a large number of metabolites under different environmental conditions is highly involved in plant

growth and development. Environmental metabolomics involves the characterization of the relationship of plants with

their environment. It deals with the definite assessment of metabolite levels under a particular plant environment to pin-

point the effects on plant transformation and any changes in their genetic architecture. The application of metabolomics

in the environmental sciences is in a high rise, such as understanding organismal reactions to abiotic stressors, including

factors such as temperature and pollution, understanding the biotic�biotic interactions such as infection and herbivory.

It also marks the development of biomarkers and risk assessment of toxicant exposure, as well as disease diagnosis and

monitoring. In a study conducted by Viant the application of metabolomics in the aquatic organism was done (Bundy,

Davey, & Viant, 2009). He measured the metabolites and their variability along with the genotypic and phenotypic

interpretation. Similarly, Samuelsson and Larsson researched metabolomics in fish (Asakura, Sakata, Yoshida, Date, &

Kikuchi, 2014). Moreover, the recent example of metabolite fingerprinting has been an aid to study population dynam-

ics as it helps in identifying the origin of coffee beans by Choi, Choi, Park, Lim, and Kwon (2010), in identifying the

populations of tobacco plants from China and Zimbabwe by Li et al. (2011) and in the identification of the populations

of the plant Arabidopsis lyrata ssp. petraea from secluded regions across Europe. Recent research conducted by

Scherling et al. (2010) recommends that the competitive ability and subsequent biodiversity of plants are due to the var-

iation in the metabolome within experimental plant communities. It was found that in small herbaceous species com-

pared to taller, there is higher metabolic diversity and the metabolic profiles showed that the amount of carbon and

nitrogen was limited in smaller plants when exposed to higher diversity. Later, Field and Lake (2011) demonstrated

direct linkage of metabolic diversity with the genotypic plethora within populations of wild plants.

Ecological metabolomics aims to analyze the plant biochemical connections across distinct temporal and spatial sys-

tems. It deciphers the conceivable effect of abiotic/biotic stresses on any indispensable biochemical process through

metabolite identification in response to environmental factors. It also explains the biochemical nature of numerous sig-

nificant ecological phenomena such as the effects of parasite load disease occurrence and infection. It also provides an

evaluation of the interaction among two trophic levels or numerous effects of abiotic factors with intra- and interspe-

cific linkage. The phenotypic and physiological feedbacks of plants to environmental fluctuations can be explained by
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the variations in the concentration of numerous metabolites that gives mechanistic indications for biochemical networks.

One such ecometabolomic application is the screening and quantification of the changes that occur in sap constituents

under extended drought conditions by Alvarez, Marsh, Schroeder, and Schachtman (2008). In addition to providing

insights into the range of compounds in sap, they have also shown that changes in the composition may lead to altera-

tions in signaling and development during drought. Regardless, ecometabolomic applications are not just restricted to

the ecophysiology of species.

Consequently, metabolomics gives a quick and sensitive indicator of ecosystem health by permitting the examina-

tion of complex ecological systems. Nevertheless, the full potential of ecological metabolomics is yet to be explored.

9.8 Extraction methods in metabolomics

Various extraction strategies are used to extract and segregate the compounds of interest; however, it is essential

to remember to utilize a simple method, low consume time, robust, repeatable, and low cost. A wide class of metabo-

lites can be extracted through conventional extraction techniques such as percolation, maceration, Soxhlet extraction,

steam refining, or hydrodistillation as they are of low cost, simple, repeatable, and can be utilized for raw plant extrac-

tion. Depending on the source of plant material, the amount to be processed relies on the source of plant material which

can range from a few grams to higher amounts, but they are tedious. Currently, they are supplemented with modern

techniques such as microwaves, ultrasonication, and supercritical fluid extraction (Gupta, Naraniwal, & Kothari, 2012)

(Fig. 9.4).
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FIGURE 9.4 Stepwise representation of extraction methods in plant metabolomics, that is, preextraction techniques and choice of extraction solvents

to increase the efficacy and reproducibility of the sample and to ensure the reliability of a metabolomic study.
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No doubt these methods are simple, repeatable, and predominantly with lesser extraction time; however, the expense

of these equipment is high. It is likewise imperative to consider the impact of temperature given by the selected method

since certain parts of the sample can be disintegrated if the temperature is high. In a recent review done by Roesnner

and Dias (De Livera et al., 2012), they marked all the details that ought to produce a better result with the extraction

and isolation of the compounds of interest. As soon as the sample is extracted properly, it is prepared to be submitted

for the analysis on LC-MS, GC-MS, NMR, or MS.

9.9 Metabolomics-assisted breeding techniques

Remarkable development is seen in the field of metabolomics during the last decade in both instrumentation advance-

ment and software tools’ design, giving an excellent chance to check the entire metabolome of different plant species in

a high-throughput way. Metabolomic applications have helped various research areas, particularly biotechnology, dis-

ease diagnostics and functional genomics, also marking its way for translational metabolomics in plant breeding

(Kaddurah-Daouk, Kristal, & Weinshilboum, 2008). The screening process has been accelerated due to the recent

advances in postgenomic approaches, also the time required to develop elite crop varieties with improved tolerance

against abiotic and biotic stresses has shortened because of the amalgamation of metabolomics with other high-

throughput tools. Metabolomics can give a holistic view of various metabolites’ diagnosis and phenotyping of plants.

Around 840 metabolite units have been recognized in 524 rice cultivars (Wei, Wang, Li, Qu, & Jia, 2018). They have

the potential for exploitation in future crop breeding strategies. Availability of the integrated datasets of proteomics,

transcriptomics, and metabolomics for mapping the quantitative traits and dissecting genetic variations at the mRNA,

protein, and metabolic levels has led the researchers to apply these methods in proteomic quantitative trait locus

(pQTL), epigenomic QTL, and metabolic QTL (mQTL) (Jansen, Tesson, Fu, Yang, & McIntyre, 2009) (Fig. 9.5).

Genome-wide association studies (GWASs) together with metabolomic techniques (mGWAS) and mQTLs serve as

powerful tools for the detection of genetic variations connected with metabolic traits in plants (Luo, 2015).

DNA RNA Protein Metabolite Phenotype
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eQTL
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mQTL-
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FIGURE 9.5 Genetic association analysis for mapping the gene expression of a metabolite phenotype through QTL mapping and GWAS techniques

to overcome the problems arising from different environmental conditions and investigate the effects of genetic deviations on metabolites. Although

mGWAS are independent on genetic data, yet MWASs are dependent on genetic information. eQTL, epigenomic QTL; GWAS, genome-wide associa-

tion; pQTL, proteomic QTL; mQTL, metabolomic QTL; mGWAS, metabolome genome-wide association studies; QTL, quantitative trait loci.
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9.9.1 Metabolic quantitative trait loci

The potential to use metabolomics in crop breeding is because a metabolome can represent the ultimate phenotype of a

cell. It becomes easier to identify and gather information about the target of genomic regions or the genes related to the

breeding of crops due to mQTL analysis (Matsuda et al., 2012). Metabolomics-assisted breeding helps the researchers

to develop an elite crop of better quality and yield. mQTL investigations provide more comprehensive information

about quantitative genetics. The gap between the genotype and phenotype has narrowed down through metabolic profil-

ing as it provides new horizons for metabolic dissecting, starting with the identification of single-nucleotide polymor-

phism (SNP) markers or candidate gene detection by mQTL mapping analysis. The mQTL approach builds up a

linkage between the phenotype and genotype by featuring significant insights into the genetic structure and by analyz-

ing the phenotypic variations through integrated analysis of gene expression and metabolic profiles. Advancement in

next-generation sequencing (NGS) has permitted mQTL identifications for candidate genes through ultrahigh-density

maps. Biosynthesis of secondary metabolites that are controlled by candidate genes can be detected by utilizing multio-

mics integrated with forward and reverse genetic approaches (Beleggia et al., 2016). Moreover, population genetics in

combination with quantitative genetics and metabolic profiling has begun to reveal hereditary control of the entire meta-

bolome in plants. For example, utilizing a high-density map comprising 1619 bins produced by sequencing, rice mQTL

analysis has been performed (Gong et al., 2013). Numerous mQTLs have been detected in flag leaf and germinating

seeds across 12 chromosomes. When mQTL analysis was performed for comparative investigations of two rice culti-

vars, it uncovered the accumulation of tissue-specific secondary metabolites that were under strict genetic control. A

sum of 19 metabolites was recognized on 23 loci, suggesting a significant intersection of genetic control in various

cells. Similarly, comparative results have been reported for potato, maize, and tomato. The mQTL analysis of back-

crossed inbred lines of rice cultivars highlighted 700 various metabolic features. The study uncovered 802 mQTLs hav-

ing an irregular distribution, which may control distinctive metabolic characteristics. Barley mQTLs, physiological,

morphological, and metabolic adaptation was investigated by Templer and colleagues under drought stress conditions.

Nearly 57 metabolites and some unique mQTLs, for example, succinate, γ-tocopherol, and succinate were recognized

in flag leaf via association genetics. The outcomes demonstrated a molecular basis for barley breeding with expanded

resistance against drought stress. Identification of 679 secondary mQTLs of tomato which were linked with environ-

mental stress tolerance was done through the dissection of genomic regions linked with the synthesis of secondary

metabolites in wild and introgression lines (Alseekh et al., 2015).

For the identification of traits associated with stress susceptibility, mQTL mapping is an efficient tool.

Metabolomics profiling of 179 doubled haploid wheat lines mediated by the LC/MS probed about 558 secondary meta-

bolites, including alkaloids, flavonoids, and phenylpropanoids (Hill et al., 2015). GC�TOF/MS-intervened metabolic

analysis of tomato recombinant inbred lines was done to profile seeds and interpret the communication between seed

environment, metabolism, and genetics. This study explored many genetic regions that help in the regulation of a set of

metabolites. Besides this, many studies distinguished mQTLs controlling the biotic communications in plants. With the

advancement in sequencing technology, numerous plant genomes have been sequenced with incessant utilization of

mQTL analysis in crop plants.

9.9.2 Metabolic genome-wide association studies

The emergence of mGWAS has proved to be an incredible asset to portray the natural genetic basis of different meta-

bolic changes in the plant metabolome. The global perspective on secondary plant metabolites related to a particular

trait has been revealed in a recent study (Hadacek, 2002). Different kinds of flavone glycosylation are being identified

in rice varieties through studies made on metabolic polymorphism and revealed a positive correlation of plant growing

conditions with introduction to ultraviolet B (UV-B) light. A sum of 175 rice accessions was exposed to metabolomics-

assisted GWAS analysis. Identification of 323 associations among 89 secondary metabolites and 143 SNPs were done

which indicated two kinds of genetic architecture identifying secondary metabolite concentrations. It is seen that gene-

to-metabolic investigation via mGWAS provides a valuable technology for improvement in crop genetics (Dong et al.,

2015). The mGWAS analysis has been performed in rice to analyze biochemical and hereditary varieties in its metabo-

lism. It was found that the 36 genes were related to unique metabolites that were responsible for controlling the nourish-

ment and physiological traits. Moreover, five qualities were described, which included a glucosyltransferase, a

methyltransferase, and three putative acyltransferases (Chen et al., 2014). The qualities of essential and auxiliary metab-

olite primary and secondary metabolites can be utilized as metabolic markers to encourage crop breeding for genetic

improvement. Understanding the functional genomics in association with plant development, the significance of
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advanced metabolomic tools, along with QTL analysis, GWAS and knockout/down technology has been progressively

perceived inside the plant science community. Since QTLs are distributed in various regions of the chromosome and a

huge count of alleles occur in the process of domestication while searching for candidate genes in correlation with met-

abolic phenotype in genetic variation in plants, molecular breeding benefits from the fragment with prevailing genes

that ultimately leads to high productivity or quality. Although plants are highly suitable for linkage analysis and high-

throughput plant phenotyping platforms with respective plant phenomics have offered and integrated a set of novel tech-

nologies, yet more detailed information of complex plant phenotypes is still needed to be mined.

The development of NGS technologies has been highly profitable. To understand the genetic mechanisms underly-

ing metabolic diversity and their relationship with complex traits in plants, metabolome-based GWAS (mGWAS) has

been used across the world. Even though mGWAS recognizes enormous scope metabolite-related QTL, which can

probably be utilized in the future in plants, a few disadvantages are also inescapable at present. Initially, due to the limi-

tation in the present statistical algorithm, it is hard to precisely distinguish the epistasis or gene�environment interac-

tion (G�E) QTL. Second, it is unreasonable for the entire potential genes from one single analysis to be confirmed by

transgenic analysis due to the limitation in precision particularly in some regions of the chromosome with the slow

decay of linkage disequilibrium and the work and tedious method. Luckily, equivalent to different attributes like seed

quality, while the regions of interesting QTL are determined, these QTL could be additionally used for marker-assisted

selection breeding without the essentiality to discover the fundamental genes (Pourmortazavi & Hajimirsadeghi, 2007).

9.10 Metabolites present in plant metabolome

Plants produce huge quantities of metabolites that possess diversified structures and abundance. They play significant

functions in plant development, growth, and their response to environments. These diverse metabolites having small

molecular weight serve not only as the chemical base of crop yield and quality but also as valuable nutrition and

sources of energy for human beings and live stocks. The metabolites are generally classified into primary and secondary

metabolites. Primary metabolites are the basic requirement for the growth and development of a plant whereas second-

ary metabolites are significant as they maintain a delicate balance with the environment for a plant to survive under

stress conditions (Zaynab et al., 2019).

Primary metabolites in plants are important for the biosynthesis of amino acids, lipids, sugars and are highly con-

served in their structures and abundances. During photosynthesis they mediate the glycolysis and tricarboxylic acid

cycle, thus affecting the plant growth and development. Variations in the amalgamation of primary metabolites may

cause malfunctioning during photosynthesis and imbalanced osmotic adjustment in plants. Varieties in the amalgam-

ation of essential metabolites may prompt photosynthesis breaking down and imbalanced osmotic change in plants.

Essential digestion brings about the creation of auxiliary metabolites, similar to flavonoids, atropine, carotenoids, and

phytic corrosive. These are not basic for plant endurance and are delivered in light of various pressure conditions, for

example, high temperature, chilling, dry season, saltiness, and creepy crawly/bug assault. Production of secondary meta-

bolites such as atropine, flavonoids, phytic acid, and carotenoids is the result of primary metabolism. These secondary

metabolites are not critically essential for the survival of the plant and are produced due to different stress conditions

like drought, high temperature, salinity, chilling, and insect/pest attack. Secondary metabolites differ widely across

plant kingdoms. They may include antioxidants, reactive oxygen species and coenzymes (Dawid & Hille, 2018). Some

specialized secondary metabolites may also be present in the plant metabolome which consists of terpenoids

(. 25,000), phenolics (B10,000), and alkaloids (B21,000) that provide tolerance against biotic/abiotic stresses. Some

of these specialized compounds have been identified as unique biomarkers that help in measuring plant performance

during stress conditions and also serve as essential for crop improvement programs. Primary and secondary metabolites

are continuously synthesized through complex biochemical reactions during plant ontogenesis. Thus it is important to

reveal the unique metabolic biochemical processes involved in plant biology.

The necessity to explore the underlying biochemical nature is due to the diversity of plant metabolites and their compli-

cated regulatory mechanism. The yield of plant metabolomics relies to a great extent upon its methodologies and instru-

mentations to extensively distinguish, measure, and localize every metabolite. It is very tough to do so because of the

complex nature of these diverse metabolic characteristics and abundances of molecules. Regardless of the fact that accurate

and exhausting analysis of the entire metabolome of a biological sample appears to be currently impossible, methodologies

and instrumentations of plant metabolomics have been developing at a quick pace to solve this issue (Hegeman, 2010).

Evaluation of food and agronomical traits of crops, especially those of GM crops and their derived GM foods, could

be performed in terms of metabolites present. The plant kingdom contains nearly 200,000 compounds of a huge diver-

sity of metabolites and most of them are still unknown. It is estimated that approximately 10,000 secondary metabolites
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have been found in various plant species and these discovered metabolites being highly significant plant biology are

structurally different in their biochemical properties as well as functions. Metabolomics research is essentially based on

low molecular weight metabolites within biological systems and is solely concerned with the identification and quantifi-

cation of small molecules. Extensive knowledge of biochemical processes that occur during plant metabolism can be

known through the metabolic profiling of primary and secondary metabolites. Various methods have been formulated

for the detection and identification of specific metabolites. However, no single metabolomics tool can be used for the

entire metabolome profiling due to the complex nature of metabolites, massive production in cellular compartments,

and diverse chemical composition.

9.11 Workflow of metabolomics analysis

Metabolic analysis involves three core steps for its experimental design, and they are sample preparation, data acquisition

through analytical strategies, and utilization of suitable chemo-metric techniques for data mining (Kim & Verpoorte, 2010).

9.11.1 Sample preparation

The most important part of metabolomics is sample preparation as it has a tremendous effect on the final results.

For sample material, plant tissues that are above the ground such as stems, seeds, and roots can be utilized (Fig. 9.6).

The high-resolution magic-angle spinning technique is broadly used in plant metabolomics tests, even though it isn’t

suitable for the extraction of plant secondary metabolites that play a crucial role in plants’ self-defense mechanism. The

basic objective of sample preparation is to enrich the desired metabolites by separating the metabolites from unwanted

elements. The best sample preparation technique ought to be fast, efficient, simple, economical, and maintain the sam-

ple integrity (Causon & Hann, 2016). Four steps are involved for plant sample preparation for metabolic analysis, har-

vesting the plant material, quenching, sample extraction, and sample analysis. Depending upon the choice of analytical

methods and the characteristics of the metabolites, the extraction and freezing steps can be discarded. Also, quenching

of the sample material depends on the biological nature of the sample because harvesting and quenching of the sample

material are nearly the same for all analytical tools. High caution should be taken while harvesting the sample as the

plant metabolome is delicate to enzymatic reactions that degrade different metabolites. Usually soon after, harvesting

the plant material is quenched in liquid nitrogen to avoid any metabolic changes. Another important factor is the age of

the plant sample as the metabolic profiling of young leaves is quite different from mature leaves. For sample prepara-

tion, it is very critical to avoid enzymatic degradation of the sample material (Harbourne, Marete, Jacquier, &

O’Riordan, 2009). Numerous extraction protocols have been created over the last couple of years for metabolomics

analysis. Earlier a pestle and mortar are used for grinding leaves but now methods like tissue lyser, electric grinder, and

ultrasonic oscillator are used. In metabolite extraction the selection of extraction solvent is also of utmost importance.

The solvent should be effortlessly isolated without triggering any biochemical reaction. Some commonly used extrac-

tion solvents are aqueous methanol, acetonitrile, ethanol, perchloric acid, and water. The rate of dissolution and solubil-

ity highly matters for the choice of extraction protocol. Biological components like cellulose or lignin may collaborate

with metabolites and thus influence the dissolution rate. Soxhlet extraction is one of the conventional methods utilized

for sample extraction (De Castro & Priego-Capote, 2010). In this technique, continuous heating of the sample is done

and concentrated solvent is being used for extraction. For targeted and untargeted metabolic profiling via MS

approaches, solid-phase microextraction (SPME) is done. A technique called laser microdissection is used for the isola-

tion of the desired cells from microscopic samples as it does not affect the chemistry and morphology of the desired

metabolites in the samples. Another high-speed and accurate method of sample extraction in metabolomics is

microwave-assisted extraction. An efficient technique called supercritical fluid extraction can be utilized for volatile
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FIGURE 9.6 Workflow of metabolomic analysis
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data acquisition with different techniques and qual-

ity control; data analysis, including normalization

and identification of metabolites; and data interpre-

tation to handle the high-throughput metabolomics
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metabolites. Numerous other sample preparation methods exist such as SPME, ultrasound-assisted extraction, enzyme-

assisted extraction, and the Swiss rolling technique.

9.11.2 Data mining, annotation, and processing in metabolomics

A deep insight into the molecular complexity of downstream of the genome, proteome, and transcriptome of plants

either in normal growth conditions or in response to various stresses has been revolutionized in today’s era. An enor-

mous amount of dataset has been established by the whole metabolome analysis due to the huge number of metabolites

present in different parts of plant cells or tissues. But the metabolomics data analysis has become more complex

because of the complicated nature and composition of metabolites in different plant samples. The main aim of the entire

metabolome analysis is to sort the various metabolites of different plant samples initiated by various factors (Aoki-

Kinoshita, 2006). Since a considerable amount of data can be created by metabolomics, so it is known as the data-rich

technique. Powerful automated tools are required to manage huge datasets and for annotating and storing the raw data.

The tough part that rests in plant metabolomics is in extracting accurate information about specific metabolites from

massive datasets generated by advanced techniques. The basic steps in data mining are preprocessing, pretreatment, and

statistical analysis of data (Liland, 2011; Sun & Weckwerth, 2012). A series of statistical analyses are carried out for

the raw data acquired from sample analysis analyses to generate a numerical data matrix and align this data for further

processing.

9.11.3 Statistical tools and biomarker identification

Metabolomics can be used to measure the metabolite abundance as a predictive biomarker for disease diagnosis as well

as to score the genetic as well as environmental-induced changes in metabolites’ concentration. The identification of

biomarkers highly depends on the analysis of data using different statistical methods. To estimate the relationship

between metabolites and phenotypic variables a proper, multidimensional statistical platform is required for fast forward

analysis. A pairwise Pearson’s correlation can be utilized to find a particular biomarker, where just a single metabolite

is associated with the ideal phenotype. Even though more than one metabolite analysis is needed to design a predictive

model, and canonical correlation analysis is often applied to study the maximize correlation between variables (Song,

Schreier, Ramı́rez, & Hasija, 2016). To handle the high-throughput metabolomics data that are mainly adapted from

previously existing omics technologies, many statistical tools including those that were originally developed for tran-

scriptomic analysis can be used for metabolomics data analysis. Conventionally, the main aim in any metabolomic anal-

ysis is to see the groupwise differences either in a univariate or multivariate technique. Biomarker discovery for

univariate analysis is generally performed at initial levels of systems biology, which studies one variable at a specific

time. Moreover, it can also confirm the presentation and authenticity of an assumed metabolic marker, whereas multi-

variate analysis can be utilized for screening plant cultivars and ecotypes, metabolic marker discovery, and disease

diagnosis. These tools help to effectively compare the evaluation among various genotypes and samples. Several multi-

variate statistical tools are available such as PCA, ANOVA (analysis of variance), analysis of variance-simultaneous

component analysis (A-SCA), partial least squares-discriminant analysis (PLS-DA), and heat map analysis (Ren,

Hinzman, Kang, Szczesniak, & Lu, 2015). Multivariate statistical strategies are generally categorized into two

approaches to study high-throughput metabolomics data (Weckwerth & Morgenthal, 2005): unsupervised approach in

which unidentified samples are statistically analyzed, keeping the main focus on the natural structure that exists in a

dataset, and supervised approach, in which the basic aim is to alter multivariate datasets from metabolic analysis to the

demonstrations of biological units under supervision. The supervised technique explains the relationship between the

input and output observable in a particular sample of data. One of the most crucial unsupervised multivariate statistical

tools that are being extensively utilized for the multidimensional reduction approach is PCA, which is beneficial and

efficient because the difference among the various samples can be divided and comprehensively explained in numerous

principal components (Xu & Goodacre, 2012), although PCA can’t separate variance in samples whenever a multipur-

pose factor is strongly connected. So, to manage noisy and highly collinear datasets, the PLS approach is used as its

extensions, like orthogonal PLS (OPLS), PLS-DA, and sparse PLS, are often frequently performed in metabolic data

analysis. OPLS and PLS techniques give huge data that can be helpful for metabolic marker selection. Commercially

accessible statistical tools that propose several types of procedures are Matlab and SIMCA-P. There are some excellent

R programming software that are developed for different applications in plant metabolomics research. The R package

language statistical tools provide statistical graphics and computing along with an enormous number of statistical
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analysis techniques that are employed in R package programs. Some important R software packages available for meta-

bolomics analysis are MetabR, Lilikoi, MetaboAnalystR, and MetaboDiff.

9.12 Current and emerging methodologies of metabolomics in agriculture

The plant metabolome is considerably unpredictable containing more than 200,000 metabolites. These little atoms are

very essential to analyze plant development and progression similarly as their response to natural changes. The flexibil-

ity of metabolomics in plant research is incredibly essential within the disclosure of biomarkers and in the improvement

of harvest yield and quality. Unambiguous traceability of a crop ensures its origin, quality, and security. Untargeted

metabolomics approaches have been extremely useful in the search for quality traits within crops. Ellis et al. (2018) per-

formed untargeted metabolic profiling from genetically marked lines of Pisum sativum (pea) mature seeds. The study

concerned the identification of genotypes that contained a high quantity of specific compounds associated with quality

traits. The information contained relating to the sets of compounds in mature seeds associated with their genetic varia-

tion can be used to assist future breeding programs. The quality of seeds can be compromised within the crop by the

occurrence of pests and diseases. The pea aphid Acyrthosiphon pisum comprises assorted biotypes that can affect

P. sativum plants, each of them specialized on a particular crop legume species, including Trifolium pratense and

Medicago sativa. The entire host races of this insect can develop themselves on Vicia faba (faba bean). For the identifi-

cation of the metabolites involved in the specificity of pea aphid interaction with different host plants, Sanchez-Arcos

et al. (2019) carried out a study on these four plant-herbivorous insect systems by making use of an untargeted metabo-

lomics strategy. Focusing on the screening of phenolic compounds, a targeted strategy was chosen from pigmented and

nonpigmented maize cultivars. High resistance to Fusarium infection was shown by the maize cultivar with the highest

phenolic content, which became a promising result toward the selection of more resilient maize plants. Considering

another plant-pathogen system, Chitarrini et al.’s work likewise demonstrated an incredible potential for a future appli-

cation for the development of resistant varieties. Utilizing distinctive analytical techniques, they recognized biomarkers

in a resistant grapevine associated with the defense against the biotrophic oomycete Plasmopara viticola, which is

known to be the causative agent of downy mildew. This study helped to understand the mechanisms of grapevine inter-

action and resistance to downy mildew in a better way. A further step was taken by Negrel et al. in elucidating this

grapevine P. viticola interaction and characterizing P. viticola’s metabolome by using an untargeted metabolomics

approach. The utilization of these microbe biomarkers was done in the development of a monitoring assay for the early

detection of P. viticola in grapevine. López-Gresa et al. characterized the profile of volatile organic compounds associ-

ated with the tomato immune response to these bacteria while analyzing both compatible and incompatible interactions

between tomato (Solanum lycopersicum) and Pseudomonas syringae. These outcomes can be utilized later on in the

development of safe tomato plants, hence preventing this agricultural problem and adding to more sustainable produc-

tion. The availability of an optimal light environment is yet another concern for developing a stable fruit as this has

been a major issue in several countries with lesser daylight hours. For the plants grown in greenhouses such as tomato,

a supplementary light system is frequently utilized (Kaiser et al., 2019). To mark the metabolic changes in early fruit

development of single-leaf tomato plants, Fukushima et al. performed an integrative omics approach with only one fruit

truss, exposed to different intensities of red LED (light-emitting diode) light. The compounds that mostly contributed to

the increase of fruit size of tomato plants and responded to the LED treatment were the metabolites that were mainly

involved in the biosynthesis of several amino acids and carbohydrate metabolism. This is very pertinent given the sig-

nificance of carbon allocation for fruits during their development, for which a reasonable source�sink relationship is

essential to ensure sufficient fruit nutritional quality and yield. Beshir et al. investigate carbon reallocation changes

throughout the development of apple fruit by utilizing isotopically labeled substrates and metabolomics (Beshir et al.,

2017). Unexpectedly it was possible to make an intensive understanding of the metabolic dynamics occurring during

the diverse developmental phases of fruit development utilizing dynamic isotope labeling experiments. The effective

utilization of resources and productivity increase in a crop has been accomplished through controlled growth in plant

industrial facilities. Even though these closed production systems are not a natural environment, yet they became more

sustainable and attractive to the food industry with controlled lightning strategies and reduced environmental pollutants.

To investigate how cultivation conditions affected leaf metabolic composition, Tamura et al. analyzed the metabolite

profiles of lettuce leaves that were grown under hydroponic conditions or fertilized soil. It was seen in the results that

the metabolic profile of both lettuce cultivars analyzed was enormously affected by the cultivation method. The affected

metabolites are the ones responsible for taste and functional ingredients such as amino acids and phenolic compounds.

Neugart et al. also analyzed the impact of soil fertilization with biological waste compost in the metabolic composition

of Brassica rapa ssp. Chinensis (pak choi) sprouts. The addition of the biological waste from food production namely
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coffee, hop, and aronia had highly affected sprout metabolic profile by decreasing the glucosinolates and phenolic com-

pounds increasing the concentration of carotenoids. A detailed assessment of the effect of alternative cultivation sys-

tems, like plant factories and greenhouses from the studies of Tamura et al., Fukushima et al., and Neugart et al. shows

that it is essential in the quality and nutritional value of crop products, especially the evaluation of the light, soil, and

fertilization conditions. The techniques often selected for quantitative metabolomics analysis are NMR and LC�MS

or GC�MS. However, when it comes to untargeted metabolomics, currently, Fourier-transform ion cyclotron-resonance

MS (FT�ICR�MS) is used as it can simultaneously detect and identify a huge number of metabolites in high-

throughput assays, providing high resolution as well as high accuracy in crop metabolomics (Allwood, Parker,

Beckmann, Draper, & Goodacre, 2011).

9.13 Integration of metabolomics tools with other omics tools

Metabolomics tools can be integrated with various other omics tools, such as genomics, proteomics, and transcriptomics

to tackle abiotic/biotic stresses in plants. Metabolomics devices are utilized for metabolic profiling of biofluids and dif-

ferent cell tissues, which are associated with various cell processes depicting the entire physiological composition of a

cell (Kraly, Holcomb, Guan, & Henry, 2009). When compared to any other living species, a diverse range of plant

metabolites have various orders of size, solvency, precariousness, unpredictability, extremity, and flexibility. Due to an

insufficient connection between the proteome and metabolome, it is considerably challenging to elucidate plant metabo-

lites in metabolic profiling. At certain times, due to technical hurdles like lack of standardized protocols, incompatibil-

ity of instruments, and volatility of the desired metabolites, it becomes difficult to detect some metabolites during the

whole metabolome analysis. A set of different technologies are required to provide the greatest amount of metabolite

coverage because no single technique or tool can be utilized to analyze the entire metabolites present in a metabolome.

Different metabolomics techniques include nondestructive NMR spectroscopy, MS, CE�MS, high-performance thin-

layer chromatography, LC�MS, GC�MS, ultraperformance liquid chromatography (UPLC), direct infusion MS, high-

resolution MS, and FI�ICR�MS. Among these methods, GC�MS, CE�MS, LC�MS, and NMR-based integrated

approaches are extensively used in metabolomic analysis.

For a thorough investigation of metabolites, the NMR procedure can be utilized in numerous living organisms,

including plants as NMR-based metabolic profiling is fast, efficient and expedient, for the screening and identifica-

tion of similar biological samples (Garcia-Perez et al., 2020). It is selective, nondestructive, and exceptionally profi-

cient at mapping metabolic pathways. Also, its high reproducibility makes it a useful tool in plant metabolomics

research. NMR-based metabolic profiling can also productively screen plant responses under biotic/abiotic stresses at

different developmental stages. NMR along with other integrated techniques has been applied to identify the struc-

tural units of unknown metabolites. Isotope-labeled NMR, micro-coil NMR, and one- and two-dimensional NMR are

the recently developed advanced tools for plant metabolomics. NMR is the main instrument that can recognize the

particular labeling of stable isotopes (Deborde et al., 2017). NMR is a rapid, noninvasive, highly quantitative, and

unbiased approach that requires minor sample preparation and no requirement for a chromatography separation pro-

cess. When compared with MS, NMR has a lower dynamic range, poor sensitivity, and less resolution, in limited cov-

erage of primary and secondary metabolites in plant metabolomics research. However, the major limitations in NMR

technology have been overcome by recent developments like superconducting magnets, cryogenic probes, multidi-

mensional NMR techniques, and miniaturized radiofrequency coils. The MS technique gives the advantage of quick

sample preparation and assessment in their natural state. The conventional tools for metabolite analysis are ultrahigh-

performance LC (UPLC) and HPLC. However, analytical platforms for plant metabolome profiling have been effi-

ciently enhanced through the integration of these tools with MS. A high rate of sensitivity for metabolic profiling is

shown by GC�MS analytical technology and it offers exceptional detection, separation, and identification because of

the utilization of an electronic impact ionization point of supply. This method can also be utilized to probe primary

metabolites, like organic acids, peptides, amino acids, sugars, alkaloids, ketones, lipids, esters, and sugar phosphate.

The advantages of GC�MS include its high sensitivity, precision and resolution, reduced running cost, and speedy

metabolic profiling (D’Amelia, Dell’Aversana, Woodrow, Ciarmiello, & Carillo, 2018). However, GC�MS has a

drawback, that is, it can only be used to identify thermally unstable and volatile compounds. LC�MS technique uses

an ESI source to analyze metabolites having high molecular weight, which are polar and thermolabile. It is executed

to a great extent for secondary metabolite profiling, including glucosinolates, vitamins, flavonoids, and carotenoids,

however, can likewise be utilized for primary metabolites’ detection. LC�MS has an extraordinary feature, that is,

without derivatization it can permit direct probing of metabolites in any sample. Both targeted and nontargeted meth-

ods perform LC�MS-based metabolic profiling. In the targeted technique a set of metabolites are identified and
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quantified whereas, in the nontargeted approach, various types of chemical compounds are identified, like lipids,

amino acids, and their derivatives. LC and MS are extensively used in plant metabolomics, integrated approaches for

analytical research due to their higher accuracy and sensitivity. To achieve high-resolution imaging in metabolomics

that demonstrates the arrangement patterns of metabolites in plant cells and tissues advanced tools of MS have been

applied, such as matrix-assisted laser desorption ionization (Enomoto, Sensu, Yumoto, Yokota, & Yamane, 2018).

Metabolomics has emerged as a more versatile strategy than genomics and proteomics with ongoing coordinated

utilization of MS. Indeed, metabolic profiling of various crops, such as rice, wheat, sorghum, maize, and soybean,

showed prominent applications of metabolomics in plant biology.

9.14 Metabolomics under normal and stress conditions in plants

A massive reduction in the global annual crop yield is because of the biotic and abiotic stresses that adversely affect

crop productivity. It serves as a key to understanding the systems biology of plants by providing assistance in analyzing

various exogenous and endogenous plant metabolites under extreme climatic stresses (Liang et al., 2018). Any change

in plants’ growth conditions that adversely affect plant metabolism, development, and physiology can be described as

abiotic stress. It acts as a major limiting factor in agriculture production. The basic aim of exploring metabolic varia-

tions under abiotic stresses is to recognize various metabolites that permit the restoration of plant homeostasis and stan-

dardize metabolic changes. Besides, it is additionally used to probe specific compounds liable for offering abiotic stress

resistance in plants. Tools like NMR, LC�MS, and GC�MS are extensively used in metabolomics studies to elucidate

abiotic stress tolerance in plants (Ma et al., 2018). Abiotic stresses severely affect all essential mechanisms in plants

from germination to maturity. Plant photosynthesis as well as the synthesis of all primary metabolites, including amino

acids, sugar alcohols, and sugars, are badly affected and hampered by abiotic stresses. The main abiotic stresses include

drought, low- and high-temperature, salinity, waterlogging, heavy metal, and chilling.

9.14.1 Drought stress

Drought is a major constraint for agricultural production around the world. Plants adopt several physiological modifica-

tions depending on their exposure to mild or severe drought stress such as greater nutrient uptake by plant roots,

reduction in vegetative growth, leaf abscission, lead area reduction, stomatal closure, and a decrease in the rate of pho-

tosynthesis. There may be variation in the timing and severity of water deficit ranging from long drought to short peri-

ods without rain at all (Lilley & Fukai, 1994). Plants synthesize many ubiquitous polyamines in response to drought

stress as a defense mechanism. One of the important adaptation mechanisms to water deficit in several plants is the

osmotic adjustment, in which active accumulation of solutes in response to drought takes place that ultimately, results

in reduced osmotic potential, and contributes to maintaining cell turgor.

9.14.2 Salinity stress

Due to both natural processes and agricultural practices, the increased salinization of arable land is expected to increase

ion toxicity and disturbance of the ion uptake mechanism and have a drastic impact on soil fertility, resulting in a high

percentage of land loss by the middle of the century (Shabala & Munns, 2012). It will also lead to osmotic imbalance

and cause metabolic syndrome that results in stunted growth and the capture of several physiological activities.

Imbalanced Na1 ion concentrations cause ion toxicity, which not only hampers nutrient and water uptake in high

salinity conditions but also affects the economically important crop species because of their sensitivity toward high salt

concentration in the soil. High salinity in plants engenders both hyperionic and hyperosmotic stresses. To cope with

salinity stress conditions, many primary and secondary metabolites are synthesized by plants.

9.14.3 Waterlogging stress

Another sort of abiotic stress is waterlogging that impedes crop development and yield (Ahmed et al., 2013). Due to the

limited supply of CO2 and oxygen, waterlogging causes extreme injuries to plants and eventually hampers the photosyn-

thesis cycle. A higher duration of waterlogging causes hypoxia that prevents CO2 assimilation and directly affects

the roots. Waterlogging stress has three adaptations that is morphological changes metabolic alteration and signal

transduction.
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9.14.4 Temperature stress

One of the most crucial environmental factors for the determination of plant growth and development is temperature.

An optimum temperature is essential for plant growth. Depending on the temperature fluctuation, plants suffer severe

damage and the developmental processes are ceased. The homeostasis and other physiological mechanisms are dis-

turbed by high temperatures (Thomason et al., 2018). However, there is a certain highly complex inducible mechanism

that can help to extend the temperature range of survival in some species. Many secondary metabolites under heat

stress, such as arachidic acid, alanine, allantoin, rhamnose, and myoinositol, are synthesized by plants.

9.14.5 Metal-induced stress

Another abiotic stress, the metal stress has become a significant factor that influences crop yield by showing variations

signs in their molecular, biochemical, and physiological mechanisms (Foy, Chaney, & White, 1978). The high concen-

tration of trace elements like zinc, cobalt, chromium, nickel, copper, vanadium, and tungsten are lethal to plants. Some

of the major pollutants that influence plant stress are lead, zinc, chromium, cadmium, and nickel. When metal stress is

in high concentration, it can cause growth arrest as well as cell death plants. It is due to cellular oxidation, metabolic

retardation, and enzyme inhibition. Also, iron (Fe), copper (Cu), and manganese (Mn) play a significant role in plants

biological processes (Ducic & Polle, 2005).

The tendency of plants to accumulate various kinds of metabolites in response to biotic stresses that are specific to

tissues and species and act as biomarkers has helped to regulate biotic stress resistance in various plant species.

In response to metabolomics profiling that determines the significant changes in primary and secondary metabolites of

plants due to any pathogen attack, plants embrace various techniques to trigger defensive pathways against such patho-

gen attack. But it becomes difficult to decode the entire metabolome of a plant species due to the presence of highly

diversified metabolites. Thus the compounds that are identified from biotic stressed plants help in looking for novel

defense compounds and then serve as significant important plant defensive state markers. The expansion in the number

of metabolites has been regarded as sensitive metabolic biomarkers in diverse plant species.

9.15 Applications and future perspective of metabolomics in plant biotechnology
and agriculture

A remarkable place has been attained by metabolomics in plant biotechnology. Its expansion has a prominent effect

on plant biology research. It has tremendous applications in plant sciences, ranging from the link between genotype

and phenotype in response to climatic stresses, analyzing the cells biological mechanism, evaluating transgenic varie-

ties, elucidating biosynthetic pathways, carrying out chemotaxonomic analyses to investigating various stresses and

characterize cultivars, yet plant metabolomics requires a broader exploration and appropriate knowledge on data min-

ing, processing, annotation, assessment, and evaluation (Yang et al., 2019). Genetic breeding is another application

of metabolomics which has significantly reduced the varied time required for high-throughput genome sequencing

and reverse genetics through metabolomics-assisted breeding. Exploration of complex metabolic pathways that

administer significant regulatory processes in plant metabolism has been attained by the combination of various

omics approaches including genomics, proteomics, transcriptomics, and metabolomics. Identification of metabolic

markers and prediction of the size and nature of biotic/abiotic stress may be incorporated as a future application of

metabolomics (Wolfender, Rudaz, Choi, & Kim, 2013). Discovering wide applications in crop improvement pro-

grams to develop high yield of crops, creating climate-smart crop varieties and stress-tolerant germplasm will require

metabolomics-assisted breeding approaches. Other metabolomics approaches such as using of modern genome editing

toolkits such as CRISPR/Cas9 system and speed breeding are certain fascinating areas where metabolomics is pre-

pared for risk assessment associated with genetically engineered crops and do wonders for crop improvement

(Razzaq, Saleem, et al., 2019).

In the present scenario the food consumed by humans relies on specific crops that are vital because of their nutri-

tional value. Moreover, the possibility of detecting particular compounds with some peculiar function via metabolomics

is essential to the endurance of a species. Since there are no constraints in the study of multiple species, there are

numerous ways of using metabolomics in agriculture. However, the result of metabolomics from agriculture will affect

different regions of study such as nutrition, medicine, genetic improvement, and food quality control. In the end, the

statistical analysis and bioinformatics resources that are used to interpret the results prove to be critical to consider in a

wide audit of metabolomics. The advancement in plant metabolomics has permitted the precise selection of desirable
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traits. The innovation of technology from analyzing a single metabolite to high-throughput assays generating imprints

of various metabolites has paved the way for the discovery/ development of better models for metabolite networks

along with the identification of robust biomarkers (Fuhrer & Zamboni, 2015).

The discovery of biomarkers has been pertinent among the modern challenges of metabolomics, particularly in terms

of disease as it is important to detect, monitor, and treat them. Since the number of metabolites in chemical compounds

is huge and sometimes remains undetectable due to lesser concentration, it becomes difficult to identify and quantify

them in a reliable way. To solve such problems, new analytical techniques are developed to increase the detection of a

wide range of metabolites based on their structural characteristics to identify even the lowest concentration of com-

pounds (Patti, Yanes, & Siuzdak, 2012). Metabolomics is a tool to improve and enhance our understanding of the bio-

chemistry and metabolism of the organism. In the last few years, its diverse applications have made the interpretation

and analysis of results much easier. The incorporation of a wide variety of crops in this type of study is fundamental to

know their qualities by considering the most essential trait from them and for developing an application that will be

beneficial to food, health, and industry. In near future, there will be an increase in the field of study agriculture concern-

ing metabolomic aspects to ensure world food sovereignty. As of now, it is important to carry out activities focused on

their preservation and rational exploitation since most of the crops and their diversity are at high risk. The scope of

metabolomics implementing various analytical techniques has allowed us to makes use of its applications for the plant

species along with the advancement of programs based on distinctive chemical traits. The integration of metabolomics

and the other omics tools has highly improved the ability of a plant breeder to develop agronomically superior plants

(Chaudhary et al., 2015).
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10.1 Introduction

Transcriptomics is a relevant approach depicting the snapshot of the global gene expression profile of cell/tissue/organ

or organism under a specific circumstance. Through transcriptomics, the RNAs, especially mRNAs (messenger RNAs)

and regulatory RNAs, including noncoding RNAs (ncRNAs), such as small interfering RNAs and microRNAs, reveal

how organisms modulate gene expression during a developmental situation or in responses to environmental stimulus or

stress. In the early days of transcriptomics and first-generation sequencing (the Sanger-sequencing method), a limited

number of partial transcripts (e.g., ESTs—expressed sequence tags) already indicated the potential of this approach.

Since then, several techniques (with open or closed architecture) have been developed and applied. However, many

studies lacked depth and involved experimental designs that did not provide robust statistical support to assess the

global gene expression. Despite many possibilities, the RNA-Seq (sequencing of RNA) method associated with next-

generation sequencing (NGS) techniques (sometimes also called second-generation sequencing, SGS) is undoubtedly

the most accurate and disseminated transcriptomic approach applied to crops nowadays. Here we present an RNA-Seq

overview based on scientific articles covering plant abiotic stress responses published in the last 5 years, together with

a commented overall RNA-Seq analysis workflow. We hope this chapter provides information helping breeders make

good decisions favoring the improvement of crops worldwide.

10.2 From the beginning to the crop sciences: transcriptome analysis, its evolution,
and state of the art

From the first RNA-Seq (77-nt yeast alanine tRNA) (Holley et al., 1965) until the genome-wide transcriptome analysis,

almost half a century of improvements and technological advances have passed. Initial transcriptome sequencing efforts

focused on viruses (Fiers et al., 1976) and simple eukaryotes, such as yeasts (Holley et al., 1965), due to the higher

genetic complexity of cultivated plants. So, in the 1970s, Fiers et al. (1976) sequenced the complete transcriptome

(3569 nucleotides) of the Ms2 bacteriophage, pioneering the transcriptome sequencing era (Fig. 10.1).

At that moment, similar studies with complex organisms were not feasible due to the unstable nature of RNAs,

revealing technical limitations. However, after the discovery of the reverse transcriptase enzyme (Temin & Mizutani,

1970), synthesizing from RNAs the respective complementary DNAs (cDNAs), which are molecules with higher struc-

tural stability, the reverse transcription (RT) allowed access to the whole transcriptome.

Taking advantage of the RT protocol, Adams et al. (1991) initiated a systematic human cDNA sequencing project

(Fig. 10.1), applying the Sanger-sequencing method on ABI 373A automatic DNA sequencers (Applied Biosystems,

Inc.). This pioneering use of the first-generation DNA sequencing technology provided a batch of sequences (around

400 bp), named “ESTs,” functioning as substrates for contigs and transcriptome mapping.
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Another technical innovation in transcriptome analysis was the microarray technology (Schena, Shalon, Davis, &

Brown, 1995) (Fig. 10.1). The method, developed by Mark Schena and collaborators, consisted of monitoring hybridiza-

tion events on a flat surface with immobilized DNA sequences encoding specific transcripts (the probes). The detection of

target-probe hybridizations allows determining the relative abundance of nucleic acid sequences related to the targets.

However, due to its closed architecture, the microarray technology needs the reference genome and the transcriptome

before designing the microarray (chip). In the original publication, the authors described the robotic printing of DNA ele-

ments (representing 45 Arabidopsis genes) to the surface of a silane-coated glass microscope slide (Schena et al., 1995).

Although the mentioned techniques (EST and microarray) represented relevant milestones of scientific progress in

gene expression analysis, some limitations concerning throughput, chemistry, time, costs, and accessibility hampered a

more robust and complete genome-wide transcriptome analysis. For details, see the review of Murphy (2002) and also

Lorkowski and Cullen (2006).

With the development of sequencing methods called “NGS” (Fig. 10.1), some of those limitations have been over-

come, and next-generation sequencers achieving around a 100-fold increase in throughput over the Sanger-sequencing

method showed at that time (around 2005) substantial improvements in quality and yield (Margulies et al., 2005). Thus

the NGS technology proved to be a valuable tool in biological research, with tremendous potential for global gene

expression profiling.

Initially, several molecular approaches took advantage of the high-throughput (HT) capacity of the NGS technology.

For instance, the original transcriptomic SAGE (serial analysis of gene expression) method (Serial Analysis of Gene

Expression; Velculescu, Zhang, Vogelstein, & Kinzler, 1995), providing gene expression profiles based on tags (11�14

bp) extracted from cDNAs, basically employed the Sanger-sequencing approach. Similar procedures also involved the

improved LongSAGE (tags of 20 bp; Saha et al., 2002) and SuperSAGE (with tags of 26 bp; Matsumura et al., 2005),

both techniques presenting better tag length, which provided better tag-annotation.

The SuperSAGE method combined with the NGS approach resulted in the HT-SuperSAGE technique (Matsumura

et al., 2010), allowing a deepSuperSAGE analysis (Molina et al., 2011), which promotes the genome-wide transcrip-

tome analysis. Kido, Ferreira Neto, Kido, Pandolfi, and Benko-Iseppon (2013), applying a user-friendly bioinformatics

approach with DeepSuperSAGE data, contrasted two cowpea accessions [Vigna unguiculata (L.) Walp.] showing differ-

ent drought-tolerance phenotypes and identified candidate genes responding differentially to abiotic stress of roots dehy-

drated after 150 minutes. Another tag-based NGS method, named Massive Analysis of cDNA Ends (Zawada et al.,

2014), also provided a “digital gene expression profiling” based on tags, but differentially of the SAGE or its improved

methods, without using any tagging enzyme.

FIGURE 10.1 The timeline with four cornerstone events associated with transcriptomics studies.
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However, nowadays, due to the costs of nucleic acid sequencing becoming cheaper and faster, the tag-based NGS

approach has become less employed than the RNA-Seq approach. The RNA-Seq technique emerged just over a decade

ago as another NGS application, and has become one of the most ubiquitous tools in molecular biology today, revolu-

tionizing biological research in the 21st century (Nagalakshmi et al., 2008).

Marioni, Mason, Mane, Stephens, and Gilad (2008) proposed an RNA-Seq protocol with statistical gene expression

analysis, the results of which were compared with those from gene expression arrays, the considered gold standard test.

Identifying new transcripts and studying gene expression profiling in a wide-transcriptome approach remain the princi-

pal uses of the RNA-Seq method. Thus to know how plant RNA-Seq studies have been performed in the last 5 years

(since 2015), we conducted a data mining in the PubMed database (http://pubmed.ncbi.nlm.nih.gov; September 2020),

the results of which are commented next.

10.3 The overview on plant sequencing of RNA studies

The data-mining strategy with the keywords “RNA-Seq AND plants AND abiotic stress” performed in the PubMed

database highlighted 1102 scientific articles published in the last 5 years with plant-model species and crops. About

crops, the data mining identified 389 scientific reports. From these, 176 also reported the generation of the analyzed

RNA-Seq libraries, and these articles composed the basis for the RNA-Seq overview presented in Fig. 10.2.

The identified manuscripts compiled concerning 13 issues disclosed next provided the RNA-Seq overview, pre-

sented in Fig. 10.2, and discussed here:

1. crops: the most studied crops identified in the publications were maize (9.7%, e.g., Zenda et al., 2019), rice (9.1%,

e.g., Chung et al., 2016), and Brassica napus (5.1%, e.g., Ma et al., 2017). Maize and rice are two food crops of

world relevance; together with wheat, they provide at least 30% of the food calories to more than 4.5 billion people

in 94 developing countries (Shiferaw, Prasanna, Hellin, & Bänziger, 2011);

2. plant tissues/organs: the identified RNA-Seq libraries comprised basically roots (e.g., Zhao et al., 2018) and leaves

(e.g., Peng et al., 2014). Roots are plant organs with great adaptive capacity, being able to grow and carry out their

development under different environmental conditions (e.g., substrates, humidity); usually, roots are molecularly

characterized in plants responding to abiotic stresses (for a review, see Sánchez-Romera & Aroca, 2020). Leaves

are plant organs where photosynthesis takes place (in the mesophyll); according to Chaves, Flexas, and Pinheiro

(2009), salt- and drought-stress effects on plant photosynthesis are direct (e.g., limiting CO2 diffusion through sto-

mata and the mesophyll, altering the photosynthetic metabolism) or indirect (e.g., the oxidative stress from multi-

ple stresses imposition); the carbon balance of a plant during a period of salt/drought stress and recovery may

depend on the velocity and degree of photosynthetic recovery (Chaves et al., 2009);

3. abiotic stress: most plants analyzed in Seq-RNA assays were subjected to drought (25%), salinity (20%), or cold

(11%); manuscripts covering drought and salinity reflect global warming on climate change trends (Swann, 2018)

and the increase in soil salinization processes worldwide (Shahid, Zaman, & Heng, 2018); about drought, the

imposed experimental method varied, and also the methods of drought-stress characterization; some articles

reported polyethylene glycol (e.g., Moon et al., 2018), an osmotic-stressing agent to plant cells, promoting plant

dehydration, while others indicated visual drought symptoms, characterizing the phenotypic manifestation of the

applied water-deficit treatment (e.g., Danilevskaya et al. (2019) suppressed the irrigation of corn plants, collecting

samples when 50% of the treated plants showed leaf wilting); another strategy defines the exposition time of plants

to the stress in question (e.g., Zhang et al., 2014); some strategies observed in experimental assays simulating

drought in plant transcriptomic studies were reviewed by Kido, Ferreira-Neto, Pandolfi, de Melo Souza, and

Benko-Iseppon (2016). Concerning salinity, the NaCl molarities varied from 50 μM (e.g., Zhang et al., 2018) to

400 μM (e.g., Wu et al., 2020); regarding cold, plants were exposed to 10
%
oC (e.g., Xu, Zhang, Liu, Yang, & Hou,

2016), and even to 22
%
oC (e.g., Mousavi et al., 2014);

4. abiotic stress exposure time: the duration and timing of the stress period imposed on plants analyzed by RNA-Seq

approaches varied according to the nature and the level of the applied stress, but basically covered days (43%, e.g.,

Morgil, Tardu, Cevahir, & Kavakli, 2019), days and hours (25%, e.g., Wang et al., 2016), or only hours (18%,

e.g., Ma et al., 2019); however, two publications reported 30 minutes. as the exposure time of treated plants (Dang

et al., 2013; Wan et al., 2015);

5. gene expression profiling: most of the data-mined publications (93%) highlighted global transcriptome analyses

(e.g., Wu et al., 2020), but in 7% of the articles, the authors analyzed specific categories or components expressed

in the plant responses; for example, Tang et al. (2019) performed a genome-wide identification and expression
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FIGURE 10.2 Identified manuscripts using the keywords “RNA-Seq AND plant crops AND abiotic stress” in the PubMed database (https://pubmed.

ncbi.nlm.nih.gov/) and its distribution according to 13 issues. *Only manuscripts with details of the RNA-Seq library generation and published since

2015. RNA-Seq, Sequencing of RNA.
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profile in physic nut plants, analyzing only HD-ZIP genes codifying transcript factors (TF) of that family, while de

Lima Cabral et al. (2020) reported the first TFome (23 TF families), based on differentially expressed genes of

physic nut responding to NaCl (150 mM);

6. ncRNAs: most of the identified plant RNA-Seq studies (90%) reported only transcripts encoding proteins (e.g., Wu

et al., 2015); however, in the remained studies (around 10%), ncRNAs are also mentioned; Di Bella et al. (2019)

reviewed some pipelines developed to detect specifically ncRNAs from RNA-Seq data;

7. other omics data: as expected, most identified manuscripts reported only RNA-Seq data (90%); however, in the

remained articles also genomic data are presented, usually associated with genes differentially expressed (e.g.,

Zhao et al., 2018);

8. physiological data: most of the identified RNA-Seq publications (56%) presented the desirable physiological char-

acterization of stress-treated plants (e.g., Cui et al., 2019), but an expressive number of publications showed no

similar characterization (e.g., Wu et al., 2019);

9. studied accession: in most of the identified RNA-Seq studies (67%), the studied phenotype corresponded to the

abiotic stress�tolerant accession (e.g., Hübner, Korol, & Schmid, 2015); the tolerant gene expression profile was

explored in such cases, looking for gene/transcript associated with the tolerant phenotype; however, in the

remained studies (33%), the authors also included the stress-sensitive accession (e.g., Huang et al., 2019), maxi-

mizing the biological information generated;

10. transcriptome assembly: the strategy applied in most of the data-mined RNA-Seq manuscripts (68%) was the

genome-guided assembly (e.g., Wang et al., 2018), highlighting for the respective crops the genome availability,

whereas for the remaining publications, the strategy employed was de novo assembly; details about the two assem-

bly strategies are presented in the RNA-Seq workflow discussed in the present chapter;

11. gene expression data validation: in most of the plant RNA-Seq studies (83%), authors employed the qPCR (quanti-

tative real-time PCR) method (e.g., Yang & Huang, 2018); however, in 2% of the publications, the authors applied

a different technique, but, unfortunately, in 15% of the manuscripts, gene expression data were not validated;

12. relative quantification method: in the qPCR assays, most of the relative quantification applied the ΔΔCt method

(66% of the manuscripts, e.g., Zhao, Wei, Ji, & Ma, 2019), while in 20% of those qPCR studies, the authors per-

formed a different method, but an expressive amount of the manuscripts (14%) did not inform any validation

process;

13. reference genes in the qPCR assays: in most of the identified manuscripts (93%), the authors employed a single

reference gene (endogenous control) to normalize for variations of sample loading (e.g., Wang et al., 2016), while

in only 7% of the related manuscripts, the authors employed two or more reference genes; regarding the mentioned

issue and the previous one, most of the authors did not follow the MIQE guidelines (Minimum Information for

Publication of Quantitative Real-Time PCR Experiments; Bustin et al., 2009); such guidelines target the reliability

of results to help ensure the integrity of scientific literature, promote consistency between laboratories, and

increase experimental transparency.

After presenting the RNA-Seq overview covering cultivated plants exposed to abiotic stresses, we provide some

information about an overall RNA-Seq analysis workflow.

10.4 The RNA-sequencing analysis workflow

Here we describe the main steps of a typical differential gene expression study with RNA-Seq data, concerning the

main focus on data analysis, as illustrated in Fig. 10.3. In addition, a non-exhaustive list of programs used in different

stages of RNA-Seq analysis is shown in Table 10.1. The instructions for users concerning the mentioned tools are avail-

able in the software documentation, related references, or online pages.

10.4.1 Data generation

The foundation of a typical study covering differential gene expression and RNA-Seq is data generation. Initially, it is

essential to clearly establish the research’s biological questions and adequately define the experimental design. An

excellent experimental design does not have to be complicated. Still, it is essential to note that no analysis, no matter

how impressive, can remedy an experiment conducted with an inappropriate design. That is why it is crucial to involve

the whole team from the beginning of the study (Glass, 2014; Quinn & Keough, 2002). When defining the experimental
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design, the primary issues are the number of replicates, biological and technical, the sequencing depth (read depth), the

desired read length, and the cDNA sequencing approach, providing single-end or paired-end reads.

As an experimental technique involving appropriate statistical analysis, RNA-Seq analysis requires replication to

infer the variability between and among groups. It is widely accepted that the greater the number of replicates in an

RNA-Seq assay, the more robust the results. Unfortunately, the number of replicates tends to be minimized due to

financial limitations, including the cost of RNA extraction/preparation, library generation, and sequencing of libraries.

However, an insufficient number of replicates can impair the data’s quality, compromising the biological interpretation

of the results.

Biological replicates serve the study better than technical replicates since the objective is to capture the natural vari-

ability between different biological samples within an experimental group. Technical replicates involving the same ini-

tial biological sample are generally unnecessary. But, they can be useful for assessing the technical reproducibility of

the sequencing process.

In practice, it has traditionally been used as a rule of thumb to recommend a minimum of three biological replicates

(Conesa et al., 2016). However, for the experiment to be quite reliable, it is best to estimate the minimum number of

replicates required based on biological variability between samples, the technical variability in the sequencing proce-

dures, and the intended statistical power. These values are generally not available a priori but can be derived from simi-

lar public datasets. From a dataset, one can estimate, for example, the power of their experimental design for a given

method of differential expression analysis (Conesa et al., 2016; Lamarre et al., 2018; Wu & Wu, 2016), using R

packages such as PROPER (Wu, Wang, & Wu, 2015) and RnaSeqSampleSize (Zhao, Li, Guo, Sheng, & Shyr, 2018).

FIGURE 10.3 An overview of the paths to be followed in a typical gene expression analysis by RNA-Seq approach: the workflow left (A) is pre-

ferred for data analysis when a reference genome is available for the species, and the workflow right (B) when the reference genome is not provided.

RNA-Seq, Sequencing of RNA.
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Concerning the read depth (the number of sequencing reads obtained for a sample), sufficient sequencing coverage

is relevant to detect the different transcripts expressed at different levels in each experimental condition. Therefore, as

well as the number of biological replicates, the estimate of the read depth metric takes into account the research

TABLE 10.1 Software tools currently used in RNA-Seq (sequencing of RNA) analysis workflow to discover differential

gene expression.

Tool name Use category Website (URL)

FastQC Read quality assessment https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

MultiQC Read quality assessment https://multiqc.info

PRINSEQ Read quality assessment http://prinseq.sourceforge.net

Trimmomatic Read processing and filtering http://www.usadellab.org/cms/index.php?page5 trimmomatic

Cutadapt Read processing and filtering https://cutadapt.readthedocs.io/en/stable/

TrimGalore Read processing and filtering http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/

STAR Spliced read alignment to the reference https://github.com/alexdobin/STAR

GSNAP Spliced read alignment to the reference https://github.com/juliangehring/GMAP-GSNAP/blob/master/
INSTALL

TopHat Spliced read alignment to the reference http://ccb.jhu.edu/software/tophat/index.shtml

StringTie Genome-guided transcriptome assembly https://ccb.jhu.edu/software/stringtie/

Cufflinks Genome-guided transcriptome assembly http://cole-trapnell-lab.github.io/cufflinks/

Trinity De novo and genome-guided transcriptome
assembly

https://github.com/trinityrnaseq/trinityrnaseq/wiki

rnaSPAdes De novo transcriptome assembly https://cab.spbu.ru/software/rnaspades/

Trans-ABySS De novo transcriptome assembly https://www.bcgsc.ca/resources/software/trans-abyss

BUSCO Accessing the overall quality of the assembly https://busco.ezlab.org

rnaQUAST Accessing the overall quality of the assembly https://cab.spbu.ru/software/rnaquast/

TransRate Accessing the overall quality of the assembly https://hibberdlab.com/transrate/

BLAST Annotation https://www.ncbi.nlm.nih.gov/books/NBK279690/

InterProScan Annotation https://www.ebi.ac.uk/interpro/

HMMER Annotation http://hmmer.org/

HTSeq Transcript quantification https://htseq.readthedocs.io/en/release_0.9.1/index.html

featureCounts Transcript quantification http://bioinf.wehi.edu.au/featureCounts/

RSEM Transcript quantification http://deweylab.github.io/RSEM/

Kallisto Transcript quantification http://pachterlab.github.io/kallisto/

Salmon Transcript quantification https://salmon.readthedocs.io/en/latest/salmon.html

DESeq2 Differential expression analysis http://bioconductor.org/packages/release/bioc/html/DESeq2.
html

edgeR Differential expression analysis http://bioconductor.org/packages/release/bioc/html/edgeR.html

Limma-Voom Differential expression analysis http://bioconductor.org/packages/release/bioc/html/limma.html

Blast2GO Functional analysis https://www.blast2go.com

GOSeq Functional analysis https://bioconductor.org/packages/release/bioc/html/goseq.html

Trinotate Functional analysis https://github.com/Trinotate/Trinotate.github.io/wiki
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approach and some biological characteristics of the organism, such as reference genome availability, genome size,

ploidy level, and gene number.

It is equally important to consider whether the study aims to analyze differential expression by gene alone or by

transcript and isoform (distinct transcripts resulting from alternative splicing events). Typically, each library (represent-

ing a sample) shows a read depth of 10�30 million reads. However, the ideal read count per sample depends on the

species under study and the variables listed earlier.

If excessively increased, the read count tends to give progressively smaller returns, while the decrease may limit the

power to detect differentially expressed genes (Bass, Robinson, & Storey, 2019; Liu, Zhou, & White, 2014). The bot-

tom line implies that, given some replicates and a read depth, especially when the transcriptome will be de novo assem-

bled, the minimal sequencing coverage depth required needs to be satisfied (Li, Tong, Xia, & Wei, 2019). However, it

is better to increase the number of replicates than to massively increase the depth of read coverage of an insufficient

number of replicates. That is because biological replicates contribute more to improving the statistical significance

tests’ robustness to detect relatively lower changes in gene expression at the transcript level (, twofold).

After sample collection, the total RNA is extracted and prepared for the library construction (mRNA enrichment,

fragmentation, cDNA synthesis, adapter ligation, PCR amplification). The library sequencing is usually carried out by a

certified sequencing service provider, which returns the raw sequencing data for subsequent processing and analysis.

Concerning the library construction protocols, the first-generation RNA-Seq protocol did not preserve that informa-

tion about which strand originated the transcripts. In the strand-specific library preparation protocol or stranded RNA-

Seq, the specificity about the origin for each transcript remains in the sequencing data (Levin et al., 2010). Although

relatively more expensive, it is preferable to perform a stranded protocol because the strand information provides

greater specificity in quantifying the transcript expression (Zhao et al., 2015), correct assembly of the transcripts, and

better accuracy of new transcripts identification.

The cDNA sequencing is performed from just one end (single-end) or both ends (paired-end), and the choice

between single-end or paired-end sequencing depends primarily on financial constraints since paired-end sequencing

implies sequencing twice as many reads. Considering that specific size fragments were selected in library construction,

paired-end sequencing provides more information for the alignment process, benefiting the read mapping to reference

for the genome-guide or de novo assembly, especially the last one.

About the read length, 50 bases are satisfactory for differential gene expression analysis, which is the minimum

recommended. Regarding de novo transcriptome assembly, longer read length usually benefits the results when good-

quality reads are provided. Additionally, in paired-end sequencing, it is usual to determine the read length so that the

total fragment size in the sequencing library is slightly higher than the sum of two read lengths.

Concerning the sequencing platforms, Stark, Grzelak, and Hadfield (2019) reviewed potentialities and applications

of the main NGS technologies available for RNA-Seq, including short-read cDNA sequencing (Illumina and Ion

Torrent platforms), long-read cDNA sequencing (Pacific Biosciences—PacBio and Oxford Nanopore—ONT), and

long-read direct RNA sequencing (ONT platform). The authors inferred, and we also concluded, that more than 95% of

the published RNA-Seq data available today applied the Illumina short-read sequencing technology. Thus Illumina is

currently the technology of choice for RNA-Seq to detect and quantify transcriptome-wide gene expression, mainly due

to the HT and relatively low-error rates. Therefore the RNA-Seq analysis described next concerns the Illumina

platform.

10.4.2 Raw data processing

The sequencing process is susceptible to read errors, bias, artifacts, and adapter/primer contamination, requiring ade-

quate preprocessing before submitting the data to the transcriptome assembly. Sequencing errors are generally charac-

terized as low-quality sequences, meaning that the read sequence analyzed is not faithful to the original sequence.

Typically, the end of the reads accumulates most of the sequencing errors, and these errors provide differences in reads

regarding the original sequences, making it difficult to assemble the full-length transcripts. With a trimming process

step, the last low-quality bases are pruned, preparing the reads for assembly.

Contaminants such as vectors, adapters, and polyadenylated segments at the end of the reads also interfere with the

assembly, possibly joining sequences from different transcripts in the same contig. Even considering that most assem-

blers perform detection and filtering of errors and, sometimes, correction of contig error, such errors and contaminants

must be detected and properly removed before assembly.

Therefore filtering low-quality reads and contaminants and trimming low-quality bases and adapter sequences are

essential to speed up and optimize the further steps in the analysis, especially for de novo transcriptome assembly. It is
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crucial to perform a read quality assessment before and after filtering and trimming reads to evaluate the results of the

processing steps.

10.4.3 Data analysis

10.4.3.1 Step 1—transcriptome assembly

The transcriptome assembly aims to establish the set of transcripts depicting the transcriptome of the organism under

study. Even in the case of model organisms and well-studied species with a fully sequenced and annotated genome, the

transcriptome assembly may be necessary, for instance, to discover new transcripts and splicing variants.

It is common to classify assembly methods in two categories: (1) de novo when the assembly of transcripts includes

only the reads and (2) genome-guided when the assembly reflects the spliced alignment of the reads with the reference

genome. The approach to be chosen depends mainly on the availability of the reference genome. However, many crops

lack a reference genome, and the RNA-Seq study depends on the de novo approach. In addition to the cases when the

reference genome is not available, the de novo approach is performed complementing the genome-guided strategy or

when the genome sequence is very fragmented.

The de novo assembly approach reconstructs the transcripts considering the overlapping of sequencing reads. If the

bases at the end of a read match to the bases at the end(s) of another read(s), then connection and order between them

are established about the original sequence. In most modern de novo assembly algorithms, these orders involving the

sequencing reads, represented in a de Bruijn graph (Flicek & Birney, 2009; Geniza & Jaiswal, 2017), are analyzed for

the assembly of contigs, representing the transcripts’ sequences. The comparison of contigs reduces redundancies and

allows artifact identification, such as transcript fusion and spurious insertions. Ideally, full-length transcripts are recon-

structed, but this is hardly achieved, and most of the transcripts are usually partial sequences (fragments).

Relevant challenges in de novo assembly are the correct assembly of full-length transcripts and specific splicing iso-

forms, as those low expressed, and the distinction between closed members of gene families (paralogs and orthologs).

Although the de novo approach is relatively more challenging to perform than the genome-guided strategy, requiring

higher computational processing power, de novo assemblers are in continuous development, implementing new error

checking routines to provide more accurate results (Hölzer & Marz, 2019).

When a high-quality reference genome sequence is available, the recommended genome-guided approach first aligns

sequencing reads to the reference genome using a specialized algorithm for spliced alignment, identifying clusters of

reads representing the potential transcripts. Thus, based on the alignment results, the assembly is generated.

Genome-guided approaches about de novo strategies usually generated better assemblies, showing a better distinc-

tion between paralogs, higher sensitivity detecting low-expressed splice variants, and lower artifact generation, such as

transcript fusion and spurious insertions. However, to ensure these advantages, it is necessary to provide a high-quality

reference genome sequence with minimal errors and well-annotated exons. The final result also depends on the accu-

racy of the alignments and mapping of reads in the provided reference genome.

As mentioned, the de novo strategy may complement the genome-guided approach, contributing to solving pro-

blems, such as covering gaps in the reference genome, correctly accessing transcripts of genes positioned in highly

polymorphic genomic regions, or generating particular transcriptomes from divergent genotypes.

However, advances in sequencing technologies, also improvement of de novo assemblers in terms of data accuracy,

and some specific issues in RNA-Seq studies, indicate that both strategies (genome-guided and de novo) tend to be nec-

essary for the foreseeable future. Some works use both strategies to ensure that unique genes to a distinct cultivar (not

covered in the reference genome) can also be identified and validated (e.g., Kovi, Amdahl, Alsheikh, & Rognli, 2017).

Besides, the de novo approach is mandatory for researchers working with orphan species without a reference genome.

Recently, RNA-Seq data generated by the SGS (Illumina short reads) technique have been combined with long

reads, such as those from single-molecule real time (SMRT, PacBio) sequencing, allowing higher assembly reliability,

besides the identification of splice variants (e.g., Zhang et al., 2020).

10.4.4 Accessing the overall quality of the assembly

The availability of an accurate set of reference transcript sequences is critical for all downstream steps in the analysis.

De novo assemblies are generally more susceptible to errors, but they are notably favored by paired-end reads, which

improves the correct joining of exons in the same contig. Since de novo assembly methods are particularly more com-

plicated to perform, they require special attention when assessing the overall assembly quality.
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When good-quality reference sequences (genome/transcriptome/proteome) are available for the species studied or a

closely related species, in such a case, a good practice is to compare the generated assembly with the reference

sequences to evaluate the assembly’s accuracy. Parameters such as the proportion of transcripts uniquely aligned to the

references, average coverage per transcript, contiguity of the alignments, and the ratio of the differences observed in the

alignments are good indicators of the transcriptome assembly quality.

Otherwise, when a reliable reference set is not available, the assembled transcripts’ completeness can be analyzed using

BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set as a reference (Seppey, Manni, & Zdobnov, 2019).

10.4.5 Transcript quantification

Expression values are obtained based on the read coverage of each transcript represented in the transcriptome. When

provided the reference genome, reads are mapped to the exonic regions of genes throughout the whole genome, allow-

ing to quantify the expression of each represented gene. When a high-quality reference genome sequence is available,

the genome-based approach is more appropriate for counting reads by gene rather than splice isoforms or transcripts.

Without using a reference genome to estimate expression values by gene, transcript, or splice isoform, two approaches

are available: alignment-based methods, when reads are aligned to the transcript sequences, and alignment-free meth-

ods, when reads are pseudo-aligned to the transcriptome to deduce the count of reads paired with each transcript.

Alignment-free procedures show significant improvement in speed and memory usage compared to the alignment-based

methods (Bray, Pimentel, Melsted, & Pachter, 2016).

10.4.6 Differential expression analysis

A gene expression analysis at a genome-scale, revealing genes or transcripts presenting relevant differences in gene

expression profiles concerning two experimental conditions, is the first common RNA-Seq application. The approach

helps to understand the molecular basis of phenotypic variations involving functional, developmental, or stress responses.

Before any comparison, it is essential to properly normalize the count data, considering factors that may impact the

count values, such as transcript length, read depth per sample, and sequencing bias as GC-content (guanine-cytosine

content), if necessary. The normalization of counting data aims to minimize the systematic effects of these factors. For

example, assuming that longer transcripts add a larger count of reads mapped along the sequence, compared to shorter

transcripts at the same level of expression, normalization by transcript length would be necessary to compare expression

between different genes within the same sample, but not to compare the expression of the same gene in different

samples.

Methods such as RPKM (Reads Per Kilobase of exon sequence, per Million reads mapped), FPKM (Fragments Per

Kilobase of exon sequence, per Million fragments mapped), and TPM (Transcripts Per Million) consider the read length

normalization and generally performed during the counting process. However, differential expression analysis is based

on comparing expression values between samples. For this, it is more appropriate to use a normalization method

designed to correct biases in the read depth per sample, like the TMM (Trimmed Mean of M-value), available in edgeR

(Robinson, McCarthy, & Smyth, 2010), and RLE (Relative Log Estimate), available in DESeq2/DESeq (Love, Huber,

& Anders, 2014).

If properly normalized at the different expression levels, the data could be centered in zero and spread evenly along

the y-axis in the MA plot. This plot is a scatter plot of two experimental groups with the transcript abundance differ-

ences on the y-axis and the average of normalized expression counts on the x-axis, both on the logarithmic scale with

base two. Additionally, a GC-content normalization could be done by performing EDAseq (Risso, Schwartz, Sherlock,

& Dudoit, 2011).

The most straightforward approach for measuring expression changes by comparing different conditions is the fold

change ratio between the average counts in each condition, usually expressed as a base two logarithm. Fold change

units describe the ratio between two count values, but not exactly the difference. Methods based on statistical tests, con-

sidering the variability in expression levels from replicates, indicate whether the gene or transcript is differentially

expressed or not, comparing two experimental situations.

10.4.7 Annotation and functional analysis

After the differential expression analysis, it is fundamental to explore how differentially expressed genes are related to

the biologic context under study. For this purpose, it is essential to connect the observed gene expression profiles with
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the currently available knowledge about the function of genes and proteins, including potential protein families and

functional classification resources (InterPro, Pfam, HMMER), biochemical metabolic pathways, and gene ontology,

helping to explain specific molecular biology or functional genomics aspects involved. The goal is to understand how

the components (e.g., differentially expressed genes) of the molecular system are involved in the process that triggers

the observed phenotype.

10.5 Functional genomics

As genomic and transcriptomic analyses increase information about genes and their regulation under experimental con-

ditions, including abiotic stress (Wang et al., 2018; Zhang et al., 2017), also proteomics studies presented good predic-

tive models of expression, describing, in addition to protein abundances, protein�protein interaction (PPI)/metabolite

interactions, and inferences about metabolic pathways (Luan et al., 2018). However, through the NGS technology

expressive amount of data has been regularly increased, and together with the growing refinements of the analysis, bio-

informatics was inserted into the big data scenario. Thus the suffix -omics added to biology disciplines defined particu-

lar fields of study, and besides genomics, transcriptomics, and proteomics, also the fields metabolomics, interactomics,

phenomics, among others, were derived. These multiomic approaches are complementary, and they allow the structural,

functional, and dynamic characterization of organisms.

While transcriptomics focuses on the RNA abundances corresponding to genes expressed in a biological sample under

particular conditions, proteomics encompasses the set of proteins and their activities. In turn, metabolomics focuses on the

chemical processes and the nature of metabolites produced during metabolic processes, while interactomics covers several

interactions, including PPIs and their consequences, and finally, phenomics analyzes organisms based on phenotypes. All

of these multiomic approaches contribute to functional genomics (Hong, Kim, Chandran, & Jung, 2019).

With the NGS data increasing its storage in public and private databases, the development of bioinformatics

resources provided organization, standardization, and curation of databases (Arora et al., 2018). In general, biological

databases provide users with the search and retrieval of data, applying query models in the most diverse layers of

knowledge, exploring, depending on the database, resources such as DNA/RNA annotations and analyzes, protein

sequences, metabolites, molecular structures, and expression profiles (Arora et al., 2018; Marr, 2018; Rao, Das, Rao, &

Srinubabu, 2008).

Regarding plant genomics resources, the website portal Phytozome, the Plant Comparative Genomics platform of

the Department of Energy’s Joint Genome Institute (https://phytozome.jgi.doe.gov/pz/portal.html, accession: December

2020), hosts (v13, with genomes released since May 2019) 224 assembled and annotated genomes covering 128

Archaeplastida species (235 genomes from Viridiplantae species). The functionally annotated genes, a powerful

resource, are based on protein analysis using several resources, including KOG (euKaryotic Orthologous Groups),

KEGG (Kyoto Encyclopedia of Genes and Genomes), and InterPro families (Goodstein et al., 2012).

Concerning plant metabolomics, the KNApSAcK family databases (http://www.knapsackfamily.com/KNApSAcK/;

Afendi et al., 2012) integrate metabolite-plant species databases for multifaceted plant research. Performing a search by

the organism (the scientific name), it is possible to identify/select metabolites, among 53,032 compounds and 23,911

species, according to the last update of the database (11/19/2020). Another plant metabolomics resource for gene

expression association with metabolite accumulation is the platform PRIMe (http://prime.psc.riken.jp/; Akiyama et al.,

2008), the website portal from RIKEN (CSRS, Center for Sustainable Resource Science, Japan), which provides tools

ranging from transcriptomics to metabolomics (Sakurai et al., 2013).

About phenomics, since functional genomics studies allow the prediction of plant genes controlling desirable agro-

nomic traits, a practical way to identify gene functions is to analyze phenotypic differences expressed by accessions or

compare them with wild-type plants. The NGS technologies enabled, for example, to characterize 91,513 mutations

associated with 32,307 rice genes (Hong et al., 2019), providing information indexed in the cured databases. These

mutations are powerful resources qualifying functional characterization of genes and respective genotypes/phenotypes.

The constant evolution of bioinformatics resources increases the data’s confidence and facilitates functional annota-

tion of candidate genes. In this regard, a multiomic data analysis by integrative approaches provides the proposition of

new hypotheses in a biological context.

10.6 Final considerations

In the early days of transcriptomics and first-generation DNA sequencing, even a limited number of partial transcripts

(e.g., ESTs) already indicated the potential of that approach. However, such studies lacked depth and involved
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experimental designs that did not provide robust statistical support to assess the global gene expression. Since then, sev-

eral techniques (with open or closed architecture) have been developed. Despite many possibilities, the RNA-Seq per-

formed with the NGS technique is undoubtedly the most accurate and disseminated. Such development also benefited

from the ability to generate many reads at progressively more affordable costs. However, the presented RNA-Seq over-

view covering cultivated plants exposed to abiotic stress pointed out that most of the identified manuscripts (covering

the last 5 years) did not report any physiological data of those plants exposed to the abiotic stress. Also, some validation

steps of the in silico differential expression detected for selected genes, usually by RT-qPCR assay, were performed

with only one reference gene, sometimes not following the MIQE guidelines.

The overall RNA-Seq analysis workflow suggested a genome-guided analysis of the RNA-Seq data instead of the de

novo assembly strategy when a high-quality reference genome of the organism is available. Probably, the number of

differentially expressed genes is higher in de novo assemblies due to the lack of strand-specific information. Studies

using (and comparing) both strategies are still scarce. De novo assembly strategy is also justified considering that differ-

ent accessions may present exclusive gene regions worthy of validation by qPCR (in this case, essential). Besides, both

methods identify many similar candidate genes, thus demonstrating the potential of the de novo method of capturing

gene candidates, even in the absence of a reference genome. There is an increasing tendency for hybrid assembly

approaches, that is, associating short cDNA sequencing (e.g., Illumina) to long (e.g., SMRT) genome sequencing, con-

sidered a promising strategy for researchers working with orphan crops without a reference genome.

Concerning the complexity and size of plant genomes, bioinformatics approaches currently possible (and recom-

mended) raise plant transcriptomics at the level of big data, providing massive information to be validated and under-

stood by the scientific community. It should be noted that accurate bioinformatics analysis requires databases

continually curated and updated. In this context, plant databases covering genomic and transcriptomic data are well

represented compared with other omics databases, such as lipidome, ionome, or phenome, currently less represented.

Thus genomic/transcriptomic analyses are favored due to the higher number of cured data and databases. These data-

bases stand out among the arsenal of bioinformatics resources, and since crop productivity depends on functional genes,

those databases with appropriate approaches may assist researchers in the selection of genes associated with desirable

agronomic traits. Also, integrative approaches exploring multiomic databases will facilitate machine learning in identi-

fying gene networks for desirable agronomic traits, helping to discover new genes and related metabolic subpathways.

Aditionally, with the development of tools or applications, including target gene editing (CRISPR technology; Cong

et al., 2013), the biotechnoligcal manipulation of genes could improve key agronomic traits.
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11.1 Introduction

RNA has largely been regarded simply as the intermediate between DNA and protein products. However, the last sev-

eral years have led to the identification of a veritable cornucopia of novel roles including, but not limited to, genome

stability changes, expression modification, and physiological changes. Collectively, these functions speak to a deep and

not fully discovered biological significance in plants (Shin & Shin, 2016). Such scientific breakthroughs have been

facilitated by the integration of novel technologies such as high-throughput RNA-seq methodologies into standard

research practice. In effect, this speaks to the need to annotate, characterize, and understand RNA types found within

the plant transcriptome (Morgado & Johannes, 2019). Accordingly, this chapter will serve as a primer for the applica-

tion of novel databases, tools, software packages, data science techniques, and the like to the plant genome.

11.1.1 Noncoding RNA classes in plants

There are a range of essential noncoding RNAs (ncRNA), including transfer RNA (tRNA), small-interfering RNA

(siRNA), ribosomal RNA (rRNA), small nucleolar RNA, tRNA-derived small RNA (tsRNA), microRNA (miRNA),

heterochromatic siRNA (hc-siRNA), natural antisense siRNA (NAT-siRNA), phased siRNA (phasiRNA), trans-acting

siRNA (tasiRNA), and several others, in which each possesses key regulatory functions (Bailey-Serres, Zhai, & Seki,

2020; Borges & Martienssen, 2015; Morgado & Johannes, 2019; Szakonyi, Confraria, Valerio, Duque, & Staiger,

2019). These molecules, which can be categorized as short, long, linear, or circular ncRNA, vary enormously with

respect to function, structure, and distribution (Cao, Wahlestedt, & Kapranov, 2018; Liao, Li, Cui, & Zheng, 2018;

Signal, Gloss, & Dinger, 2016).

The abovementioned ncRNA classes may be broadly categorized as small RNA (sRNA), are created through the

action of Dicer-like (DCL) proteins, and are most frequently found in transcriptomes with length ranging from 20 to 24

nt. These small RNAs are formed from two groups of precursor molecules: those with hairpin structures (hpRNA), and

double-stranded RNA (Axtell, 2013). The former encompasses miRNA and non-miRNA while the latter describes

highly abundant siRNA and the associated forms of siRNA (Borges & Martienssen, 2015).

11.2 Small RNA

11.2.1 MicroRNA

miRNAs are a class of noncoding small RNA transcribed from adjacent miRNA genes as a polycistron or monocistron

by the action of RNA polymerase II. After splicing to remove introns, polyadenylation, and addition of the 50 cap, the
final product is a 20- to 24-nt molecule which folds into hairpin-like structures. At this stage the molecule is classified
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as a primary miRNA. They subsequently undergo nuclear cleavage by DCL1 into precursor miRNA (pre-miRNA) and

are cleaved again in the cytoplasm to produce a mature miRNA duplex. The duplex unwinds and the mature miRNA

may then take on a functional role by assembling with Argonaute proteins to create the RNA-induced silencing com-

plex, or RISC, which guides cleavage or repression of target mRNA by pairing with complementary targets (Jones-

Rhoades, Bartel, & Bartel, 2006; Lee, Jeon, Lee, Kim, & Kim, 2002; Wang, Mei, & Ren, 2019). The miRNAs are also

capable of regulating protein-coding mRNA or other ncRNAs through repression due to cleavage or inhibition of trans-

lation (Axtell, 2013).

It is also briefly worth discussing an alternative form of miRNA: the isomiRNA or isomiR. The identification of

such variants has resulted from advances in next-generation and deep sequencing which may be applied for the identifi-

cation of substitutions and edits at the termini. Variations may be classified as trimming variants, in which the cleavage

site of the DCLs is changed, nucleotide addiction variants, and nucleotide substitution variants. This class may be iden-

tified through software algorithms trained to identify mapping mismatches, modifications such as adenylation, and by

analysis of origin (template or nontemplate). Analogous to miRNA, the isomiRNA function as regulatory molecules

(Neilsen, Goodall, & Bracken, 2012; Sablok, Srivastva, Suprasanna, Baev, & Ralph, 2015).

To identify miRNA, it is necessary to screen the genome for the appropriate loci. These consist of hairpin loop

sequences. However, issues may arise in this process as miRNA loci often have high false-positive rates of identifica-

tion. The associated algorithm also mandates a great deal of prior information to more accurately identify these loci and

broadly applies RNA sequencing data in tandem with genomic sequencing approaches (Bortolomeazzi, Gaffo, &

Bortoluzzi, 2017). RNA-seq or sRNA seq kits may be used to collect the necessary transcriptomic data and it is subse-

quently cleaned to discard unrelated RNA class information. This dataset may then be aligned to a reference genome,

though if this is not possible to a dearth of extant genomes there exist alternative software tools that may be applied to

the task. Bowtie or BWA accepts mRNA data as well as Expressed Sequence Tag (ESTs) (short DNA sequences gener-

ated from cDNA clones which may be used to identify coding regions of DNA), Genome Survey Sequences (analogous

to ESTs but are genomic in origin), or the genomes of closely related species. To effectively validate the identification

of hairpin precursor sequences, it is necessary to evaluate it based on known pathway characteristics, including second-

ary structure stability, loop structure, and identification of clustered sequences illustrating sites leading to the creation

of miRNA�miRNA* duplexes. Mature miRNA may be detected in precursors based on relative abundance (Ma, Tang,

Qin, & Meng, 2015). It is also possible to detect clusters of reads, or block groups, which exist on the same strand and

have similar start/stop positions, corresponding to miRNA and miRNA*. These clusters are profiled based on similarity,

read length, and location. However, this read profiling is limited for the purpose of detecting novel miRNA. Finally, it

is possible to make predictions by assembling sRNA into contigs which are then filtered and used to create candidate

miRNA duplexes. These candidates are examined for features, including length and paired bases relative to unpaired

bases. This approach is particularly useful for those species without a reference genome as it applies machine learning

algorithms using model species to create predictions in nonmodel species (Berezikov, Cuppen, & Plasterk, 2006).

Ultimately, a number of tools have become available for miRNA loci annotations based on size, abundance of

miRNA and miRNA*, and the secondary structures of hairpin precursors. Each approach offers variable efficacy for

different settings and thus may generate conflicting results (Gomes et al., 2013; Mendes, Freitas, & Sagot, 2009). False-

positive predictions are of particular concern, and several studies have been published describing optimal criteria for

annotation. Several tools seek to strictly adhere to these guidelines such as ShortStack and miR-PREFer (Axtell, 2013;

Lei & Sun, 2014). Issues also arise with the fact that sRNA-seq is generally biased toward certain miRNA. It is possible

to differentiate between miRNA and other sRNAs through RNA-dependent RNA polymerase (RDR) mutants as this

enzyme group is not involved in miRNA synthesis (Kozomara & Griffiths-Jones, 2014).

In addition to annotation tools, recent increases in miRNA data have necessarily led to the need to establish miRNA

databases for plants and other organisms. One such example is miRBase, a database that uses standard names for

miRNA families, functions using guidelines to prevent incorrect annotations, and allows for searches to be performed

on genomic loci, pre-miRNA, and mature miRNA (Griffiths-Jones, Grocock, van Dongen, Bateman, & Enright, 2006;

Kozomara, Birgaoanu, & Griffiths-Jones, 2019). While an incredible resource, it is necessary to acknowledge that there

are miRNAs present in the database which have minimal evidence supporting their existence, fail to meet standard

annotation criteria, or are degraded fragments. This may largely be attributed to the presence of siRNA which interferes

with efforts to sequence miRNA in a sample given their relatively similar size. Such concerns have led the research

community to adopting the usage of pooled sRNA-seq libraries. These account for genomic loci which create miRNA

at lower levels by applying stringent parameters. Examples of such tools include sRNAanno and PmiREN (Chen et al.,

2019; Guo et al., 2019). Further, for plant-specific studies, sRNA-seq data are available in databases such as

the Sequence Read Archive, Cereal small RNA database, Arabidopsis Small RNA Database, and the like. These
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repositories are specific to plants or particular plant species (Feng et al., 2020; Johnson, Bowman, Adai, Vance, &

Sundaresan, 2007; Leinonen, Sugawara, & Shumway, 2011). A collection of some of the most commonly cited tools

and databases employed for plant miRNA annotation is found in Table 11.1.

11.2.2 Small-interfering RNA

Long dsRNAs form through hybridization of sense and antisense transcripts, hybridization of RNA with complementary

sequences, RDRs, or folding of inverted repeat sequences. Precursors of siRNA are transcribed by Pol II and are formed

from transposable elements, noncoding loci, and protein-coding genes. These protein-coding genes are subject to RDRs

TABLE 11.1 Most commonly cited tools and databases employed for plant miRNA annotation.

Annotation tools

Tool Language Platform Description URL

MIReNA
(2010) v2.0

C, Bash,
Python,
Perl

Linux A genome-wide search algorithm that looks for miRNA
sequences by exploring a multidimensional space
defined by only five parameters. It validates pre-miRNAs
with high sensitivity and specificity, detects new miRNAs
by homology or deep-sequencing data.

http://www.lcqb.
upmc.fr/mirena/index.
html

PIPmiR (2011) Java Any
platform

PIPmiR is an algorithm to identify novel plant miRNA
genes using a combination of deep sequencing data and
genomic characteristics. This algorithm can be used as a
full pipeline, a classifier, or a precursor sequence
predictor in plants.

https://bioconda.
github.io/recipes/
pipmir/README.html

mirDeepFinder
(2012)

Perl Linux This software package developed to identify and
functionally characterize plant miRNAs and their
sequence targets from sRNA datasets obtained from deep
sequencing. Functions include preprocessing of raw data,
identifying miRNAs, classifying novel miRNAs, miRNA
expression profile production, predicting miRNA targets,
and gene pathway/network analysis.

NA

CAP-miRSeq
(2014)

Perl,
Python, R,
Bash

Linux This tool is an analysis pipeline for miRNA which
integrates read preprocessing, alignment, mature/
precursor/novel miRNA qualification, and variant
detection in miRNA coding region.

http://
bioinformaticstools.
mayo.edu/research/
cap-mirseq/

mirTools 2.0
(2013)

Perl Linux This offers a range of functions including, but not limited
to detection and profiling of various ncRNA,
identification of miRNA-targeted genes, annotating by
function, and taxonomic profiling.

http://www.
wzgenomics.cn/
Mr2_dev/

isomiRex
(2013)

Perl Linux isomiRex is an open-access web platform to identify
isomiRs and to offer graphical visualization of the
differentially expressed miRNAs.

http://bioinfo1.uni-
plovdiv.bg/isomiRex/

Databases

Database Description URL

miRbase (2018)
v22.1

This database consists of published miRNA sequences and annotation, including
hairpin precursors, mature miRNA sequence, and location information across .80

plant species. It also provides microRNA functional information, related literature and
provides nomenclature rules.

http://www.mirbase.
org/

CSRDB (2007) CSRDB contains maize and rice sRNA sequences developed through high-throughput
pyrosequencing.

http://sundarlab.
ucdavis.edu/smrnas/

mirEX (2012)
v2.0

Holds details on 461 miRNAs from 3 plants (Arabidopsis thaliana, Hordeum vulgare,
Pellia endiviifolia) and provides a platform for comparative analysis of pri-miRNA across
plant species.

http://www.combio.pl/
mirex2
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and processed by DCL2 and DCL4 to create siRNA. Such siRNAs are involved in gene silencing and can also induce

methylation of target sequences (Kamthan, Chaudhuri, Kamthan, & Datta, 2015; Wu et al., 2010). A significant natural

application of siRNA is in viral defense pathways. Viral-derived siRNAs are capable of defending host cells against

plant viruses and may also be used to identify known and novel plant viruses (Vivek, Zahra, & Kumar, 2019). Types of

siRNA include, but are not limited to, hc-siRNA, tasiRNA, phasiRNA, NAT-siRNA, and tsRNA (Guo, Liu, Smith,

Liang, & Wang, 2016).

11.2.3 Heterochromatic small-interfering RNA

Hc-siRNAs are derived from repetitive transposon-associated, intergenic regions. Hc-siRNA may function in RNA-

directed DNA methylation by targeting ncRNA transcripts associated with chromatin. They are roughly 24 nt in length

and originate from a dsRNA precursor of 30- to 50-nt length. The 24-nt length must be noted, given that it allows for

researchers to distinguish between these and other sRNAs which are frequently 21�22 nt in length (Axtell, 2013;

Huang, Wang, Hu, Hamby, & Jin, 2019; Zheng, Wang, Wu, Ding, & Fei, 2015). hc-siRNA is produced in cells from a

pathway requiring RNA polymerase IV, RDR2, DCL3, and AGO4 (Deng, Muhammad, Cao, & Wu, 2018). Despite

knowledge of these components, however, hc-siRNA biogenesis is poorly understood and as a result, annotation of loci

producing this class of siRNA is sparse. Thus there are few no tools available for data scientists to detect, predict, or

explore hc-siRNA. The database, sRNAanno, does include information on hc-siRNA in plant species based on 23�24

nt abundance (Chen et al., 2019).

11.2.4 Phased small-interfering RNA and trans-acting small-interfering RNA

PhasiRNAs are produced in a “phased” pathway in which primary transcripts are cleaved into 21-, 22-, or 24-nt length

starting at a specified terminus. This initial site is determined by miRNA or siRNA cleavage from the PHAS loci which

is processed to dsRNA. Phasing refers to the successive processing of dsRNA in sequence. The first cleavage site indi-

cates the start of the first phasiRNA. After processing the phasiRNA takes on a functional role through association with

AGO4 to degrade mRNA or silence transcripts. phasiRNA may also be created from long inverted repeats. tasiRNAs

are a subpopulation of phasiRNA which may be produced from a tasiRNA gene which produces a noncoding transcript

that induces mRNA cleavage in trans (Fei, Xia, & Meyers, 2013; Komiya, 2017; Wu, Chen, & Tian, 2017).

These siRNA classes are identified by the aforementioned phasing pattern and are broadly categorized as secondary

siRNA. They may be detected by observing fixed-length in-phase and out-of-phase read accumulation around a cleav-

age start position. They are then assessed by ranking the potential phased arrangements. tasiRNA loci may be distin-

guished by observing mapping locations of sRNA reads to phasi or tasiRNA loci relative to start positions of cleavage

and the target transcript (Chen, Li, & Wu, 2007; Guo, Qu, & Jin, 2015; Kakrana et al., 2017; Zheng, Wang, & Sunkar,

2014).

With respect to available tools and databases, the only active database with siRNA annotations for these classes is

the tasiRNAdb (Zhang, Li, Zhu, Zhang, & Fang, 2013). Issues arise frequently in annotating these classes due to false

positives from highly expressed 24-nt sRNAs passing as phasiRNA. Additional algorithms are likely necessary to cor-

rect this issue as well as to explore the potential tissue-specific expression of phasiRNA (Carbonell, 2019).

11.2.5 Natural antisense-small-interfering RNA

NAT-siRNAs are produced from dsRNA precursors but differ in that the dsRNAs of other siRNA types rely on RDR.

NAT-siRNA may be broken into “cis” or “trans” groups. cis-NAT-siRNA is formed from sRNA transcribed from oppo-

site strands of the same genomic loci which anneal to create the dsRNA. dsRNA precursors that form from nonoverlap-

ping genes and thus have mismatches in the annealed regions are classified as trans-NAT-siRNA. Nat-siRNAs have

been reported in plants, though the cis form has been identified in greater abundance (Zhang, Xia, & Lii, 2012).

NAT-siRNA has been shown to perform transcriptional interference at the RNA level as well as epigenetic modifi-

cations. However, there has been little research conducted on this particular class. As with other sRNAs, the lack of

references makes classification, identification, or prediction difficult and speaks to the need for further work in this

space. Current pipelines include NATpipe and NATpare (Thody, Folkes, & Moulton, 2020; Yu, Meng, Zuo, Xue, &

Wang, 2016).
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11.2.6 Transfer RNA�derived small RNA

tRNA fragments with functional roles represent a novel class of ncRNA which exist in plants and differ in marked ways

from traditional tRNA. This particular class of RNA is produced through endonucleases acting on pre- and mature tRNA

and is believed to possess functions analogous to other interfering RNA. These endonucleases include DCLs, though recent

studies have validated a DCL-independent pathway as well. Broadly, the biogenesis of this class of RNA is poorly under-

stood. tsRNAs are roughly 15�42nt in length (Li, Xu, & Sheng, 2018; Martinez, Choudury, & Slotkin, 2017).

tsRNAs are a diverse group of RNA and are classified as either tRNA halves (31�40 nt) or tRNA-derived fragments

based on their size and loci in the tRNA itself (Zhu, Ge, Li, Shen, & Guo, 2019). Cleavage at the anticodon loop of a

mature tRNA molecule creates tRNA halves when under stress. These, in turn, are further divided into two groups

based on whether they maintain the 50 or 30 group in their structure. tRNA fragments are defined by mapping to both

pre- and/or mature tRNA transcripts and may be further grouped into trF-5 (derived from 50 end of tRNA and are

14�30 nt), trF-3 (derive from 30 end of the tRNA and are 18�22 nt), and trF-1 (derived from the 30 end of pre-tRNA

by RNase Z). Further diversity stems from the existence of stress-induced tRNA fragments, iso-acceptors and iso-

decoders, and modifications to tRNA. Ultimately, further research is needed to properly classify this and name tsRNA

classes (Alves et al., 2017; Loss-Morais, Waterhouse, & Margis, 2013; Xie et al., 2020).

Using sRNA-seq data mapped to annotated tRNA genes, it becomes possible to identify tsRNA without any knowl-

edge of the sequence of interest. However, several issues arise in the mapping process. In particular, mapping sRNA

reads to tRNA genomic loci (the tRNA space) is difficult for a number of reasons, including incomplete tRNA annota-

tion, the fact that sRNA reads may miss tRNA produced by splicing intron regions in pre-TRNA, that the canonical

CCA sequence on the 30 end of tsRNA may appear in other sequences, the overlap in size of miRNA and tsRNA, the

presence of 50 phosphates and 30 hydroxyls in both tRFs and miRNA, and significant sequence modifications (Kumar,

Kuscu, & Dutta, 2016).

There are a limited number of tools and databases available for studying tsRNAs. This is in part due to the fact that

tRNAs are incredibly abundant and thus degraded tRNA is difficult to distinguish from functional tsRNA. Several anno-

tation and predictive tools exist, though few are tailored for plant tsRNAs. tRex and PtRFdb are databases relevant to

plant RNAs specifically (Kumar, Mudunuri, Anaya, Dutta; Thompson et al., 2018). A collection of phasiRNA,

tasiRNA, and NAT-siRNA predictive tools and relevant databases are presented in Table 11.2.

11.3 Long noncoding RNA

Long ncRNAs (lncRNAs) are RNA without coding potential which are up to 200 nt in length. This length allows for fil-

tration of RNA-seq data by discarding transcripts greater than the standard 200 nt. lncRNA may be classified as over-

lapping, intronic, exonic, and intron�exon based on location in the genome (Ma, Bajic, & Zhang, 2013; Rai, Alam,

Lightfoot, Gurha, & Afzal, 2018). lncRNAs are formed from loci throughout the genome and in plants result from

RNA pol IV and V coding followed by 50 capping, polyadenylation, and alternative splicing. Several techniques are

used to distinguish them from mRNA through examining size, mass spectrometry data, and protein-coding capacity

(Wang & Chekanova, 2017). With respect to function, plant lncRNAs are known to have control over neighboring tran-

scription factors and ncRNA, structural regulation, and epigenetic changes (Karlik, Ari, & Gozukirmizi, 2019;

Marchese, Raimondi, & Huarte, 2017).

To identify lncRNAs, library preparation involves rRNA depletion followed by poly-A enrichment and paired-end

sequencing. It is necessary to map to a known reference genome to create transcript models or to perform de novo assembly

in the situation that there is no reference genome available (Haas et al., 2013). It is possible to apply both approaches to cre-

ate more accurate lncRNA models and construct the transcriptome. The transcript dataset is then classified into noncoding or

coding based on examination of open reading frames alongside sequence conservation and is used to identify genomic loci

capable of producing lncRNA. To classify transcripts, alignment is used to remove overlapping protein-coding genes based

on reference genomes (NCBI, Ensembl) or querying protein databases for shared sequences (BLAST). An alignment-free

method is then applied by examining the sequence for coding potential based on open reading frames to avoid incorrectly

classifying sequences (Budak, Kaya, & Cagirici, 2020; Ilott & Ponting, 2013).

Next-generation sequencing has dramatically improved in recent years and these advancements allow for effective

identification of different splicing isoforms and junction sequences. This is followed by structural and expression analy-

sis using Cap analysis gene expression, RNA-seq, ChIP-seq with RNA pol II, V, and V to show RNA pol binding and

transcription of lncRNA, detection of histone marks, transcriptional analysis, and other techniques to validate the

lncRNA. Genome-wide approaches such as CAGE/TSS-seq, GRO-seq, and PAS-seq may also be applied to better map
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TABLE 11.2 Collection of phasiRNA, tasiRNA, and NAT-siRNA predictive tools and relevant databases.

Annotation tools

PhasiRNA

Tool Language Platform Description URL

PhaseTank (2015)
v1.0

Perl Linux PhaseTank may be applied to systemically
characterize phasiRNAs/tasiRNAs and their
regulatory cascades. The program offers one
command analysis and thus provides high ease-of-
use.

http://phasetank.
sourceforge.net/

phasiRNAClassifier
(2018) v1

Python Linux phaseiRNAClassifier is a machine learning
repository which provides scripts for generating
sequence and structural features as well as
classifying phasiRNA.

https://github.com/
pupatel/
phasiRNAClassifier

findPhasiRNAs
(2019)

Python, R Linux This pipeline supports the identification of genomic
loci where there is a strong indication of phasing
and outputs P-values, phasing scores, and phasing
structure.

https://github.com/
Wiselab2/findPhasiRNAs

tasiRNAs

TasExpAnalysis
(2014)

� � This is a tool present as part of the tasiRNAdb
which was developed to map small RNA and
degradome libraries to a TAS, to perform phasing
analysis, and to analyze TAS cleavage.

http://bioinfo.jit.edu.cn/
tasiRNADatabase/

pssRNAMiner
(2008)

� � pssRNAMiner maps input sRNAs against transcript/
genomic sequences and identifies phased sRNA
clusters.

http://bioinfo3.noble.
org/pssRNAMiner/

NAT-siRNAs

NATpipe (2016) Perl Linux NATpipe is a pipeline used for discovery of NATs
from de novo assembled transcriptomes using
sRNA sequencing data. It allows users to search for
phasiRNAs within NAT pairs.

http://www.bioinfolab.
cn/NATpipe/NATpipe.
zip

NATpare (2020) Java,
Javascript

Any
platform

NATpare is a pipeline used for prediction and
functional analysis of nat-siRNA. It uses multiple
plant species as benchmarks and benefits from low
resource requirements.

https://github.com/
sRNAworkbenchuea/
UEA_sRNA_Workbench/

NASTI-seq (2020) R Linux,
Windows

A pipeline for Integrated detection of natural
antisense transcripts using strand-specific RNA
sequencing data.

https://ohlerlab.mdc-
berlin.de/software/
NASTIseq_104/

Databases

tasiRNAs

Database Description URL

tasiRNAdb (2014) Holds information on TAS loci, tasiRNA sequences, tasiRNA targets and the like
spanning a wide range of pathways and plants.

http://bioinfo.jit.edu.cn/
tasiRNADatabase/

tsRNA

PtRFdb (2018) PtRFdb stores tRFs from 10 plant species along with information on tRF type,
sequence, and genomic coordinates.

http://www.nipgr.ac.in/
PtRFdb/

tRex (2018) A web portal which provides access to B1.4 million tRFs in Arabidopsis thaliana
developed from tRNA annotations and published sRNA-seq datasets. Offers
various search functionalities.

http://combio.pl/trex
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transcript boundaries (Kashi, Henderson, Bonetti, & Carninci, 1859; Wang et al., 2013). To categorize lncRNA into

overlapping, intronic, exonic, and intron�exon groups, it is necessary to examine their position and orientation.

LncRNAs are genic (intron�exon, exon, intron), intergenic (between protein-coding genes), bidirectional (transcribed

from a protein-coding gene promoter in an opposite direction), enhancer associated, or promoter associated. These are

then further broken down into sense or antisense (Ma et al., 2013; Rai et al., 2018; St.Laurent, Wahlestedt, &

Kapranov, 2015). Several barriers in classification exist, including lncRNAs may be shorter than 200 nt leading to false

negatives, lncRNA candidates may encode proteins, RNA pol II offers low fidelity (indicating a need to identify tran-

scripts from RNA pol IV or V), the lack of conserved motifs, tissue specificity, the presence of both spliced and

unspliced RNA, and few to no validated predictive algorithms. Further, lncRNA lacks a uniform naming or annotation

system and this leads to challenges in curating databases. Several predictive tools do exist; however, there are few

plant-specific tools (Iwakiri, Hamada, & Asai, 1859). Examples of such tools are described in Table 11.3.

TABLE 11.3 Most common tools for the annotation of lncRNAs in plants.

Annotation tools

Tool Language Platform Description URL

FEELnc
(2017)
v.0.1.1

Perl Linux An alignment-free program that annotates lncRNAs based
on a Random Forest model trained with multi-k-mer
frequencies and relaxed open reading frames.

https://github.com/
tderrien/FEELnc

PlncPRO
(2017) v1.2.2

Python Linux PLncPRO is used for the prediction of lncRNAs in plants
using transcriptome data. PLncPRO is based on machine
learning and uses random forest algorithm. This tool has
high prediction accuracy and is designed for plants.

http://ccbb.jnu.ac.in/
plncpro/

Evolinc-I/
Evolinc-I
(2017) v1.7.5

Shell,
Python, R

Linux Evolinc is a pipeline designed to facilitate long intergenic
noncoding RNA (lincRNA) discovery. It has two modules:
the first (Evolinc-I) is an identification workflow that
facilitates expression analysis and visualization of
lincRNA. The second (Evolinc-II) offers transcriptomic and
genomic comparative analysis to find phylogenetic depth
of lincRNA locus conservation among related species.

https://github.com/
Evolinc

Annocript
(2015) v2.0.1

Perl Linux Annocript is a pipeline used to annotate de novo
generated transcriptomes. It executes blast analysis with
UniProt, NCBI Conserved Domain Database, and
Nucleotide division and also provides annotations from
Gene Ontology, the Enzyme Commission, and
UniPathways.

https://github.com/
frankMusacchia/
Annocript

lncRNA-
screen (2017)

Shell, R Linux lncRNA-screen is a pipeline for screening lncRNA
transcripts over large multimodal datasets. It provides an
automated pipeline which performs RNA-seq alignment,
assembly, quality assessment, transcript filtration, novel
lncRNA identification, expression level quantification, and
more.

https://github.com/
NYU-BFX/lncRNA-
screen

Databases

Tool Description URL

PLncDB
(2013)

PLncDB consists of B16k Arabidopsis thaliana lncRNAs covering genomic information,
expression levels, genome browser visualization, and the like.

http://chualab.
rockefeller.edu/
gbrowse2/homepage.
html

lncRNAdb
(2011) v2.0

lncRNAdb provides users with a comprehensive reference of plant and other eukaryotic
lncRNA. Includes sequence information, expression profiles, and associated literature.

http://lncrnadb.org/

CANTATAdb
(2016) v2.0

Stores lncRNA from RNA-seq data of 39 plant species, covering expression information,
coding potential, and other lncRNA loci information.

http://cantata.amu.edu.
pl/
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11.4 Circular RNA

Circular RNA (circRNA) is a class of ncRNA produced from transcription of protein-coding genes in a novel “backspli-

cing” mechanism in which a downstream splice donor site is covalently linked to an upstream acceptor site which cre-

ates a circular form. The product circRNA may be composed of one or more exons or introns. A wide array of

circRNA has been detected in the literature in both humans and plants, though they possess relatively low, variable

expression levels which previously led researchers to believe that they were simply by-products. It is now known that

they may possess regulatory potential and may operate at the transcriptional and posttranscriptional level by regulating

parent gene expression and ability to cause loss of function in miRNA. In addition, protein-coding circRNA has been

found in humans, though little information on them exists in plants. Notably, circRNA is highly stable and this property

may be the cause for their abundance in certain situations (Zhao, Chu, & Jiao, 2019; Ashwal-Fluss et al., 2014).

To identify cirRNA with RNA-seq data, a search is performed to determine if reads have a reversed direction of

transcription. This is performed by searching for chimeric or backspliced reads. Alternatively, it is possible to search

for backspliced reads inclusive of all exon�intron circularizations and then performing experimental validation. Gene

annotations are sparse for this particular class and as a result, searching for cirRNA loci may lead to erroneous results.

Algorithms rely on identifying sequences spanning the junction between the downstream and upstream sequences, after

which these junctions spanning regions, using the previously described exon�intron combinations, are categorized by

mapping to the site of genomic origin. The groups are exonic, intronic, and exon�intronic circRNA. Efforts to improve

the process of identifying backsplicing junctions involve using reads of the loci in multiple samples and observing read

counts (Yuan et al., 2018; Zhao et al., 2017).

TABLE 11.4 Annotation tools and databases for circRNA.

Annotation tools

Tool Language Platform Description URL

find_circ2
(2013) v1

Python Linux A repository coded in python that may be used to detect
backspliced sequencing reads, indicative of circular RNA
(circRNA) in RNA-seq data.

https://github.com/
rajewsky-lab/
find_circ2

CircExplorer2
(2016) v2.3.8

Python Linux A program using single-read and paired-end reads designed to
annotate circular RNA with high accuracy and low memory
usage. It allows for circular RNA alignment tool application,
de novo assembly of transcripts, characterization of
backsplicing events, and other related functions.

https://github.com/
YangLab/
CIRCexplorer2

UROBORUS
(2016) v2.0.0

Perl Linux A computational pipeline used to detect circRNAs in total
RNA-seq data. It benefits from its ease of use and efficiency
which can allow detection even when expression levels are
low and without RNAse R application to samples.

https://github.com/
WGLab/
UROBORUS

KNIFE (2018)
v1.4

Python,
Shell, Perl

Linux An algorithm which improves the sensitivity and specificity of
circRNA detection from RNA-seq data.

https://github.com/
lindaszabo/KNIFE

CIRCfinder Python Linux A pipeline to map junction reads for ciRNAs. This pipeline
allows for determination of the boundaries of circRNA to
facilitate downstream analysis.

https://github.com/
YangLab/
CIRCfinder

Databases

Database Description URL

PlantcircBase
(2017) v5.0

Contains RNA-seq datasets derived from 19 plant species and provides predictions,
information, and literature. It provides search functionalities for sequence and structural
visualization.

http://ibi.zju.edu.
cn/plantcircbase/

AtCircDB
(2019) v2.0

A database on tissue-specific circRNAs of Arabidopsis thaliana with annotations and a
visualization platform.

http://deepbiology.
cn/circRNA/

CircFunBase
(2019)

Documents circRNAs of 7 plant species and other animals with information on function and
interaction networks for both validated and predicted circRNA.

http://bis.zju.edu.
cn/CircFunBase
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As with many of the RNA discussed in this chapter, few tools exist to study this novel class, particularly in plants.

Those which do exist vary with respect to detection, categorization, and the like. However, issues may arise with

computational tools given that it is difficult to distinguish between circRNA and linear RNA based purely on the detec-

tion of a backsplicing junction. Further, trans-splicing events, artifacts due to alignment errors, experimental errors,

genomic rearrangements, exon repeats, homologous exons, and the like tend to complicate identification. Given these

factors, it is suggested to use multiple algorithms together. To prepare such samples, several approaches are possible

including selecting libraries with/without poly(A) tails. One common approach applies RNAse R to remove linear RNA

from a sample followed by validation with paired-end reads (Zhang, Li, & Chen, 2020; Tang, Hao, Zhu, Zhang, & Li,

2018).

With respect to tools available for the study of circRNA, there are few sound examples. PcircRNA_finder is one of

the few algorithms capable of predicting plant-specific circRNA (Chen et al., 2016). Databases include, but are not lim-

ited to, AtCircDB, PlantcircBase, PlantCircNet, and CropCircDB (Ye, Wang, & Li, 2019; Wang, Wang, & Guo, 2019).

These databases include information on circRNA loci, backsplicing read junctions, read counts, and expression data.

However, nomenclature, categorization by uniform identifiers, limited data on circRNA formed by alternative splicing,

and interoperability regarding circRNA data (ability to integrate with existing databases) remains a concern. Annotation

tools and databases for circRNA may be found in Table 11.4.

11.5 Chimeric RNA

Gene fusions are hallmarks of many cancer types and have unique cytogenetic signatures which allow for them to serve

as effective biomarkers. The most well-characterized fusion in humans was the chromosomal abnormality, the

Philadelphia chromosome, in which BCR and ABL1 genes combine to create the BCR-ABL1 fusion which encodes a

kinase and critical biomarker of Chronic Myeloid Leukemia. Since that discovery, gene fusions have been found in

both cancerous and normal cell types, indicating a potentially significant contributor to the functional genome.

Chimeric transcripts may act as lncRNA or encode chimeric proteins. Such fusions are formed from fusion transcripts,

or chimeric RNA. That is, a hybrid RNA composed of transcripts from two different genes. The mechanisms of such

chimerization are being studied but may be attributed to changes in the genome as with the Philadelphia Chromosome

as well as noncanonical methods, including trans-splicing of precursor mRNA or cis-splicing of adjacent genes (cis-

SAGE). Each of these splicing events is mediated by spliceosome complexes (Singh, Qin, & Kumar, 2020).

TABLE 11.5 Tools and databases for the annotation of chimeric transcripts.

Annotation tools

Tool Language Platform Description URL

Chimeriaviz
(2017)

R � A Bioconductor package in R that automates the
creation of chimeric RNA visualizations. It supports
input from 9 other fusion-finder tools.

https://www.bioconductor.
org/packages/release/bioc/
html/chimeraviz.html

EricScript
(2012)

Python Linux EricScript is a computational framework used for the
discovery of gene fusions in paired-end RNA-seq data.

https://sites.google.com/site/
bioericscript/

JAFFA
(2015)

� Linux A sensitive fusion detection tool which performs
extremely well when applied to reads greater than
100 bp. It compares cancer transcriptomes to
reference transcriptomes and allows for inference of
the cancer transcriptome using reads and de novo
assembly.

https://github.com/Oshlack/
JAFFA

Databases

Tool Description URL

ChiTaRS 5.0
(2019)

A comprehensive chimeric transcript repository, with B11,000-annotated entries
from 8 species.

http://chitars.md.biu.ac.il/
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Fusion transcript formation has been studied in a number of model organisms, including humans, zebrafish, and

plants (Zhang, Guo, & Hu, 2010; Koller, Fromm, Galun, & Edelman, 1987; Kawasaki et al., 1999). The advent and

advancement of high-throughput sequencing technolobies leads to the identification of fusion transcipts in RNA-Seq

datasets. Several tools exist to better characterize and study this class of RNA. Fusion transcript prediction tools using

RNA-seq data to generate potential fusion candidates include EricScript, SOAPfuse, and JAFFA (Benelli et al., 2012;

Jia, Qiu, & He, 2013; Davidson, Majewski, & Oshlack, 2015). Several fusion transcript databases exist, including

ChiTaRS, FusionCancer, ChimerDB, FusionHub, and AtFusionDb which span the range of species such as humans,

mice, flies, and Arabidopsis (Balamurali et al., 2019; Singh, Zahra, Das, & Kumar, 2019; Wang, Wu, Liu, Wu, &

Dong, 2015; Jang, Jang, & Kim, 2019; Panigrahi, Jere, & Anamika, 2018). Broadly, further studies must be performed

to better characterize and predict chimeric RNA in plants. This is in part due to the previous widely held belief that

such fusions are limited to cancerous human tissue. A selection of existing tools and databases may be found in

Table 11.5.
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12.1 Introduction

Beta-galactosidase (BGAL, EC 3.2.1.23) is one of the oldest ubiquitous enzymes, which catalyzes the hydrolysis of

nonreducing β-D-galactosyl residues from β-D-galactoside polymers. It is also called by various names such as lactase,

β-lactosidase, maxilact, hydrolact, β-D-lactosidase, lactozym, trilactase, β-D-galactanase, oryzatym, sumiklat, β-D-galac-
tanase, β-galase, exo-β-(1-4)-D-galactanase, and exo-β-(1-3)-D-galactanase based on their substrate-catalyzed reac-

tions, sources, and mechanism of action (Dwevedi & Kayastha, 2010). It has been reported that BGAL has the ability

to hydrolyze the terminal galactosyl residues from carbohydrates, glycoproteins, and galactolipids (Ross, Wagrzyn,

MacRae, & Redgwell, 1994; Smith, Abbott, & Gross, 2002; Smith & Gross, 2000). BGALs are widely distributed in

lower to higher organisms including bacteria, fungi, yeasts, plants, and animals (Husain, 2010). These enzymes have

been classified into glycoside hydrolase (GH) families as GH1, GH2, GH35, and GH42 in CAZy (carbohydrate-active

enzymes, http://www.cazy.org/) database. BGALs present in microorganisms mostly belong to GH1, GH2, and GH42.

On the other hand, BGALs belonging to GH35 are found in a wide range of organisms including bacteria, fungi, ani-

mals, and plants (Dwevedi & Kayastha, 2010). On the basis of their substrate specificities, the plant BGALs (pBGALs)

can be divided into two types: one that consists of exo-β-(1-4)-galactanases particularly function on pectic β-(1-4)-D

galactan, and the other that acts on β-(1-3) and β-(1-6)-galactosyl linkages of arabinogalactan proteins but does not

have hydrolytic activity against β-(1-4)-galactan (Kotake et al., 2005).

BGALs have various physiological roles in plants including cell-wall expansion and degradation, and turnover of

signaling molecules during ripening (Buckeridge & Reid, 1994; de Alcantara, Martim, Silva, Dietrich, & Buckeridge,

2006; Ross, Redgwell, & MacRae, 1993). Recently, the pBGALs have gained much interest for their involvement in

the developmental stages and pectin degradation during fruit ripening in various plants including tomato (Carey et al.,

1995; Moctezuma, Smith, & Gross, 2003; Pressey, 1983), muskmelon (Ranwala, Suematsu, & Masuda, 1992), kiwifruit

(Ross et al., 1993), mango (Ali, Armugam, & Lazan, 1995), peach (Lee, Kang, Suh, & Byun, 2003), radish (Kotake

et al., 2005), papaya (Lazan, Ng, Goh, & Ali, 2004), and apple (Yang et al., 2018). β-Galactosidase activity signifi-

cantly increased in tomato fruits during ripening that suggested their roles in the breakdown of β(1-4)-galactan side

chains of pectin as part of the ripening process (Carey et al., 1995). Subsequently, it has been reported that downregula-

tion of a ripening-related BGAL mRNA decreased the enzyme activity and freed galactose content and significantly

retained the fruit firmness (Smith et al., 2002). Another report on pectin changes and pectin-modifying enzymes in

Jonagold apples during postharvest softening showed that the BGAL was the key player for softening during ripening

(Gwanpua et al., 2014). Our previous study showed that mango ripening-related enzymes such as BGAL,

α-mannosidase, and beta-hexosaminidase changed significantly during the postharvest storage at different temperatures

(Hossain, Rana, Kimura, & Roslan, 2014). Recently, Yang’s group reported that BGAL activity and expression levels
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of BGAL genes (Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5) significantly increased in “Fuji” and “Qinguan” apples during

all stages of fruit developmental and were much higher in the mature fruits; indicating that pectin was degraded by

BGALs (Yang et al., 2018).

The GH35 like other families contains multiple copies of BGAL genes in different plant species. At least 17 BGAL

genes were reported from tomatoes, of which 6 were expressed during fruit development stages and ripening (Smith &

Gross, 2000; Chandrasekar & Hoorn, 2016). In Arabidopsis, 17 putative BGAL genes were found to be expressed that

were further divided into seven subgroups based on their sequence similarities. Subgroup-III included seven members

that involved in the modification of pectic polysaccharides of cell-wall matrices (Ahn et al., 2007). Meanwhile, 15

BGAL genes were identified in rice, 1 of which encoded for a protein similar to animal BGAL and the rest 14 were

grouped into a plant-specific subfamily of BGALs and few BGAL genes were located on the different chromosomes by

segments duplication (Tanthanuch, Chantarangsee, Maneesan, & Ketudat-Cairns, 2008). Rice BGAL enzymes might

play important roles in cell-wall polysaccharides, glycoproteins, and glycolipids metabolism. At least two BGAL iso-

forms were identified and characterized from the Coffea arabica genome (Figueiredo, Lashermes, & Araga, 2011).

Recently, a comprehensive genome-wide analysis of Brassica campestris ssp. chinensis identified 16 BGAL genes (Liu,

Gao, Lv, & Cao, 2013). Based on their conserved motifs, Brassica BGALs (BcBGALs) were classified into four groups

and 7 out of the 16 BcBGAL genes had two copies, whereas one BcBGAL gene contained five copies. Exon-intron

structures of different BcBGAL genes within the same group were very similar (Liu et al., 2013). Altogether the results

obtained from the above observation, it is postulated that pBGALs under GH35 family have multiple copies of gene

that might be generated through segmental gene duplications.

The determination of three-dimensional (3D) structure of an enzyme is a prerequisite to get a better understanding

of the functional mechanism of an enzyme. Numerous X-ray solved crystal structures of BGALs belonging to GH35

family have been deposited to protein data bank (https://www.rcsb.org/). The first 3D structure of β-galactosidase from

Escherichia coli (EcBGAL) was published in the Nature in 1994 (Jacobson, Zhang, Dubose, & Matthews, 1994).

EcBGAL is a tetrameric structure of four identical polypeptide chains with a calculated molecular mass of 465 kDa.

Each subunit contains five domains: jelly-roll type barrel (Domain 1), fibronectin type III-like barrels (Domain 2 and

4), β-sandwich (Domain 5), and the TIM (triose-phosphate isomerase)-type barrel (Domain 3). Central domain 3 houses

the active site amino-acid residues. Similar to EcBGAL, crystal structure of Penicillium sp. BGAL has five distinct

domains but the first domain is distorted TIM barrel that contains the catalytic site (Rojas et al., 2004). On the other

hand, human BGAL consists of catalytic TIM-barrel domain, β-domain 1, and β-domain 2 (Ohto et al., 2012). The first

and only X-ray crystal structure of pBGAL (TBG4) was solved at 1.65 Å resolution (pdb id: 3w5g) from tomato fruit

by a Japanese research group (Eda, Ishimaru, & Tada, 2015; Masahiro Eda, Matsumoto, Ishimaru, & Tada, 2016).

Recently, the phylogenetic relationship, homology modeling, docking, and mechanism of action of Mangifera indica

BGAL (MiBGAL) have been elucidated (Hossain, Roslan, Karim, & Kimura, 2016). This chapter summarizes the

molecular evolution, structural features, mechanism of action, and physiological functions of pBGALs.

12.2 Protein sequence features of plant beta-galactosidases

Numerous BGALs have been characterized based on the number of amino acids that resided in the polypeptide chain of

active enzymes. The number of amino acids in the BGAL enzymes varies from higher organism to lower one. The

smallest BGAL was found in bacteria (586�613 aa). The largest BGALs were found in fungi that contain 1002�1023

aa followed by plants (715�857 aa) and animals (647�677 aa) (Table 12.1) (Hossain et al., 2016). NCBI CD (con-

served domain)-search tool (CDD V3.0�44354 PSSMs) was used to identify the CDs in the 67 BGAL protein

sequences. All BGALs usually consist of GH35, GH42, LacA domain, and a BGAL multidomain, called “PLN03059”

(Hossain et al., 2016). The pBGAL sequence possesses an additional unknown functional domain “DUF4185” including

244�324 aa and a galactose binding lectin domain with 750�827 aa (Fig. 12.1). Moreover, the pBGALs also contain a

unique galactose binding lectin domain in the C-terminal region if they have more than 750 amino acids. Bacterial and

animal BGALs possess the following common domains such as GH35, GH42, PLN03059, BGal-dom4.5, and Gal-lactin

but some bacteria don’t have additional BGal-dom4.5 (Hossain et al., 2016). The functional roles of these additional

domains are not yet clear. However, it was suggested that the Gal-lectin domain could play a role in substrate specific-

ity of BGAL (Chandrasekar & Hoorn, 2016). Meanwhile, MiBGAL contained all types of domains in a complete multi-

domain architecture (PLN03059) (Masahiro Eda et al., 2016). These domains were termed domains I, II, III, and IV

due to their common presence in other proteins (e.g., domain-I-TIM-barrel domain). They receive different names when

they are also present in different protein families. As can be seen, what is called a GH42 domain is part of the GH35

domain (and they are both parts of a TIM-barrel domain) (Hossain et al., 2016).
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TABLE 12.1 The features of beta-galactosidase sequences used for phylogenetic analysis (Hossain et al., 2016).

Sl

no.

GI

number

Name used in the

phylogenetic tree

Organisms Taxonomy No. of

amino

acids

Domains identified by CD-

search

Signal

peptide

cleavage

site

N-

glycosylation

sites

1. 1857333 Arthrobacter-BGAL Arthrobacter sp. Prokaryota (bacteria) 471 GH42, 35, PLN03059, LacA No No

2. 76097478 X_campestris-GalD Xanthomonas
campestris

Prokaryota (bacteria) 579 GH 10, 42, 35, LacA 35�36 2

3. 1045034 X_axonopodis-BgaX Xanthomonas
axonopodis

Prokaryota (bacteria) 598 GH42, 35, PLN03059, LacA 22�23 3

4. 32709094 X_campestris-GalC X. campestris Prokaryota (bacteria) 613 GH42, 35, PLN03059, LacA 23�24 2

5. 21114096 X_campestris-NixL X. campestris Prokaryota (bacteria) 613 GH42, 35, PLN03059, LacA 23�24 2

6. 2289790 B_circulans-BgaC Bacillus circulans Prokaryota (bacteria) 586 GH42, 35, PLN03059, BGal-
dom4.5, LacA

No 2

7. 145688909 S_suis-BgaC Streptococcus suis
05ZYH33

Prokaryota (bacteria) 590 GH42, 35, PLN03059, LacA No 3

8. 14971525 S_pneumoniaeTIGR4-
BgaC

Streptococcus
pneumoniae
TIGR4

Prokaryota (bacteria) 595 GH42, 35, PLN03059, LacA No 2

9. 116077789 S_pneumoniaeD39-BgaC S.
pneumoniaeD39

Prokaryota (bacteria) 595 GH42, 35, PLN03059, LacA No 2

10. 15457592 S_pneumoniaeR6-BgaC S. pneumoniae R6 Prokaryota (bacteria) 595 GH42, 35, PLN03059, LacA No 2

11. 16611713 C_maltaromaticum-BgaC Carnobacterium
maltaromaticum

Prokaryota (bacteria) 586 GH42, 35, PLN03059, LacA No 3

12. 257143787 P_thiaminolyticus-Bga Paenibacillus
thiaminolyticus

Prokaryota (bacteria) 583 GH42, 35, PLN03059, BGal-
dom4.5, LacA

No No

13. 669059 B_oleracea-BgalA Brassica oleracea Eukaryota (planta) 828 GH35, 42, PLN03059, Gal-
Lectin, LacA

22�23 11

14. 68161828 M_indica-BGAL Mangifera indica Eukaryota (planta) 827 GH35, 42, PLN03059, Gal-lectin,
LacA, DUF4185

22�23 7

15. 6686884 A_thaliana-BGAL6 Arabidopsis
thaliana

Eukaryota (planta) 718 GH35, 42, PLN03059, BGal 4.5,
LacA

28�29 3

16. 6686878 A_thaliana-BGAL3 A. thaliana Eukaryota (planta) 856 GH35, 42, PLN03059, Gal-
Lectin, LacA

No 2

(Continued )



TABLE 12.1 (Continued)

Sl

no.

GI

number

Name used in the

phylogenetic tree

Organisms Taxonomy No. of

amino

acids

Domains identified by CD-

search

Signal

peptide

cleavage

site

N-

glycosylation

sites

17. 20514290 O_sativa-BGAL1 Oryza sativa Eukaryota (planta) 843 GH35, 42, PLN03059, BGal 4.5,
Gal-lectin, LacA

No 2

18. 6686882 A_thaliana-BGAL5 A. thaliana Eukaryota (planta) 732 GH35, 42, PLN03059, BGal 4.5,
LacA

28�29 1

19. 3860321 C_arietinum-BGAL5 Cicer arietinum Eukaryota (planta) 745 GH35, 42, PLN03059, LacA 26�27 1

20. 7682680 V_radiata-BGAL1 Vigna radiata Eukaryota (planta) 739 GH35, 42, PLN03059,
PRK13974, LacA

26�27 1

21. 56201401 R_sativus-BGAL1 Raphanus sativus Eukaryota (planta) 851 GH35, 42, PLN03059,
Gal_lectin, LacA

30�31 3

22. 14970841 F_X_ananassa-BGAL2 Fragaria ananassa Eukaryota (planta) 840 GH35, 42, PLN03059, BGal 4.5,
Gal_lectin, LacA

No 3

23. 7939623 S_lycopersicum-Tbg5 Solanum
lycopersicum

Eukaryota (planta) 852 GH35, 42, PLN03059, Gal-lectin,
LacA

No 5

24. 54291174 O_sativa-BGAL2 O. sativa Eukaryota (planta) 715 GH35, 42, PLN03059, BGal 4.5,
LacA

20�21 1

25. 20384648 C_sinensis-BGAL Citrus sinensis Eukaryota (planta) 737 GH35, 42, PLN03059, LacA No No

26. 452712 A_officinalis-BGAL Asparagus
officinalis

Eukaryota (planta) 832 GH35, 42, PLN03059, Gal-
Lectin, LacA

25�26 No

27. 3641865 C_arietinum-BGAL4 C. arietinum Eukaryota (planta) 723 GH35, 42, PLN03059, LacA 23�24 4

28. 3869280 C_papaya-BGAL Carica papaya Eukaryota (planta) 721 GH35, 42, PLN03059, LacA 21�22 1

29. 18148449 P_americana-BGAL1 Persea americana Eukaryota (planta) 766 GH35, 42, PLN03059, LacA 35�36 1

30. 13936236 C_annuum-BGAL1 Capsicum annuum Eukaryota (planta) 724 GH35, 42, PLN03059, LacA 23�24 3

31. 3299896 S_lycopersicum-Tbg4 S. lycopersicum Eukaryota (planta) 724 GH35, 42, PLN03059, LacA 23�24 3

32. 4138137 S_lycopersicum-Tbg3 S. lycopersicum Eukaryota (planta) 838 GH35, 42, PLN03059, Gal-lectin,
LacA

25�26 1

33 6649906 S_lycopersicum-Tbg1 S. lycopersicum Eukaryota (planta) 835 GH35, 42, PLN03059, Gal-lectin,
LacA

22�23 2

34. 14970839 F_X_ananassa-BGAL1 F. ananassa Eukaryota (planta) 843 GH35, 42, PLN03059, Gal-lectin,
LacA

28�29 2



35. 33521214 S_aurantiaca-BGAL Sandersonia
aurantiaca

Eukaryota (planta) 826 GH35, 42, PLN03059, Gal-lectin,
LacA

24�25 2

36. 9294020 A.thaliana-BGAL1 A. thaliana Eukaryota (planta) 847 GH35, 42, PLN03059, Gal-lectin,
LacA

32�33 No

37. 14970843 F_X_ananassa-BGAL3 F. ananassa Eukaryota (planta) 722 GH35, 42, PLN03059, LacA 25�26 1

38. 7682677 V_radiata-BGAL2 V. radiata Eukaryota (planta) 721 GH35, 42, PLN03059, LacA 23�24 2

39. 10059008 D_caryopyllus-BGAL Dianthus
caryophyllus

Eukaryota (planta) 731 GH35, 42, PLN03059, LacA No 2

40. 3860420 L_angustifolius-BGAL Lupinus
angustifolius

Eukaryota (planta) 730 GH35, 42, PLN03059, LacA 33�34 1

41. 507278 M_domestica-BGAL Malus domestica Eukaryota (planta) 731 GH35, 42, PLN03059, LacA 24�25 1

42. 12583687 P_pyrifolia-BGAL1 Pyrus pyrifolia Eukaryota (planta) 731 GH35, 42, PLN03059, LacA 24�25 1

43. 8809655 A_thaliana-BGAL4 A. thaliana Eukaryota (planta) 724 GH35, 42, PLN03059, LacA 27�28 1

44. 6686876 A_thaliana-BGAL2 A. thaliana Eukaryota (planta) 727 GH35, 42, PLN03059, LacA 27�28 1

45. 334305536 L_usitatissimum-BGAL Linum
usitatissimum

Eukaryota (planta) 731 GH35, 42, PLN03059, LacA 29�30 1

46. 7939621 S_lycopersicum-Tbg7 S. lycopersicum Eukaryota (planta) 870 GH35, 42, PLN03059, Gal-lectin,
LacA

35�36 5

47. 6686892 A_thaliana-BGAL10 A. thaliana Eukaryota (planta) 741 GH35, 42, PLN03059, LacA 29�30 4

48. 219927064 T_majus BGAL Tropaeolum majus Eukaryota (planta) 857 GH35, 42, PLN03059, Gal-lectin,
LacA

No 7

49. 3641863 C_arietinum-BGAL3 C. arietinum Eukaryota (planta) 730 GH35, 42, PLN03059, LacA No 1

50. 18958133 A_candidus-BGAL Aspergillus
candidus

(Fungi) 1005 GH35, PLN03059, BGal-dom 2,
3, 4.5, 4.5, LacA

18�19 6

51. 582890099 A_oryzae-BGAL1 Aspergillus oryzae-
112

(Fungi) 1005 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

18�19 6

52. 83770489 A_oryzae-BGAL2 A. oryzae-RIB40 (Fungi) 1005 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

18�19 6

53. 34370136 Trichoderma reesei T. reesei (Fungi) 1023 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

20�21 6

54. 321150462 P_aerugineus-bglA Paecilomyces
aerugineus

(Fungi) 1011 GH35, PLN03059, GH_2 N,
BGal-dom 2, 2, 3, 4.5, 4.5, LacA

18�19 6

55. 189092779 P_expansum-BGAL Penicillium
expansum

(Fungi) 1011 GH35, PLN03059, GH_2N,
BGal-dom 2, 2, 3, 4.5, 4.5, LacA

18�19 6

(Continued )
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56. 56266627 P_canescens-BGAL Penicillium
canescens

(Fungi) 1011 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

19�20 7

57. 44844271 P_sp.-BGAL Penicillium sp. (Fungi) 1011 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

19�20 6

58. 238914608 B_sp.MEY-1-bglA Bispora sp. MEY-1 (Fungi) 1002 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

21�22 10

59. 32448796 R_emersonii-BGAL Rasamsonia
emersonii

(Fungi) 1008 GH35, PLN03059, BGal-dom 2,
2, 3, 4.5, 4.5, LacA

19�20 9

60 166513 A_niger-BGALA Aspergillus niger (Fungi) 1006 GH35, PLN03059, GH_2N,
BGal-dom 2, 2, 3, 4.5, 4.5, LacA

18�19 11

61. 62913951 A_phoenicis-BGAL Aspergillus
phoenicis

(Fungi) 1007 GH35, PLN03059, GH_2N,
BGal-dom 2, 2, 3, 4.5, 4.5, LacA

18�19 11

62. 383212688 P_chrysogenum-BGAL Penicillium
chrysogenum

(Fungi) 1013 GH35, 42, PLN03059, BGal-dom
2, 2, 3, 4.5, 4.5, LacA

21�22 7

63. 14099962 Cl_familiaris-BGAL Canis lupus
familiaris

(Primates) 668 GH35, 42, PLN03059, BGal-
dom4.5, LacA

24�25 6

64. 192187 M_musculus-BGAL Mus musculus (Primates) 647 GH35, 42, PLN03059, BGal
dom4_5, LacA

24�25 6

65. 179401 H_sapiens-BGAL1 Homo sapiens (Primates) 677 GH35, 42, PLN03059, BGal-
dom4.5, LacA

23�24 7

66. 2547317 F_catus-BGAL Felis catus (Primates) 669 GH35, 42, PLN03059, BGal-
dom4.5, LacA

24�25 6

67. 34013388 T_ kodakarensis Thermococcus
kodakarensis

Archea 786 GH42, 35, PLN03059, LacA, A4
galactosidase middle domain,
GH42 trimerization domain

NO 1

BGal_dom 2, 2, 3, 4_5, 4_5, Beta-gacalosidase domain 2, 2, 3, 4_5, 4_5; GH_2N, glycosyl hydrolase 2N sugar biding domain; GH35, glycosyl hydrolase-35; GH42, glycosyl hydrolase 42; LacA, beta-
galactosidase; PLN03059, provisional multi domain; PRK13974, thymidylate kinase.



The signal peptide is a short peptide found in newly synthesized protein at N-terminal, which determines whether

the protein will be secreted or not. The online web server “SignalP 4.1” was used to predict the signal peptide in the 67

BGAL amino-acid sequences (Petersen, Brunak, Heijne, & Nielsen, 2011). Fifty-one out of 67 BGALs possessed signal

sequences in their polypeptide chains. Plant and animal BGAL signal peptides contain the first 21�35 amino acids,

whereas fungal BGALs have 18�22 amino acids. MiBGAL signal peptide was found to be the first 23 amino acids

(Table 12.1) (Hossain et al., 2016). Thirteen out of 17 BGALs were found in Arabidopsis that have potential N-terminal

signal peptides secreted to the endomembrane system. The rest of the BGALs are probably located in the cytoplasm or

nucleus (Chandrasekar & Hoorn, 2016). With the few exceptions in some bacteria, most of the BGALs have signal pep-

tides in their polypeptide chains, indicating that they possibly are secreted proteins (Hossain et al., 2016).

Glycosylation is one the most abundant posttranslational modification events in eukaryotes. The online web server

“NetNGlyc 1.0” (http://www.cbs.dtu.dk/services/NetNGlyc/) is usually used to determine the potential N-glycosylation

sites in the polypeptide sequences. The BGALs belonging to animals and fungi have 6�11 N-glycosylation sites. Most

of the pBGALs contain less N-glycosylation sites than fungi. However, seven potential N-glycosylation sites were found

in MiBGAL protein sequence. They are located at positions N24, N152, N252, N349, N378, N492, and N498 (Hossain

et al., 2016). Most of the bacteria contained two N-glycosylation sites but don’t have any signal peptide, indicating that

bacterial BGALs are not true glycosylation site (Table 12.1). Some bacteria have multifunctional proteins that are gly-

cosylated and secreted or surface-exposed and might have an important role in the interaction with their environment

(Szymanski & Wren, 2005). On other hand, Penicillium sp. BGAL contains seven N-linked oligosaccharide chains and

was reported to be the first X-ray solved crystal structure of a glycosylated β-galactosidase (Rojas et al., 2004). Human

BGAL also contains seven N-glycosylation sites at positions N26, N247, N464, N498, N542, N545, and N555 (Ohto

et al., 2012). Two N-glycosylation sites (N282 and N459) have been reported in Solanum lycopersicum β-galactosiase 4

(TBG4), and a peptide signal cleavage site is found in between the amino-acid position of 23 and 24 in polypeptide

sequence, indicating a high probability for secretory nature of protein (Hossain et al., 2016).

Usually, MEME online software is used to identify the conserved motif in the protein sequences (Bailey et al.,

2009). Five conserved motifs are present in the 67 BGALs of plant, animals, fungi, and bacteria (Fig. 12.2). The

number of amino-acid present in the motif-1, -2, -3, -4, and -5 are 50, 41, 41, 21, and 21, respectively (Hossain

et al., 2016). Most of the BGAL sequences possess at least three common motifs: motif-1 (cyan), -4 (pink), and

-5 (yellow) (Fig. 12.3) (Hossain et al., 2016). All pBGALs contain 5 motifs present in the domain-I (TIM barrel)

and some have more than one copy of the same motif. It has been reported that it could be due to segmental gene

duplication in the pBGALs (Hossain et al., 2016). A special motif 3 (red) is found at the active site of all pBGALs

belonging to GH35 family. The motif 2 (blue) is also reported at the active site of pBGALs and bacterial that

belongs to GH42. On the other hand, fungi don’t possess motif 2 (blue) whereas animals and bacterial BGALs also

don’t have motif 3 (red) due to the short sizes of protein sequences. However, two animal BGALs have two copies

of motif-1. No conserved motif was found at the C-terminal end of all BGAL polypeptide sequences, probably due

to a lower similarity score among the member sequences (Hossain et al., 2016). Another online software,

“PROSITE” (http://www.prosite.expasy.org) identified the GH35 predictive active site in pBGAL polypeptide

sequences, which possesses a consensus sequence G-G-P-[LIVM](2)-x(2)-Q-x-E-N-E-[FY]. It was postulated that

the second E was the key residue in the active site of pBGALs. More than 50% pBGALs contain the SUEL-type

lectin domain (Hossain et al., 2016).

FIGURE 12.1 Conserved domains in mango BGAL were searched by Conserved Domain Database search in NCBI-BLAST. BGAL, Beta-

galactosidase.
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12.3 Molecular evolution of beta-galactosidases and their classification

To determine the evolutionary relationship of various BGALs, a phyogenetic tree was reconstructed using 67 BGAL

protein sequences retrieved from CAZy database. The MUSCLE program (Edgar, 2004) was used to alignment protein

sequences. The phylogenetic relationships were built by PROTML program of PHYLIP version 3.6 using the

maximum-likelihood method (Felsenstein, 2000). The BGAL genes evolved from an archea and organized into four dif-

ferent families such as bacteria, animals, fungi, and plants (Fig. 12.3) (Hossain et al., 2016). Further plants BGALs are

subdivided into six subfamilies (D1�D6) where MiBGAL belongs to the D1 family. Bacterial BGAL proteins have the

highest similarities to animals, and pBGALs evolve from fungi (Hossain et al., 2016). Approximately 65.57% of simi-

larity index (identities) is found between MiBGAL and the Brassica oleracea-BGAL. The D5 subfamily members had

the highest percentage (98.92%�65.77%) of sequence identities, whereas the D2 subfamily members had the lowest

percentage (71.76%�47.16%). Although pBGALs have a wide range of protein sequence variation, all of them possess

five conserved motifs, motif-1, -2, -3, -4, and -5 (Fig. 12.3). Few pBGALs have double motifs, which may be due to

the segmental gene duplication events. It has been reported that all organisms except plants have a single copy of

BGAL gene located in their chromosomes (Hossain et al., 2016). All plant species have multiple copies of BGAL

genes, namely, 17 in Arabidopsis and tomato (Chandrasekar & Hoorn, 2016), 15 in rice (Tanthanuch et al., 2008), and

16 in brassica (Liu et al., 2013). The pBGAL multigenes reside either on the same or different chromosomal locations

and they possibly evolved through segmental or gene duplications. The gene duplication might have critical roles in

evolving new functions of the multifunctional enzymes (Hossain & Roslan, 2014).

Protein sequence analyses reveal that pBGALs can be divided into two subgroups based on their length of polypep-

tide chain; smaller BGALs (Less than 750 aa) possess GH35, 42, and β-galactosidase domains (Hossain et al., 2016).

Larger BGALs (Greater than 750 aa) contain the conserved C-terminal Lectin-like SUE (sea urchin egg lectin) type

domains. Lectin-like SUE domains usually contain 100 amino acids with 7 highly conserved cysteine residues. This C-

terminal domain is very common to many pBGALs, which shows homology to animal lectin proteins (Ozeki, Yokota,

Kato, Titani, & Matsui, 1995). Sea urchin eggs also contain SUE lectins, which consist of L-rhamnose- and D-galactose-

FIGURE 12.2 Conserved motifs present in the 67 BGALs protein sequences. Five motifs were identified using MEME (Motif Em for Motif

Elicitation) software. The symbol heights represent the relative frequency of each residue. The number of sites and e-value for each motif are indi-

cated. The widths of the motif-1, -2, -3, -4, and -5 are 50, 41, 41, 21, and 21 amino acids, respectively. BGAL, Beta-galactosidase.
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FIGURE 12.3 The phylogenetic tree (cladogram) based on beta-galactosidase (GH35) amino-acid sequences obtained by the maximum-likelihood

method (left side). Archea GH35 sequences were used as an out-group to reconstruct the phylogenetic tree. All analyses were performed with the

WAG amino-acid substitution model and 1 invariable and 4 gamma-distributed site rate categories. Detailed information about the sequences is shown

in Table 12.1. The conserved motifs are distributed in the BGALs sequences (right side).
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specific homodimers (Ozeki et al., 1995). Although there are no experimental evidences on the specific function of this

domain in plants (Tanthanuch et al., 2008), it has been suggested that the lectin-like domain could enhance the affinity

of the enzymes for their substrates, thereby increasing catalytic efficiency (Ahn et al., 2007) and possibly also enzyme

stability (Trainotti, Spinello, Piovan, Spolaore, & Casadoro, 2001).

12.4 Three-dimensional structural characteristics of plant beta-galactosidases

3D structure is very important for the determination of structure�function relationship of the proteins and/or enzymes.

Still now only tomato pBGAL (TGB4) structure has been successfully solved by X-ray crystallography (Eda et al.,

2015). An open reading frame of TGBG4 cDNA (24�724 aa) was cloned and expressed in Pichia pastoris using

expression vector pPICZ_A (Invitrogen) after the α-factor signal sequence for the production of a secreted recombinant

protein fused with a hexahistidine tag (Eda et al., 2015). BGAL isolated from different sources has a common catalytic

TIM-barrel domain in their structure. The catalytic domain of TBG4 showed amino-acid sequence identities at 27%�
34% with other enzymes and the other part of the TBG4 have 19%�25% sequence identities (Eda et al., 2015). The

Ramachandran plot shows that over 95.9% of the residues in the crystal structures remain in structural favor region and

3.9% residues in the allowed region, whereas only 0.2% residues fall in disallowed region (Masahiro Eda et al., 2016).

These results indicate that the structure is of high quality and accurate. TBG4 consists of four domains (Masahiro Eda

et al., 2016); a central TIM-barrel domain is followed by three β-sandwich domains (Fig. 12.4A). The domain-I has 323

amino acids (24�346) with a distorted (β/α)8 TIM barrel fold that houses the active site. Like an ideal TIM barrel of 8

(β/α) repeats, the TBG4 TIM barrel does not have the fifth and sixth α-helixes in the β/α barrel (Masahiro Eda et al.,

2016). The domain-II contains 66 amino-acid residues (347�412) with an antiparallel β-sandwich structure that pos-

sesses 7 β-strands (Masahiro Eda et al., 2016). The domain-III contains an antiparallel β-sandwich structure of 9

β-strands joined with the loop structure. Amino-acid residues located at the position 413�438 in the polypeptide chain

build up loop regions and 2 β-strands, and residues 586�724 constitute the rest of the C-terminal domain (Masahiro

Eda et al., 2016). The domain-IV contains 147 amino acids (439�585) that form an antiparallel β-sandwich structure

with 8 β-strands (Masahiro Eda et al., 2016).

To get more insights of substrate specificities, mechanism of action pBGALs and physiological function, a modeled

structure of MiBGAL also has been developed by homology modeling using TBG4 as a template (pdb id: 3w5g)

(Masahiro Eda et al., 2016). Homology modeling was carried out on online software, SWISS-MODEL web server

(Waterhouse et al., 2018) followed by ModRefiner (Xu & Zhang, 2011). An important criterion of reliable homology

modeling is the cut off value greater than 30% sequence identity between the template and target. More importantly,

FIGURE 12.4 Three-dimensional

X-ray solved crystal structure of

(A) TBG4 and (B) its complex

with galactose. Four domains I�IV

are colored blue, cyan, orange, and

red, respectively. Glycosylated

amino-acid residues (Asn282 and

Asn459) and N-acetyl-D-glucos-

amine residues are depicted as stick

models in (A). The β-D-galactose
molecule in the active site is shown

as a space-filling view in (B).

200 SECTION | I Bioinformatics and next generation sequencing technologies

pdb:3w5g


more than 50% sequence identity between the template and target usually give an accurate model. The amino-acid

sequence identity of MiBGAL with TBG4 is 52.80% (Hossain et al., 2016). The modeled structure is analyzed using

the protein structure and model assessment tools at the SWISS-MODEL server, which utilizes various local and global

quality estimation parameters. Finally, the model is assessed and verified using the PROCHECK (Laskowski,

MacArthur, & Thornton, 2001), WHAT_CHECK (Hooft, Vriend, Sander, & Abola, 1996), VERIFY_3D (Luthy,

Bowie, & Eisenberg, 1992) methods, and ModEval Model evaluation server (Eramian, Eswar, Shen, & Sali, 2008).

Over 99.5% of the residues fell in the common region in the Ramachandran plot and only 0.50% remained in the unfa-

vorable region, indicating that the refined structure is good quality (Hossain and Roslan, 2014). The overall G-factor,

the main chain, side chains, and bond angles parameters were found within the normal limits.

Since the template structure, TBG4 (pdb id: 3w5g) was cloned and expressed P. pastoris without signal sequence

(Eda et al., 2015). Like the template structure, the modeled structure of MiBGAL starts at position 22 and included 716

amino acids (position 22�737) in its structure (Hossain et al., 2016). The MiBGAL modeled 3D structure is presented

in Fig. 12.5A. Similar to TBG4, the model contains four domains (Hossain et al., 2016); first domain (GH35) comprises

a triose-phosphate isomerase (TIM) barrel [also called (β/α)8] in the central part houses the catalytic residues, second

and third domains form small beta-sandwich and four domain is jelly-roll like (Fig. 12.5A and B) as found in template

structure, TBG4 (Hossain et al., 2016). The second, third, and fourth domains consist of six, seven, and eight antiparal-

lel β-sandwich structures, respectively (Hossain et al., 2016). The secondary-structural elements of the modeled struc-

ture MiBGAL consist of 10 α-helices and 38 β-strands, with two additional disulfide bonds located at the position

C230�C235 and C372�405 (Hossain et al., 2016). PROMOTIF predicted the α- and β-contents of the modeled struc-

ture that are 15.90% and 29.10%, respectively. Superimposition of modeled MiBGAL with template TBG4 exhibits the

magic-fit overlapping conformation (Fig. 12.4E) (Hossain et al., 2016). It has been reported that five distinct domains

are found in Penicillium sp. BGAL (PspBGAL) that belongs to GH35 (Rojas et al., 2004). The PspBGAL has two disul-

fide bonds at the position of C205�C206 and C267�C316.

12.5 Structural comparison between MiBGAL and TBG4

Both the MiBGAL modeled and TBG4 crystal-structure possess the four domains including TIM barrel in their centers

(Fig. 12.5A�D) (Hossain et al., 2016). The active site clefts of both structures are also very similar in conformation

(Fig. 12.5B and D) (Hossain et al., 2016). The COACH program identified the catalytic residues responsible for the

ligand binding of the modeled structure of MiBGAL. Thirteen interacting residues located at the catalytic site of mod-

eled MiBGAL structure are Tyr74, Val117, Cys118, Ala119, Glu120, Asn181, Glu182, Glu251, Trp253, Trp256,

Phe257, Tyr290, and Tyr313, whereas that residues of TBG4 are Tyr74, Val117, Cys118, Ala119, Glu120, Asn180,

Glu181, Glu250, Trp252, Trp255, Tyr256, Tyr289, and Tyr312 (Hossain et al., 2016). The interacting residues are very

much similar in both structures. Superimposition of MiBGAL (model) with TBG4 structure presents a magic fit

between them (Fig. 12.5E) and the only difference is that the MiBGAL contain Phe257 instead of Tyr256, which is

located in the catalytic site of TBG4 crystal structure (Fig. 12.5F) (Eda et al., 2015). The MiBGAL also possesses two

disulfide bonds at the position of C230�C235 and C372�C405, whereas TBG4 structure forms four disulfide bonds at

the position of C229�C234, C370�C405, C684�C682, and C67�C678 (Masahiro Eda et al., 2016). Protein�protein

interaction studies revealed that MiBGAL exists in dimeric form as found in TBG4. The galactose�TBG4 protein inter-

action (pdb id: 3w5g) is represented in Fig. 12.5A, where the conserved amino acids residues such as Tyr74, Cys118,

Ala119, Glu120, Asn180, Glu181, Asn230, Glu250, Trp252, Tyr289, and Tyr312 of TBG4 interacted with galactose

molecule to form complex (Hossain et al., 2016). Superposition of the PspBGAL�galactose complex with other BGAL

complexes belonging to GH35 identified the E200 and E299 residues as the proton donor and the nucleophile, respec-

tively (Rojas et al., 2004). The Glu182 and Glu251 were identified as catalytic residues in a deep well in the TIM-

barrel domain of MiBGAL modeled structure by triple-superimposition (Hossain et al., 2016). The residue Glu182 and

Glu251 could act as the proton donor the catalytic nucleophile base of MiBGAL (Fig. 12.6B). On the other hand, the

Glu181 and Glu250 were identified as proton donor and catalytic nucleophile in TBG4, respectively (Fig. 12.6A and B)

(Eda et al., 2015).

12.6 Substrate specificity of plant beta-galactosidases

The pBGAL can hydrolyze various plant-based (1,4)-linked polysaccharides and exhibits a strong affinity to attack

β-(1,4)-galactan molecules. Three aromatic amino-acid residues postulated to be important for substrate specificity

are conserved in GH35 BGALs isolated from bacteria, fungi, and animals (Cheng et al., 2012). The crystal structural
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FIGURE 12.5 The molecular 3D structural features of plant beta-galactosidases (BGALs). (A) The predicted 3D-modeled structure of mango BGAL

(MiBGAL) is shown as ribbon diagram. The structure contains fourfold domains (I, II, III & IV) including α-helices (red), β-pleated sheets (purple),

and coils (gray) as found in template structure (pdb id: 3w5g). The catalytic domain-I is a TIM barrel with the active site located at the N-terminus of

the protein. (B) Surface (20% transparent) of modeled structure of MiBGAL. Four domains are depicted as cyan (domain-I), green (domain-II), yellow

(domain-III), red (domain-IV), and active site clefts are indicated by red arrows. Parts (C) and (D) are the ribbon forms and surface (20% transparent)

filled view of X-ray crystal structures of tomato BGAL (TBG4), respectively. (E) Superimposition magic-fit image of the modeled structures of

MiBGAL (Green) with template structure TBG4 (Id: 3w5g, purple). (F) Superimposition of magic-fit image of active site residues of modeled

MiBGAL (blue) with template, 3w5g (magenta). Chimera and SPDBV 4.01 OSX were used to prepare the images.
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complex of TBG4 with β-D-galactose ligand provided structural insight into its substrate specificity (Eda et al.,

2015). In TBG4 structure, two amino acids out of three were conserved and one aromatic residue was replaced by

valine residue. To confirm the role of valine residue, kinetic studies were carried out of TBG4 and its mutant V548W

using the synthetic (4-nitrophenyl β-D-galactopyranoside) and natural substrates [β(1,4), β(1,3), and β(1,6)-galacto-
biose, chelator-soluble pectin, alkali-soluble pectin] (Ohto et al., 2012). It is interesting that V548W mutant showed

fivefold more activity (Kcat value) compared with wild-type TBG4, but km values remained the same levels for both

(Ohto et al., 2012).

FIGURE 12.6 (A) Representations of the galactose-protein interactions in the catalytic sites of the X-ray crystal structure of tomato beta-

galactosidase-galactose complex (TBG4; pdb id: 3w5g). Bonds and bond lengths are indicated as purple (H-bonds), green (hydrophobic bonds). Bond

lengths are expressed as Angstrom (Å). (B) Stereo view of the superposition of the catalytic sites in MiBGAL (in blue), TBG4 (in green), and

PspbGAL (in orange). The pictures were prepared by RCSB-PDB Ligand explorer 4.2.0 and SWISS-PDB viewer.
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The activity of the V548W mutant as compared with wild-type TBG4 increased sixfold against β-(1,6)-galactobiose
and B0.6-fold against β-(1,4)-galactobiose, while no change of activity against β-(1,3)-galactobiose (Ohto et al., 2012).

The V548W mutant hydrolyzed the chelator-soluble pectin and alkali-soluble pectin and released the galactose mole-

cule approximately 0.6�0.8-fold compared with wild-type TBG4, indicating that V548 have a critical role in substrate

specificity and efficiently degrade the pectic β(1,4)-galactan (Ohto et al., 2012). Another report showed that TBG5,

which had tyrosine residue instead of valine at same of TBG4, preferred to hydrolyze β(1,6) and β(1,3)-linked galacto-

oligosaccharides but did not show any activity against substrate, β(1,4)-galactan (Ishimaru, Smith, Mort, & Gross,

2009). Thus the residue present in the TBG4 corresponding to the position V548 of plant galactosidases seems to deter-

mine the substrate specificity against β(1,4)- and β(1,6)-linked polysaccharides (Ohto et al., 2012).

Molecular docking is the study of an interaction between the protein and ligands to determine the stability of the

interacting amino-acid residues between the substrate and the active site (Meng, Zhang, Mezei, & Cui, 2011; Sethi,

Joshi, Sasikala, & Alvala, 2019). We did molecular docking using 12 well-known synthetic and natural substrates as

well as inhibitors (Tables 12.2 and 12.3). Molecular docking was carried out using the online server such as

RosettaLigands (http://rosettaserver.graylab.jhu.edu/) and DockingServer (http://www.dockingserver.com/). In Rosetta

docking the lowest Interface Energy (delta_X) scores were found in p-nitrophenyl-β-D-galactopyranoside (pNP-GAL)

among the tested ligands for this study. The delta_X scores were 215.20 and 211.30 for the structure of MiBGAL and

TBG4, respectively (Tables 12.2 and 12.3). Consistently, Auto Dock results showed that the binding free energies (ΔG)

of pNP-GAL were 25.18 and 24.50 kcal/mol for MiBGAL and TBG4, respectively (Table 12.2). These results indi-

cated that pNP-GAL could be potential synthetic substrate for both modeled structure of MiBGAL and the crystal struc-

ture of TBG4. It is also consistent with experimental results where TBG4 has strong activities toward the pNP-GAL

(Smith and Gross, 2000). Therefore it could be concluded that pNP-GAL is potential synthetic substrate for both

MiBGAL and TBG4; and MiBGAL might be able to hydrolyze β-(1-4) linkage of the substrates like TBG4 (Ohto

et al., 2012).

12.7 Mechanism of action of plant beta-galactosidases

BGALs isolated from different sources belonging to GH35 usually act to retain the same stereochemical configuration

of product as initial substrate, which is called “retaining mechanism”(Rojas et al., 2004). Double-displacement reaction

occurs here where two successive nucleophilic attack on the anomeric carbon that guides to overall retention of the

anomeric configuration (Rojas et al., 2004). Two carboxylic acids are required for this reaction; First carboxylic acid

TABLE 12.2 Molecular docking for substrates of plant β-galactosidases (Hossain et al., 2016).

Sl

no.

Name of ligands Mango BGAL modeled structure TBG4 X-ray crystal structure

Rosetta Interface

Energy (delta_X

score)

Auto Dock Binding

free energy (ΔG),

kcal/mol

Rosetta Interface

Energy (delta_X

score)

Auto Dock Binding

free energy (ΔG),

kcal/mol

Substrates

1. p-Nitrophenyl-β-D-
galactopyranoside
(pNP-GAL)

215.20 25.18 211.30 24.50

2. o-Nitrophenyl-β-D-
galactopyranoside
(oNP-GAL)

212.29 25.09 28.79 23.81

3. (1)Lactose 28.39 23.94 28.48 23.26

4. Galactobiose 29.29 24.38 27.31 23.45

5. Galactotriose Not possible 22.88 Not possible 10.08

6. Arabinogalactan Not possible 20.80 Not possible 21.31

7. Galactan Not possible 13.71 Not possible 15.79
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functions as a catalytic nucleophile, and second one works as an acid/base catalyst (Rojas et al., 2004; Ohto et al.,

2012). In TBG4, Glu181 and Glu250 resided in the TIM-barrel domain were identified as a candidate for the acid/base

catalyst and catalytic nucleophile, respectively (Ohto et al., 2012). A complex of galactose�TBG4 protein is shown in

Fig. 12.6A, where a galactose is bonded with each monomer in the chair conformation, and its OH group in the position

one exists in the β-anomeric form (Ohto et al., 2012). Nine hydroxyl groups of galactose form direct hydrogen bonds

with TBG4 protein. In addition, aromatic and hydrophobic amino-acid residues resided at the catalytic site play an

important role in the recognition of ligand through extensive van der Waals interactions (data not shown) (Hossain

et al., 2016). The terminal galactose molecule is identified by TBG4 based on these interactions.

In the MiGBAL modeled structure, catalytic site conformation is very indistinguishable from TBG4 (Hossain et al.,

2016). Two catalytically important residues, Glu182 and Glu251, are resided in the TIM-barrel domain and overlapped

with identical residues upon triple-superimposition of MiBGAL, TBG4, and PspBGAL (Fig. 12.6B) (Hossain et al.,

2016). Protein�ligand interaction (MiBFAL�Galactose) studies showed that the residue Glu182 and Glu251 could

function as the proton donor and the catalytic nucleophile base of MiBGAL (data not shown) (Hossain et al., 2016).

According to the conformation conservation of the anomeric carbon position through the reaction mechanism, glycoside

hydrolases belonging to GH35 can be categorized into two types: retaining or inverting enzymes (Ohto et al., 2012).

The basis of this classification is the distance between the oxygen of the two successive catalytic carboxylates; distance

ranges for retaining enzyme and inverting enzyme are 4.5�6.5 and 9.0�9.5 Å, respectively (Ohto et al., 2012). The

retaining enzyme reacts with its substrate to forms a covalent intermediate, while the inverting enzyme hydrolyzes the

substrate by activating the water molecules (Eda et al., 2015). The average value of the distance for the two carboxy-

lates was 5.99 Å in the modeled structure of MiBGAL, while that of TBG4 was 5.41 Å, indicating that pBGALs act on

their substrates in a retaining manner (Hossain et al., 2016).

12.8 Physiological function of plant beta-galactosidase

The pBGALs can hydrolyze β-(1,4)-galactans to play various physiological functions including cell-wall extension and

breakdown of signaling molecules during fruit (Ross et al., 1993). The BGAL activity in tomato fruit significantly

increased during ripening that suggested its roles in the breakdown of β(1,4)-galactan side chains of pectin as part of

the ripening process (Carey et al., 1995). Another group of scientists reported that tomato β-galactosidase-4 (TBG4)

hydrolyzes a wide varieties of plant-derived (1,4)- or 4-linked polysaccharides and exhibits a strong affinity to attack

β-(1,4)-galactan, thereby expanding the cell-wall pericap (Eda et al., 2015). Recently, Yang’s group reported that

BGAL activity and expression levels of BGAL genes (Mdβ-Gal1, Mdβ-Gal2, and Mdβ-Gal5) significantly increased in

TABLE 12.3 Molecular docking for inhibitors of plant β-galactosidases (Hossain et al., 2016).

Sl

no.

Name of ligands Mango BGAL modeled structure TBG4 X-ray crystal structure

Rosetta interface

energy (delta_X

score)

Auto dock binding

free energy (ΔG),

kcal/mol

Rosetta interface

energy (delta_X

score)

Auto dock binding

free energy (ΔG),

kcal/mol

Inhibitors

1. 1-Deoxy-
manojirimycin
(DMJ)

29.68 26.46 29.47 26.06

2. 1-Deoxy-
galactonojirimycin
(DGJ)

27.91 24.95 29.28 24.88

3. Galactose 29.63 24.62 29.19 24.12

4. 1-methyl-β-D-
galactoside

27.15 24.40 28.76 23.76

5. 1-methylcyclopropene 24.86 23.02 27.97 22.51
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“Fuji” and “Qinguan” apples during all stages of fruit developmental and were much higher in the mature fruits, indi-

cating that pectin was degraded by BGALs (Yang et al., 2018). Another report on pectin changes and pectin-modifying

enzymes in Jonagold apples during postharvest softening showed that the BGAL was the key player for softening dur-

ing ripening (Gwanpua et al., 2014).

Recently, the pBGALs have gained much interest for mostly their involvement in fruit developmental stages and

pectin degradation during fruit ripening in various plants including tomato (Carey et al., 1995; Moctezuma et al., 2003;

Pressey, 1983), muskmelon (Ranwala et al., 1992), kiwifruit (Ross et al., 1993), mango (Ali et al., 1995), peach (Lee

et al., 2003), papaya (Lazan et al., 2004), and apple (Yang et al., 2018). Subsequently, it has been reported that downre-

gulation of a ripening-related BGAL mRNA decreased the enzyme activity and freed galactose content and significantly

retained the fruit firmness (Smith et al., 2002). Our previous study showed that mango ripening�related enzymes such

as BGAL, α-mannosidase, and beta-hexosaminidase changed significantly during the postharvest storage at different

temperatures (Hossain et al., 2014). The BGAL is thought to accelerate fruit softening by increasing the porosity of the

cell wall and enhancing the access of other cell wall�degrading enzymes (Brummell, 2006; Ng et al., 2013, 2015). A

β-galactosidase has been reported from chickpea (Cicer arietinum) seeds, indicating its involvement in plant seedling

development (Kishore and Kayastha, 2012). Spinach leaf β-galactosidases also showed the synergistic action with α-L-
arabinofuranosidases on the hydrolysis of arabinogalactan protein (Hirano, Tsumuraya, & Hashimoto, 1994). Recently,

genome-wide identification and expression analysis revealed that sweet potato contains 17 BGAL genes that might be

involved in plant development and stress responses through regulating the metabolism of cell-wall polysaccharides (Li

et al., 2020). Although several reports have been published on BGALs found in various parts of plants such as fruits

(Lazan et al., 2004; Lee et al., 2003), seeds (Kishore and Kayastha, 2012), and leaves (Hirano et al., 1994; Li et al.,

2020), their physiological functions in the plant kingdom still remain obscure.

12.9 Conclusion

Evolutionary analyses revealed that all BGALs are evolved from the ancestor bacterial BGALs. All BGALs including

plants have the most common TIM-barrel domains that house their catalytic residues. However, dissimilarities at the C-

terminal region of the BGALs belonging to GH35 members are the cause of diversified or new functional of these

enzymes different organisms. The pBGALs may function through a retaining mechanism as found in animal BGAL.

Docking results showed clear pictures of the ligand�protein interactions and substrate specificities of pBGALs.

Although X-ray crystal structure analyses of BGALs belonging to GH35 increase our understanding of the structure-

�function relationship, their exact roles of pBGLs in plant physiology remain elusive. To get a better understanding of

the molecular functions of this enzyme in plant biology, it is advisable to characterize the properties, structures, and

evolution of related BGALs from different species of plants.
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Chapter 13

Next generation genomics: toward
decoding domestication history of crops

Anjan Hazra and Sauren Das
Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, India

13.1 Introduction

Concurrent innovations in genomics have benefitted the crop domestication studies to a great extent. Comparative geno-

mics comprising large scale population data of some existing crop varieties alongside their wild relatives may pave the

way into the domestication history of species (Cao et al., 2014; Hufford et al., 2012). Certain archeological and popula-

tion genetic data support that the initial domestication stages in Southwest Asia was a prolonged process (Fuller et al.,

2014; Purugganan & Fuller, 2011) instead of a rapid evolution theory of cultivated plants which was presumed earlier

(Abbo, Lev-Yadun, & Gopher, 2010; Hillman & Davies, 1990; Innan & Kim, 2004).

Genetic studies of crop domestication have been carried out since past decades through both top-down and bottom-

up approaches. The classic top-down approaches are performed by means of analyzing the target phenotypic traits

between wild and domesticated taxa and thereafter identifying the genetic variations that are correlated with the pheno-

typic traits (Doebley & Stec, 1991; Kantar, Nashoba, Anderson, Blackman, & Rieseberg, 2017; Paterson et al., 1988;

Ross-Ibarra, Morrell, & Gaut, 2007; Sax, 1923). On the other hand, bottom-up approaches include examining the

genetic variation among genomes of corresponding taxa, thereby dissection of domestication related evolutionary sig-

nals leading to integrate it with the domesticated phenotypes (Kantar et al., 2017; Ross-Ibarra et al., 2007). Recent

advent of high-throughput sequencing technologies enabled to compare the whole genomes of representative individuals

from domesticated taxa with their wild relatives (Hufford et al., 2012; Li et al., 2013; Wang et al., 2019; Yang et al.,

2012; Zeng et al., 2019). Genome-wide genetic markers enhance our understanding regarding the global and local evo-

lutionary signals evident throughout the genome (Diao & Chen, 2012). They can distinguish the signals of selection

during domestication (Vitti, Grossman, & Sabeti, 2013) from other definite signals related to demographic needs

(Guerra-Garcı́a & Piñero, 2017; Meyer & Purugganan, 2013) (Fig. 13.1).

13.2 Whole genome sequencing

Whole-genome sequence of a species is the key resource in modern domestication studies. It provides the reference

genome of the crop, a prerequisite of all downstream genomic analyses. Whole-genome sequencing and assembly

entirely dependent on the various next generation sequencing modules. These high-throughput sequencing technologies

include Illumina (Sun et al., 2017), PacBio (Badouin et al., 2017; VanBuren et al., 2018), Oxford Nanopore (Belser

et al., 2018) or a combination of these (Bickhart et al., 2017; Zhou et al., 2019). Prior to the sequencing project initia-

tion, the haploid genome size and the ploidy of the organism are determined to estimate the assembly strategy and

sequencing expenditure (Sims, Sudbery, Ilott, Heger, & Ponting, 2014). Since eukaryotic genomes consist of a major

amount of repetitive elements, the sequencing libraries are being prepared with large insert sizes denoted as mate-pair

libraries (Barrera-Redondo, Piñero, & Eguiarte, 2020). Alternatively, long-read sequencing technologies such as PacBio

or Oxford Nanopore (Levy & Myers, 2016; Sohn & Nam, 2018) can also be employed. Following genome sequencing

and assembling, it must be properly annotated. It requires the transcriptome data from the same species, as well as the

homology evidenced from other curated genomes and ab initio predictions based on the underlying structure of genes

(Yandell & Ence, 2012).
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In recent years, the sequencing cost per nucleotide in all the aforementioned technologies has become depleted and

thus the whole-genome assembly projects are affordable to more researcher groups (Consortium, 2012; Schnable et al.,

2009) and become popularized widely (Muir et al., 2016). Bottlenecks still exist to small research groups in handling

the massive amounts of genome data within limited availability of computational resources towards storage and analysis

(Barrera-Redondo et al., 2020; Muir et al., 2016) (Table 13.1). Therefore availability of reference genome is pivotal for

genomic studies towards domestication of a crop (Barrera-Redondo et al., 2020). Since domesticated taxa are mostly

having economic importance, it becomes easier to persuade the funding agencies to support the genome projects. Thus,

reference genomes for most of the domesticated species are now available which might be employed for crop improve-

ment programs as well (Ellegren, 2014).

13.3 Alternative genome scale approaches

For organisms with very large genomes or in the absence of their reference genome, sequencing arbitrary and/or desired

portions of the genome or sequencing the transcriptionally active portions of the genome might be useful in detecting

the genetic variations (Mastretta-Yanes et al., 2015; Schreiber, Stein, & Mascher, 2018). In fact, the reduced sequencing

cost per sample allows for a large sample size alongside a high sequencing depth leading to higher accuracy of the

observed genetic variation (De Mita et al., 2013; Lotterhos & Whitlock, 2015; Schreiber et al., 2018). Although this

method covers a fraction of the whole genome, still it is incredibly sufficient to infer the population genetic statistics, to

detect signatures of selective sweeps and GWAS for domestication related traits (Andrews, Good, Miller, Luikart, &

Hohenlohe, 2016; Schreiber et al., 2018).

Restriction site-associated DNA sequencing (RAD-seq) or the updated double digest Restriction site-associated

DNA sequencing (ddRAD-seq) has recently become a popular, convenient, cost-effective genotyping by sequencing

approach for population genomic studies (Davey & Blaxter, 2010). The technique involves one or two restriction

enzymes to digest the genomic DNA and subsequently sequence the regions adjacent to the restriction sites scattered

across the genome (Davey & Blaxter, 2010). The resultant sequence data can either be mapped against a reference

genome or instead it can be assembled de novo (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; Hazra,

Kumar, Sengupta, & Das, 2021; Mastretta-Yanes et al., 2015) which makes it a versatile technique for species with lim-

ited genomic resources (Barrera-Redondo et al., 2020). However, the reference-based approach is highly recommended

to avoid the possible downstream errors in the estimation of site frequency spectrum (Shafer et al., 2017).

FIGURE 13.1 Workflow showing

current approaches of domestica-

tion studies using genomic tools.
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TABLE 13.1 Comparison of sequencing platforms with the features and performances. (Kulski, 2016)

Generation Platform Company Read length

per run (bp)

Reads

per run

Time Cost per

106 bases

Raw error

rate (%)

Platform cost

(USD approx.)

Chemistry

First
generation

Sanger Life Technologies 800 1 2 h 2400 0.3 95,000 Dideoxy
terminator

Second
generation

454 GS
FLX1

Roche 700 13 106 24/
48 h

10 1 500,000 Pyrosequencing

HiSeq Illumina 23 150 53 109 27/
240
h

0.1 0.8 750,000 Reversible
terminators

MiSeq Illumina 23 300 33 108 27 h 0.13 0.8 125,000 Reversible
terminators

SOLiD Life Technologies 50 13 109 14
days

0.13 0.01 350,000 Ligation

Retrovolocity BGI 50 13 109 14
days

0.01 0.01 123 106 Nanoball/
ligation

Ion Proton Life Technologies 200 63 107 2�5
h

1 1.7 215,000 Proton
detection

Ion PGM Life Technologies 200 53 106 2�5
h

1 1.7 80,000 Proton
detection

Third
generation

SMRT PacBio .10,000 13 106 1�2
h

2 12.9 750,000 Real-time SMS

Heliscope Helicos 35 73 109 8
days

0.01 0.2 1.353 106 Real-time SMS

Nanopore Oxford Nanopore
Technologies

.5000 63 104 48/
72 h

,1 34 1000 Real-time SMS

Source: Data from Kulski J.K. Next-generation sequencing—an overview of the history, tools, and “omic” applications. Next generation sequencing-advances, applications and challenges. 2016:3-60.



Transcriptome sequencing (RNA-seq) is a popular approach to obtain population-level variations in the transcrip-

tionally active part of the genomes (De Wit et al., 2012). Exome sequencing is another suitable alternative targeting the

protein-coding regions of the genome (Kaur & Gaikwad, 2017; Warr et al., 2015) and the demographic history and

selective sweeps can be estimated using this method (Pankin, Altmüller, Becker, & von Korff, 2018). However the lim-

itations of exome/transcriptome sequencing method are to the selective signals those occur restriction to the transcrip-

tionally active/ protein coding part of the genome, whereas many of the domestication associated genetic changes are

located within cis- and trans-regulatory elements, noncoding RNAs (Swinnen, Goossens, & Pauwels, 2016).

13.4 Emergence of pan-genomics

Structural variants at the genome level (copy-number variation, presence/absence of genomic regions, inversions, trans-

versions, translocations) are very common within organisms (Khan et al., 2020). Moreover, the structural variants

including copy-number disparity play a pivotal role underlying functional variation of genes as well as the emergence

of diversification and domestication traits among the crop varieties (Hazra, Dasgupta, Sengupta, & Das, 2019; Lye &

Purugganan, 2019). For example, at least one third of the known domestication related loci found to be structural var-

iants in grapevine individuals (Zhou et al., 2019). Therefore a single reference genome never represents the full reper-

toire of all strains within the species (Munir et al., 2020; Zhao et al., 2018). This led to the generation of the concept

“Pan-genome” that first reported in microbiology (Tettelin et al., 2005), and later on into the work-domain of plants

and animals as well (Golicz, Batley, & Edwards, 2016). The copy number variations, presence/absence variations

(PAVs), and SNPs altogether can serve as the basis of adaptation of the species within a specific environment or any

selective regimes (Lye & Purugganan, 2019).

Once pan-genome data is available for an organism, it can be utilized in analyzing the structural variants in popula-

tions leading to reveal novel loci involved in the development of domestication-related traits (Li et al., 2014; Zhao

et al., 2018). Pan-genomes have become available for several plant species such as maize (Brohammer, Kono, &

Hirsch, 2018), wheat (Montenegro et al., 2017), Brassica (Golicz et al., 2016; Hurgobin et al., 2018). Pan-genomes are

also implemented in domestication studies for several crops, that is, soybean (Li et al., 2014), rice (Zhao et al., 2018),

sunflower (Hübner et al., 2019) and tomato (Gao et al., 2019).

13.5 Methodologies in domestication genomics

On the availability of the genomic resources of a crop and its wild relatives, the subsequent necessary tasks are to ana-

lyze the data toward inference of the population structure, genetic variations, selection pattern and identification of

important loci that are pointing towards the shape of domestication process. Concurrent genome editing tools would

conveniently assist the validation of marker trait association. A comprehensive list of widely used relevant genomic

tools is being provided in Table 13.2.

13.6 Case studies on next-generation sequencing-assisted inference of domestication
history

13.6.1 Rice

Domestication and history of origin are more or less complex in case of cultivated rice (Oryza sativa) varieties. The

japonica cultivars consist of 1 of 3 types of chloroplast genome among which at least one was derived from O. rufipo-

gon, with the same cp genome type. A polyphyletic origin of cultivated Asian rice from 4 different lineages in the O.

rufipogon and O. nivara complex was reported (Kawakami et al., 2007). Cheng et al. (2019) focused on the domestica-

tion of Asian rice (indica and japonica) through the selection characteristics in the chloroplast genome that occurred in

different Asian rice during the domestication process. Diversity and phylogenetic analyses revealed, Oryza sativa L.

ssp. japonica possess slightly less diversity (π) than Oryza sativa L. ssp. indica and wild rice. The results indicated that

Asian rice had been domesticated at least twice. Civáň et al. (2019) concluded that the aromatic rice arose indepen-

dently in the Indian subcontinent and thereby the japonica population arrived here some 4,000 years ago. Later on, the

japonica varieties accomplished aroma traits through hybridization with wild rice along the foothills of the Himalayas.
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TABLE 13.2 Various methods and tools used in plant domestication genomics.

Methods Test/analyses Principle Examples of implementation

Population
genetics

Genetic Diversity in Populations—
allele frequencies, heterozygosity,
nucleotide diversity, number of
segregating sites and private alleles

Reveal the level of genetic erosion
in domesticated plants compared
to the ancestral wild population,
caused by bottlenecks, selective
sweeps and inbreeding (Gepts,
2014; Groeneveld et al., 2010)

Most of the following studies

Population Structure—Parametric
and Non-parametric methods
(principal component analyses,
discriminant analyses of principal
components and K-means
clustering)

Reveal the influence of historical
events that shaped the genetic
diversity of the organisms (Linck &
Battey, 2019)

Temporal changes of effective
population size

Understanding the evolutionary
aspects of domestication
concerning natural and artificial
selection (Allaby, Ware, & Kistler,
2019; Chen et al., 2018)

Ancient gene
flow and local
ancestry

Graph-based The relationships between
populations as a bifurcating tree,
represents ancient gene flow that
contributed to modern genetic
variation (Pickrell & Pritchard,
2012)

Pearl millet (Burgarella et al.,
2018)

ABBA-BABA test or D-statistic Evaluates the allelic patterns of
three taxa and compares them to
an outgroup to identify genomic
regions with an excess of shared
derived variants that are not
concordant to the species tree (i.e.,
ABBA-BABA patterns), which
suggest introgression events
(Durand, Patterson, Reich, &
Slatkin, 2011)

Evolution of C4 photosynthesis
(Olofsson et al., 2016)

Demographic
Simulations

Approximate Bayesian
computation (ABC) method

Compares the summary statistics of
simulations against the observed
data to accept or reject certain
demographic hypotheses (Cornuet
et al., 2014; Gerbault et al., 2014)

Scarlet runner bean (Guerra-Garcı́a
& Piñero, 2017)

Identifying
genes under
selection

FST Outlier Tests Detect signals of selective sweeps
between populations of wild and
domesticated taxa (Gepts, 2014)

Evolution of fruit quality in Apple
(Khan, Olsen, Sovero, Kushad, &
Korban, 2014) and oil properties in
sunflower (Baute, Kane, Grassa,
Lai, & Rieseberg, 2015)

Site Frequency Spectrum Based
Tests

Tajima’s D It is sensitive to changes in low-
frequency variants, making it
particularly useful to detect
selective sweeps before and after
the selected locus reaches fixation,
although low-frequency variants
can also be observed in loci under
purifying selection (Tajima, 1989;
Zeng, Fu, Shi, & Wu, 2006).

Sunflower (Baute et al., 2015)

(Continued )
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TABLE 13.2 (Continued)

Methods Test/analyses Principle Examples of implementation

Fay and Wu’s H It is sensitive to changes in high
frequency variants, which are only
altered by positive selection,
making it very useful when used
alongside Tajima’s D (Fay & Wu,
2000)

Peach and almond (Velasco,
Hough, Aradhya, & Ross-Ibarra,
2016)

Zeng et al.’s E (Zeng et al., 2006) It is sensitive to both low and high
frequency variants, making it
particularly powerful to detect
selective sweeps before or after the
selected locus reached fixation,
also needing an outgroup in order
to differentiate derived alleles
(from ancestral alleles).

Reduction of diversity (ROD) It compares local π values of
domesticated taxa against the local
π values of its wild relatives, using
sliding windows alongside the
genome (Guo et al., 2013;
Schmutz et al., 2014)

Rice (Huang et al., 2012),
Watermelon (Guo et al., 2013),
Cucumber (Qi et al., 2013),
Common bean (Schmutz et al.,
2014), and Chickpea (Varshney
et al., 2019)

Linkage Disequilibrium (LD) Based
Methods

EHH statistics, LD decay (LDD) test Given that selective sweeps
remove the variation in regions
adjacent to the locus under
selection, they can form haplotype
blocks that extend in strong LD
compared to other haplotypes in
the same locus (Sabeti et al., 2002;
Vitti et al., 2013)

Potato (Vos et al., 2017)

XP-CLR test (Chen, Patterson, &
Reich, 2010)

Implement multiple signatures to
detect selective sweeps

Maize (Hufford et al., 2012)

μ statistic (Alachiotis & Pavlidis,
2018)

implement multiple signatures to
detect selective sweeps

African rice (Ndjiondjop et al.,
2019)

Genome wide
association
studies

Unravel the genetic variants
underlying the domestication traits

Chickpea (Varshney et al., 2019),
Peach (Cao et al., 2019), Rice
(Zheng et al., 2019)

Paleogenomics Extraction and Sequencing of
Ancient DNA

Maize (Ramos-Madrigal et al.,
2016; Vallebueno-Estrada et al.,
2016), Grapevine (Wales et al.,
2016), Barley (Mascher et al.,
2016), Sunflower (Wales et al.,
2019)

Transcriptome
analyses

Differential Expression Analyses Involvement of the genes toward
phenotypic differences associated
to domestication

Maize and teosinte (Swanson-
Wagner et al., 2012), Tomato
(Koenig et al., 2013), Pea
(Hradilová et al., 2017), Common
bean (Singh, Zhao, & Vallejos,
2018), and carrot (Machaj, Bostan,
Macko-Podgórni, Iorizzo, &
Grzebelus, 2018)

(Continued )
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13.6.2 Citrus

Complex domestication and origin history was also dissected through genomic approaches in case of Citrus (Wu et al.,

2018). This study included 60 accessions representing diverse citrus germplasms and ten natural citrus species for geno-

mic, phylogenetic and biogeographic analyses. Accordingly, the citrus fruit proposed to be originated in the southeast

foothills of the Himalayas, thereafter underwent a sudden speciation during Miocene, segregated through dispersal from

southeast Asia to Australasia, and later adapted to both these diverse climates (Wu et al., 2018). Subsequent analyses of

hybrids and admixed genomes therein resulted into the genealogy of major commercial cultivars of citrus. An extensive

network of relatedness among mandarins and sweet orange indicated domestication signals of these groups. Moreover,

admixture of pummelo among these mandarins and their correlation with the fruit size and acidity suggested a reason-

able background of pummelo introgression while the selection of palatable mandarins are concerned.

13.6.3 Peanut

The origin of peanut (Arachis hypogaea) has been attempted to trace through several genomic studies during recent

times (Bertioli et al., 2019; Chen et al., 2019; Zhuang et al., 2019). Multiple evidence of peanut genome analyses indi-

cated a recent (,10,000 years ago) origin of this important crop that was aided by demographic activities (Bertioli

et al., 2016, 2019). Furthermore, Bertioli, Abernathy, Seijo, Clevenger, and Cannon (2020) have assessed the different

models for peanut’s origin which strongly support the identities of the two ancestral species as A. duranensis and A.

ipaensis. According to them, A. ipaensis was moved by humans in ancient times which may be a direct descendant of

the population that gave rise to cultivated peanuts in course of polyploidization events ,10,000 years ago (Bertioli

et al., 2020). However, based on Ks values for collinear gene pairs and the expansion time of transposable elements,

Zhuang et al. (2019) suggested that peanut polyploidization occurred B450,000 years ago and also the previously

claimed A. duranensis was not a direct descendent of the ancestor of the A-subgenome donor. Supporting this, Zhuang

et al. (2020) further opined that cultivated peanut originated sometimes 0.40 million years ago by natural interspecific

hybridization followed by polyploidization and the tetraploid peanuts possibly have experienced genetic exchanges with

diploids more recently, representing its evolutionary complexity.

13.6.4 Olive

The origins and the genetic background of the domestication related phenotypic changes are still debatable since the

last report (Gros-Balthazard et al., 2019). RNA-sequencing data of 68 wild and cultivated olive trees were considered

to identify the differentially expressed genes and genetic signatures for selection exercise during domestication process

(Gros-Balthazard et al., 2019). This breakthrough report suggests a major domestication event in the eastern part of the

TABLE 13.2 (Continued)

Methods Test/analyses Principle Examples of implementation

Epigenomic
studies

Epigenome-wide association
studies (EWAS), Single methylation
polymorphisms (SMPs)

Epigenetic marks associated to
transcriptional gene silencing (He,
Chen, & Zhu, 2011)

Cotton (Song, Zhang, Stelly, &
Chen, 2017), Soybean (Shen et al.,
2018)

Experimental
validation of
domestication
loci

Genome editing tools�
1. Clustered Regulatory

Interspaced Short Palindromic
Repeats (CRISPR) system
alongside the CRISPR
associated protein 9 (Cas9),
commonly known as CRISPR/
Cas9 (Cong et al., 2013).

2. Transcription Activator-Like
Effector Nuclease (TALEN)
technology (Zhang, Zhang,
Lang, Botella, & Zhu, 2017)

In vitro techniques by knock-out,
knock-down or knock-in
experiments to validate the
involvement of the predicted genes
or loci in the observed phenotypes
(Zhang et al., 2017).
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Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. The

transcriptome wide investigation uncovered the domestication traits of olive mainly arose through changes in gene

expression which is consistent with its evolutionary history and life history traits.

13.6.5 Tea

The highest tea producing country of the world, China, harbors abundant tea germplasms and has long been considered

the cradle of origin of tea (Hasimoto, 2001; Xia et al., 2020). Nevertheless, due to undiscovered wild ancestors of tea

plants in China, the domestication story of tea plants is still in an enigma (Hazra et al., 2021; Xia et al., 2020).

Meegahakumbura et al. (2018) claimed that China type tea and Assam type tea first diverged 22,000 years ago and sub-

sequently split into the Chinese Assam type tea and Indian Assam type tea lineages at about 2770 years ago. However,

the statements are unilateral and thus, controversy still alive due to the sampling biases and lacking sufficient evidence

with molecular marker proofs (Xia et al., 2020). Since most of the existing cultivated varieties of tea are the result of

constant breeding and hybridizations occurred in natural populations, so artificial domestication may have had little

impact on the variation in genome sequences. Recent availability of the tea plant genome provides reasonable opportu-

nity in solving this disparity. However, following measures should be taken into account for resolving tea origin and

domestication debate: (1) collection of worldwide representative of tea plant samples; (2) investigation of the popula-

tion structure and putative wild ancestor of tea plants; (3) estimation of population diversity employing genome-wide

SNP markers; (4) identification of the candidate genomic regions selected during domestication; and (5) functional

investigation of the domestication related genes (Xia et al., 2020). In a recent study, genomic re-sequencing was carried

out in 139 global tea accessions for population genomics and evolutionary studies in tea (Wang et al., 2020).

Phylogenetic analyses in this investigation revealed that the selection for favorable disease resistance and flavor traits

during domestication has been predominant in C. sinensis var. sinensis populations than that of C. sinensis var. assami-

ca populations.
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In-silico identification of small RNAs: a tiny
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14.1 Introduction

Present-day agriculture faces losses from 20% to 40% of annual global crop production due to pest infestations

(International Year of Plant Health, 2020). Many economically important crops are damaged by insects belonging to

Coleoptera, Diptera, Hemiptera, Orthoptera, and Lepidoptera, adversely influencing crop production and yield.

Traditional pest control practices mainly depend on extensive use of pesticides, which has led to pesticide resistance

and the risk of toxic effects on nontarget organisms. Alternative practices like biopesticides, integrated pest manage-

ment are comparatively ineffective in controlling some pests. On the other hand, biotechnological strategies like the

expression of insecticidal Cry toxins in plants and RNAi technology have shown promising pest control results. The

determination of small RNAs forms a promising approach towards pest control in many crops. This chapter aims to dis-

cuss small noncoding RNA (sncRNAs) and how their detection paves a way towards controlling agricultural pest

infestations.

Any form of living organism responsible for causing a threat or damage to crops and livestock is considered an agri-

cultural pest. Common agricultural pests include pathogens, nematodes, weeds, rodents, insects, and mites responsible

for reducing agricultural productivity. Agronomically essential crops like wheat, rice, maize, soybean, potato, lentil,

etc., are damaged and fed upon by insects belonging to Coleoptera, Diptera, Hemiptera, Orthoptera, and Lepidoptera

order. Pests can attack anytime during or after the production cycle, thus hindering the crop’s overall quality and yield

(Savary et al., 2000).

During the late 1840s, one million people died due to the Phytophthora infestans fungus that caused the Irish potato

famine. Over the years, crops like plum trees, grapevines, and olives were attacked by the bacterium Xylella fastidiosa,

leading to about $104 million losses in California and 180k of land Italy. The 2017 State of the World’s Plants report

ranked the top pests in the past five years based on The Centre for Agriculture and Biosciences International data.

Cotton bollworm ranked first affecting plants like cotton and chickpea, followed by Tobacco whitefly, mainly affecting

tomato and cotton crops. Two-spotted spider mite stood third, affecting tomato and common bean crops (State of the

World’s Plants, 2017). The 2019�20 Locust plague approximately infested 23 countries and damaged around 2.25 mil-

lion hectares of land by April 2020.

Insect pests cause both direct and indirect types of injury to crops. When an insect’s feeding and tunneling activities

lead to harm or loss of plant parts, the resultant damage is considered direct crop damage. While in case of indirect

damage, insects cause less harm but render the entry of various pathogens leading to different infections (Campbell &

Reece, 2002). Thus directly or indirectly, pests have spawned enormous losses in the agriculture industry.

14.2 Small RNAs

Almost three decades ago, small RNA and its target gene were discovered in Caenorhabditis elegans (Lee, Feinbaum,

& Ambros, 1993; Wightman, Ha, & Ruvkun, 1993). With this discovery soon began a new chapter of the small RNA
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world in the book of noncoding RNAs (ncRNAs). ncRNAs are molecules that are not translated into proteins.

Depending on their functions, they are divided into two major classes known as housekeeping RNAs and regulatory

RNAs. Housekeeping RNAs comprise ribosomal RNA (rRNA), transfer RNA (tRNA), while regulatory RNAs include

small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs). These noncoding RNAs amount to the majority of the total

RNA.

Tiny noncoding RNAs comprising approximately 18 to ,200 nucleotides in length responsible for regulating gene

expressions are known as sncRNAs. In recent years, various sncRNAs have been identified and characterized based on

their biogenesis, interaction with different Argonaute family proteins, and lengths (Carthew & Sontheimer, 2009; Kim,

Han, & Siomi, 2009). Some of these types of sncRNAs include piRNAs, miRNAs, siRNAs, and tRNA fragments.

14.3 Types of small noncoding RNAs

Piwi-interacting RNAs (piRNAs) are RNA molecules that interact with PIWI proteins belonging to the Argonaute fam-

ily. These are approximately between 24�30 nucleotides in length and are generally grouped into 20�90 kilobases and

form the most abundant class of sncRNA (Girard, Sachidanandam, Hannon, & Carmell, 2006). Apart from silencing

transposable elements (TE), piRNAs are also involved in carrying out genomic and epigenetic regulations.

MicroRNAs (miRNAs) are approximately 22 nucleotides long, are responsible for posttranscriptional gene regula-

tion via the Argonaute protein-aided repression and mRNA degradation. A single miRNA molecule can easily bind to

multiple targets and vice versa, thus enabling diverse signaling patterns. Consequently, they are the most extensively

researched sncRNA.

Small interfering RNA (siRNAs) are double-stranded RNA molecules responsible for degrading mRNAs to prevent

translation and thus regulate the corresponding gene expression (Laganà et al., 2015). These are 20�27 bp molecules

that play a vital role in cellular defense mechanisms against foreign genetic materials and TE via RNA interference

mechanism.

14.4 Next-generation sequencing in agronomic advancements

The establishment of omics-based techniques has significantly influenced the enforcement of computational data mining

tools leading to the gathering, integrating, and analyzing bioinformatics-based data. The sequencing of sizeable genomic

information and yielding high throughput data is known as Next-generation sequencing (NGS). NGS technologies have

provided solutions to various agricultural problems by allowing the genomic analysis of crops and livestock and under-

standing the complexity of various genetic interactions. NGS-based agrigenomics practices have contributed positively

to the health, the yield of crops, and livestock, leading to increased productivity in the food, clothing, and pharmaceuti-

cal industries (Van Borm et al., 2014).

These approaches have also aided in understanding the genetic basis of agriculturally crucial traits and alteration of

genes linked to the target phenotypic traits. Genomic selection, genome-wide association studies, and marker-assisted

variants selection approaches have enhanced the breeding efficiency leading to increased production of nutritionally

rich crops. With the help of NGS-aided technologies, the initiation, interaction, and elimination of plant diseases and

disease etiology can be analyzed. Nowadays, deep sequencing technologies are utilized to predict and identify sncRNA

and their targets in plants and pests to study corresponding defense mechanisms and develop appropriate strategies to

control crop pests (Djami-Tchatchou, Sanan-Mishra, Ntushelo, & Dubery, 2017). For instance, in miRNAs, a range of

bioinformatics-based algorithms and databases are preferred like miRBase, PicTar, RNAHybrid, TargetScan, miRanda,

DIANA-microT-CDS, among others.

14.5 Small RNA world and their identification

14.5.1 MicroRNA

MicroRNA biogenesis is carried out via canonical and noncanonical pathways. Canonical biogenesis is initiated with

the transcription of the primary-miRNA(pri-miRNA) transcript by RNA Polymerase II (Lucas & Raikhel, 2013). The

microprocessor complex cleaves the pri-miRNA to produce the premature miRNA (pre-miRNA), which is exported to

the cytosol by Exportin5 and processed to produce the mature miRNA duplex (Okada et al., 2009). Further, either

strand of the mature miRNA duplex is incorporated into the proteins of the Argonaute (AGO) family to make up a

miRNA-induced silencing complex (miRISC) (Yoda et al., 2010). The noncanonical pathways are divided into Dicer-
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independent pathways and Drosha/PASHA-independent pathways. In the former, the shRNAs are cleaved by the micro-

processor complex and exported to the cytoplasm via Exportin5, where they are again processed via AGO2-dependent

cleavage (Yang et al., 2010). While in the latter case, m7G-pre-miRNA and mirtrons undergo cytoplasmic maturation

mediated by Dicer endonuclease. M7G-pre-miRNA and mirtrons are exported by Exportin1 and Exportin5, respectively

(Babiarz, Ruby, Wang, Bartel, & Blelloch, 2008; Ruby, Jan, & Bartel, 2007; Xie et al., 2013). Eventually, both the

pathways lead to the formation of the miRISC complex. The degree of sequence complementarily among miRNAs and

their targets, gene regulation is mediated by the miRNAs via mRNA decay, mRNA degradation, or translation inhibi-

tion (Fig. 14.1).

In 1993, lin-4, the first miRNA, and its target gene were discovered. It was responsible for negatively regulating the

protein-coding gene LIN-14 mRNA. Soon within a decade, various platforms relating to deep sequencing and identifi-

cation started emerging. In 2002, miRBase was developed, and it soon became a crucial portal for the miRNA sequence

repository for all species (Kozomara & Griffiths-Jones, 2014). Till now several algorithms have been developed to pre-

dict and identify miRNAs like MIRscan (Lim et al., 2003), triplet-SVM (Xue et al., 2005), MiPred (Jiang et al., 2007),

miRDeep, miRCat, HHMMiR (Kadri, Hinman, & Benos, 2009), MatureBayes (Gkirtzou, Tsamardinos, Tsakalides, &

Poirazi, 2010), miRNAFold (Tav, Tempel, Poligny, & Tahi, 2016), miReader (Jha & Shankar, 2013), miRPlex

(Mapleson, Moxon, Dalmay, & Moulton, 2013), miRdentify (Hansen, Venø, Kjems, & Damgaard, 2014), deepSOM

(Stegmayer, Yones, Kamenetzky, & Milone, 2017), and many more (Table 14.1).

MiRAlign works on ab initio algorithms to predict and detect miRNAs by aligning known pre-miRNAs’ secondary

structures (Wang et al., 2005). This tool aids in predicting species-specific as well as evolutionarily conserved miRNAs

(Sewer et al., 2005). MiRseeker works by scanning euchromatic Drosophila sequences for conserved stem-loops and

exhibiting the nucleotide divergence patterns of known miRNAs. It could detect most known Drosophila miRNAs and

48 new miRNAs, which were highly conserved in distant insect, nematode, or vertebrate genomes. Further, Lai et al.

verified the expression of high-scoring 24 novel miRNA candidates by northern blotting (Lai, Tomancak, Williams, &

Rubin, 2003). MiRanalyzer detects and predicts known and novel microRNAs by implementing an incredibly accurate

machine learning algorithm. It can recall values of unseen data by 75% and hit 97.9% of the area under the curve values

(Hackenberg, Sturm, Langenberger, Falcón-Pérez, & Aransay, 2009). The new substitute of this program, sRNAbench,

is responsible for predicting small RNAs and their expression profiling, genome mapping, and studying other statistics.

Analysis of sncRNA variants can also be carried out by sRNAbench (Rueda et al., 2015).

MiRDeep2 is a software package that identifies miRNAs with an accuracy of 98.6%�99.9%. It scrutinizes data from

seven major animal clades with around 70% to 90% sensitivity. It can profoundly separate miRNAs from other argonaute-

bound small RNAs, thus aiding in the accurate miRNA identification from Nematodes, common soil pests affecting crops

(Friedländer, MacKowiak, Li, Chen, & Rajewsky, 2012). The UEA sRNA Toolkit’s successor (Moxon et al., 2008), the

UEA sRNA workbench (Stocks et al., 2012), comprises different Java-based tools for processing and analyzing small

RNA NGS data. The MiRCat tool uses an sRNA dataset to predict the pre-miRNAs and mature miRNAs; it does so by

detecting precursor miRNA hairpins. Tools4miRs is a one-stop solution for all the methods related to miRNA analysis. At

present, it consists of 40 miRNA identification and 60 target prediction tools (Lukasik, Wójcikowski, & Zielenkiewicz,

2016). Various miRNA target genes can be predicted by programs like miRanda (John et al., 2004), RNA22 (Miranda

et al., 2006), PITA (Kertesz, Iovino, Unnerstall, Gaul, & Segal, 2007), CleaveLand (Addo-Quaye, Miller, & Axtell, 2009),

Targetscan (Agarwal, Bell, Nam, & Bartel, 2015), miRDB (Wong & Wang, 2015) among others.

Spodoptera frugiperda is an annoying pest accountable for harming around 350 plant species causing extensive eco-

nomic losses. Kakumani et al., detected 226 miRNAs in fall armyworm cell line Sf21; 116 candidates from these were

found to be highly conserved in other pests like Bombyx mori, Drosophila melanogaster, and Tribolium castenum.

They identified 110 miRNAs along with five miRNA clusters. Based on the computational analysis, miRNAs from

S. frugiperda expressed higher homology than B. mori compared to other insects and pests like D. melanogaster and

T. castenum (Kakumani et al., 2015). Rao et al., detected 58 miRNAs from Spodoptera litura based on secondary

structure and sequence conservation analysis using in silico methods. They were further validated by experimental

analysis; of these, 11 miRNAs manifested crucial changes in the developmental stages of the insects against which

128 possible target genes were predicted (Rao et al., 2012).

Meloidogyne incognita is a root-knot nematode that infects crop roots and drains their nutrients by parasitic behav-

ior. Pests belonging to the Meloidogyne genus are accountable for 5% of global crop loss by affecting around 2000

plant types globally (Barker, Cathy Cameron Carter, & Sasser, 1985). Wang et al., with a computational pipeline

approach, detected 44 unique miRNAs and seven miRNA clusters in M. incognita. MiR-100/let-7, miR-71�1/miR-2a-1,

miR-71�2/miR-2a-2, and miR-279/miR-2b clusters are found to be conserved in other species, namely C. elegans,

A. suum, B. Malayi, and P. pacificus (Wang et al., 2015).
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FIGURE 14.1 miRNA mediated mRNA regulation.
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Menor et al., proposed a small RNA prediction approach based on the read’s nucleotide composition; thus, circum-

venting the need for reference genome or genomic information of other related species. As a result, a relatively a

greater number of miRNAs can be detected using miRPlex tool. Moreover, compared to piRNApredictor, with the help

of this approach, it is possible to improve the true positive rate for piRNA by 60% (Menor, Baek, & Poisson, 2015).

InsectBase intends to provide a comprehensive platform for researchers who have an interest in analyzing insect

genes. The database contains more than 12 million sequences, encompassing the genomes of 138 insects, transcriptomes

of 116 insects, gene sets of 61 insects, 36 gene families of 60 insects, 7,544 miRNAs of 69 insects, 96,925 piRNAs

from two insects (Yin et al., 2016).

14.5.2 PIWI-interacting RNAs

In a Drosophila germline, piRNAs were first reported as those sncRNAs transcribed from genetic elements like the

Stellate locus and transposons (Aravin et al., 2001, 2003). The piRNA biogenesis is initiated by transcribing long

ssRNAs by piRNA clusters, further fragmented by Zucchini/PLD6 (Ding et al., 2017) mediated cleavage to produce

pre-piRNAs, which are then exported from the nucleus to the cytoplasm, where they undergo primary processing after

binding to a PIWI protein. The 3’ ends of pre-piRNAs are shortened (Tang, Tu, Lee, Weng, & Mello, 2016) to a length

characteristic of the receiving PIWI protein (Izumi et al., 2016; Kawaoka, Izumi, Katsuma, & Tomari, 2011). After the

methylation of their 3’ ends, mature piRNAs enter the nucleus following their cleavage by PIWI proteins to induce tran-

scriptional gene silencing (Brennecke et al., 2007). In the Ping pong pathway, secondary processing occurs when

piRNA-directed slicing of target transcripts occurs by PIWI interactions, creating RNA fragments with 5’ monopho-

sphate pre-pre-piRNA to PIWI protein and generate a secondary piRNA with ten nucleotides (Wang, Yoshikawa et al.,

2014) complementary to the produced piRNA.

For the past two decades, just like miRNA prediction tools, several piRNA detections and target prediction tools were

designed like pirRPred, pirScan (Wu et al., 2018), 2L-piRNA (Liu, Yang, & Chou, 2017), pirnaPre (Yuan et al., 2016),

TABLE 14.1 Commonly used sRNA prediction tools.

Tool name Salient feature Tool link

Mirnovo A rapid, economical, highly parallelized, and multithreaded miRNA
identification method.

http://wwwdev.ebi.ac.uk/enright-dev/
mirnovo/

MIRPIPE A web platform serving miRNA homology detection and quantification. https://github.molgen.mpg.de/pages/
loosolab/www/software/Mirpipe/

sRNAtoolbox A collection of sRNAbench and various sRNA downstream analysis
tools.

https://bioinfo2.ugr.es/srnatoolbox/

miRdentify An open-source tool conducting read mapping and rigorous miRNA
predictivity.

https://www.ncrnalab.dk/#mirdentify/
mirdentify.php

mirTools 2.0 A tool aiding ncRNA detection, complete profiling, and functional
annotation.

https://tools4mirs.org/software/
all_in_one/mirtools-20/

miRDeep2 A highly sensitive sequence-based identification tool is covering seven
major animal clades.

https://www.mdc-berlin.de/content/
mirdeep2-documentation

UEA sRNA
Workbench

A software package for MiRNA and SiRNA prediction, analysis, and
thorough profiling.

http://srna-workbench.cmp.uea.ac.uk/
mircat2/

MiPred A random forest-based machine-learning algorithm that differentiates
real pre-miRNA from false candidates.

http://server.malab.cn/MiPred/

mirDNN A rapid and scalable deep ResNet with automated learning and high
precision processing.

http://sinc.unl.edu.ar/web-demo/
mirdnn/

deepSOM An unsupervised deep model that accords a significant graphical
navigation and result interpretation.

http://fich.unl.edu.ar/sinc/blog/web-
demo/deepsom/

Prost! A user-accessible tool that aids miRNA analysis of any given species. https://prost.readthedocs.io/en/latest/
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and so on. Common approaches to detect piRNA are based on immunoprecipitation techniques and deep sequencing in

model organisms (Yin and Lin, 2007). Nevertheless, these approaches may have certain drawbacks, like piRNAs with low

expression or those in which the ping pong model doesn’t produce could go undetected (Das et al., 2008). Thus, in silico

approaches that consider piRNAs’ existing data to train in piRNA detection can provide a promising alternative approach

in piRNA identification.

K-mers are certain k-tuples/k-grams of nucleic acid sequences that can identify distinct regions within various bio-

molecules. The piRNApredictor functions by predicting piRNAs based on a k-mer search algorithm. It’s over 60% sen-

sitive and has a precision rate above 90%. This type of method does not require a reference genome. Zhang et al.,

detected about 87536 piRNAs from the locust (Magor, Lecoq, & Hunter, 2008; Zhang, Wang, & Kang, 2011).

Wang et al., presented an algorithm that predicts piRNAs by analyzing their interactions with mobile elements. Its

specificity, sensitivity, and accuracy are over 90%. Chilo suppressalis is a harmful rice pest that accounts for high yield

loss (Seshu Reddy and Walker, 1990; Wang et al., 2020). With the help of Piano, about 82,639 novel piRNAs were pre-

dicted. The transposon targets of various species were also detected, including Asiatic rice borer, in which 44%

piRNAs target SINE transposons and 42.4% target LINE transposons (Wang, Liang et al., 2014).

Rosenkranz et al., and Jung et al., presented deep sequencing-based approaches to detect piRNA clusters (Jung,

Park, & Kim, 2014; Rosenkranz and Zischler, 2012). Finally, Brayet et al., proposed piRPred, which detects piRNAs

depending on the telomere/centromere vicinity apart from other general features of the piRNA algorithm. The algo-

rithm’s machine learning method is established on multiple kernels and a support vector machine (SVM) classifier

(Brayet, Zehraoui, Jeanson-Leh, Israeli, & Tahi, 2014).

14.5.3 Small interfering RNAs

In 1999, siRNAs were first reported by Hamilton et al., as part of posttranscriptional gene silencing in plants

(Hamilton and Baulcombe, 1999). SiRNA biogenesis is initiated with the formation of dsRNA via transcription by

RNA polymerase II or III. RBD domain of Dicer complex recognizes and cleaves the dsRNA into short fragments

with two nucleotides 3’ overhang (siRNAs duplexes). They further bind to AGO protein and separate into single

strands, the protein-bound strand is called the guide strand, and the other is called the passenger strand, which is

ejected. This protein RNA complex is integrated into an active RISC by the activity of the RISC-Loading complex.

To identify a stable terminus of the siRNA, R2D2 carries tandem dsRNA binding domains, while Dicer-2 deals with

the other less stable extremity. The MID domain of AGO recognizes the stable end of the duplex. Thus, the sense

strand whose 50 end is discarded by MID is ejected. After forming mature RISC, siRNAs base-pair to their target

mRNA and cleaves it to prevent it from being used as a translation template (Bartel, 2005; Kim et al., 2009; Xia,

Mao, Paulson, & Davidson, 2002).

The siRNAs can be predicted and identified from tools like siRNA-Finder, MysiRNA, NATpare, and some tools, as

mentioned in Table 14.1. A relatively lesser number of identification algorithms have been developed for siRNA as

compared to miRNA and piRNA. More light is thrown on tools relating to target-specific siRNA designing, efficacies,

and prediction of targets and off-targets. SiRNAdb is a siRNA database designed to aid researchers in determining

which siRNA can be used to inhibit their gene of interest. It also gives information on siRNAs with known efficacy and

the ones predicted to exhibit high efficacy, thermodynamic properties of siRNAs, the potential for sequence-related off-

target effects (Chalk, Warfinge, Georgii-Hemming, & Sonnhammer, 2005).

Choudhary et al., identified 16 favorable siRNAs in six Helicoverpa armigera hormonal pathway genes out of over

2000 detected siRNAs. Old World bollworm is a significant pest that affects vital crops like cotton, chickpea, tomato,

sorghum, etc. Therefore these siRNAs are potential candidates targeting hormone biosynthesis and eventually disrupting

the insect life cycle (Choudhary and Sahi, 2011).

14.6 Limitations

Some possible drawbacks can be associated with the prediction, detection, and validation of sncRNAs. For instance,

problems associated with the transcript orientation, determination, and involvement of processing sites within hairpin

sequences. Prediction of false-positive sncRNA candidates. Lack of experimental validation due to various factors like

a failed expression of sncRNA associated genes, the unknown expression pattern of the predicted RNA/targets, etc.

Instances like these may cause hindrances in the computational identification and validation processes of sncRNAs

(Aravin and Tuschl, 2005).
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14.7 Conclusion

With a surging global population, the need for food and textile has increased like never before. It has burdened the agri-

cultural industry with producing higher yields of crops and livestock products annually, which has soared the production

and use of pesticides and herbicides to newer levels to combat extensive damages caused by crop pests and weeds. As

of November 2019, about 2 million tonnes of pesticides are exploited annually on a global scale (Sharma et al., 2019).

The conventional practices to control pests have played significant roles in imparting pesticide resistance to various

agricultural pests. However, such immense use of pesticides on large scales has adversely affected the environment

causing toxic effects to nontargeted flora and fauna. It is also leading to soil and water pollution, thus terribly affecting

the respective ecosystems. This calls for alternate measures to control crop pests in a way that imparts minimum dam-

age to the environment.

Among the upcoming technologies, RNA-based pest control strategies have gained potential. RNAi was first

reported in Petunia and described in C. elegans (Fire et al., 1998). Effective RNAi responses are seen in pests in the

orders of Orthoptera, Coleoptera, and while pests belonging to Lepidoptera, Diptera, and Hemiptera depict relatively

FIGURE 14.2 Applications of in silico sRNA identification tools for pest control.

In-silico identification of small RNAs: a tiny silent tool against agriculture pest Chapter | 14 227



lower responses (Cooper, Silver, Zhang, Park, & Zhu, 2019; Wynant, Santos, & Vanden Broeck, 2014; Xu et al., 2016).

Small RNA-based pesticidal approaches involve in-planta techniques like the expression of dsRNA in transgenic crops

and the use of plant-incorporated protectants. The ex planta approach involves the direct application of dsRNA as an

insecticide, for instance in the form of sprays.

To target any crop-specific pests, it is crucial to have information on the target genes and their role in the insects’

physiology. Furthermore, the corresponding small RNA can be incorporated into the pest via RNA-based approaches.

Thus identifying small RNAs and their targets plays a fundamental role in any RNA-based pesticidal procedures.

Moreover, NGS techniques and modern computational tools give an upper hand in the prediction and identification pro-

cesses of sncRNA and their targets which would have been tedious and time-consuming in conventional approaches.

(Fig. 14.2)
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Rueda, A., Barturen, G., Lebrón, R., Gómez-Martı́n, C., Alganza, Á., Oliver, J. L., & Hackenberg, M. (2015). Nucleic Acids Research, 43, W467.

Savary, S., Willocquet, L., Elazegui, F. A., Teng, P. S., Van Du, P., Zhu, D., . . . Srivastava, R. K. (2000). Plant Disease, 84, 341.

Seshu Reddy, K. V., & Walker, P. T. (1990). International Journal of Tropical Insect Science, 11, 563.

Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M. J., . . . Zavolan, M. (2005). BMC Bioinformatics, 6, 267.

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., . . . Thukral, A. K. (2019). SN Applied Sciences, 1.

State of the World’s Plants 2017 Royal Botanic Gardens, Kew.

Stegmayer, G., Yones, C., Kamenetzky, L., & Milone, D. H. (2017). IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14,

1316.

Stocks, M. B., Moxon, S., Mapleson, D., Woolfenden, H. C., Mohorianu, I., Folkes, L., . . . Moulton, V. (2012). Bioinformatics (Oxford, England), 28,

2059.

Tang, W., Tu, S., Lee, H. C., Weng, Z., & Mello, C. C. (2016). Cell, 164, 974.

Tav, C., Tempel, S., Poligny, L., & Tahi, F. (2016). Nucleic Acids Research, 44, W181.

Van Borm, S., Belák, S., Freimanis, G., Fusaro, A., Granberg, F., Höper, D., . . . Rosseel, T. (2014). Methods in Molecular Biology, 1247, 415.

Wang, K., Liang, C., Liu, J., Xiao, H., Huang, S., Xu, J., & Li, F. (2014). BMC Bioinformatics, 15, 1.

Wang, W., Yoshikawa, M., Han, B. W., Izumi, N., Tomari, Y., Weng, Z., & Zamore, P. D. (2014). Molecular Cell, 56, 708.

Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., & Li, Y. (2005). Bioinformatics (Oxford, England), 21, 3610.

Wang, Y., Huang, C., Hu, B., Liu, Y., Walter, G. H., & Hereward, J. P. (2020). Pest Management Science, 76, 695.

Wang, Y., Mao, Z., Yan, J., Cheng, X., Liu, F., Xiao, L., . . . Xie, B. (2015). PLoS One, 10.

Wightman, B., Ha, I., & Ruvkun, G. (1993). Cell, 75, 855.

Wong, N., & Wang, X. (2015). Nucleic Acids Research, 43, D146.

Wu, W. S., Huang, W. C., Brown, J. S., Zhang, D., Song, X., Chen, H., . . . Lee, H. C. (2018). Nucleic Acids Research, 46, W43.

Wynant, N., Santos, D., & Vanden Broeck, J. (2014). International Review of Cell and Molecular Biology (pp. 139�167). Elsevier Inc.

Xia, H., Mao, Q., Paulson, H. L., & Davidson, B. L. (2002). Nature Biotechnology, 20, 1006.

Xie, M., Li, M., Vilborg, A., Lee, N., Di Shu, M., Yartseva, V., . . . Steitz, J. A. (2013). Cell, 155, 1568.

Xu J., Wang X.-F., Chen P., Liu F.-T., Zheng S.-C., Ye H., Mo M.-H., (2016). mdpi.com.

Xue, C., Li, F., He, T., Liu, G. P., Li, Y., & Zhang, X. (2005). BMC Bioinformatics, 6, 310.

Yang, S., Maurin, T., Robine, N., Rasmussen, K. D., Jeffrey, K. L., Chandwani, R., . . . Lai, E. C. (2010). Proceedings of the National Academy of

Sciences of the United States of America, 107, 15163.

Yin, C., Shen, G., Guo, D., Wang, S., Ma, X., Xiao, H., . . . Li, F. (2016). Nucleic Acids Research, 44, D801.

Yin, H., & Lin, H. (2007). Nature, 450, 304.

Yoda, M., Kawamata, T., Paroo, Z., Ye, X., Iwasaki, S., Liu, Q., & Tomari, Y. (2010). Nature Structural & Molecular Biology, 17, 17.

Yuan, J., Zhang, P., Cui, Y., Wang, J., Skogerbø, G., Huang, D.-W., . . . He, S. (2016). Bioinformatics (Oxford, England), 32, 1170.

Zhang, Y., Wang, X., & Kang, L. (2011). Bioinformatics (Oxford, England), 27, 771.

In-silico identification of small RNAs: a tiny silent tool against agriculture pest Chapter | 14 229

http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00002-7/sbref80


This page intentionally left blank



Section II

Omics application



This page intentionally left blank



Chapter 15

Bioinformatics-assisted multiomics
approaches to improve the agronomic
traits in cotton

Sidra Aslam1, Muhammad Aamer Mehmood1, Mehboob-ur Rahman2,3, Fatima Noor1 and Niaz Ahmad2,3

1Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan, 2Agricultural Biotechnology

Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, 3Department of Biotechnology, Pakistan Institute of

Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan

15.1 Introduction

15.1.1 A bird’s-eye view of the world cotton market

Economically, cotton is considered a valuable - cash crop worldwide. It is a leading income source for more than one

billion people globally. According to an estimate, the annual cotton production in the world is about 25 Mtons, with an

overall worth of nearly 12 billion dollars (Khan et al., 2020). Cotton is cultivated in around a hundred countries on an

area of over 30 M hectares worldwide (Townsend, 2020; Zaib et al., 2020).

The maximum share in the total cotton production comes from Asian countries including China, India, Pakistan,

etc., followed by America, Europe, and Africa (Jabran, Ul-Allah, Chauhan, & Bakhsh, 2019). In the year 2017, major

cotton exporters were India (7.6 billion dollars), China (15.1 billion dollars), and the US (7.6 billion dollars), while the

major cotton importers were Bangladesh (5.3 billion dollars), Vietnam (4.2 dollars), and China (8.6 billion dollars)

(Khan et al., 2020). China, United States, Pakistan, India, Turkey, Brazil, Burkina Faso, Australia, Uzbekistan, and

Turkmenistan are considered as the top ten cotton producers (Khan et al., 2020). The world textile industry relies on

cotton for the production of garments, with an estimated volume of 748 billion in 2016 (Voora, Larrea, & Bermudez,

2020). Due to its huge economic importance, it’s also known as “white gold.”

15.1.2 An overview of omics mainly focused on plant-omics

The term “omic” is originated from the Latin suffix “ome” meaning mass or many. Omics refers to the unified technol-

ogies used to explore the roles, behavior, and relationship of the various types of molecules that make up the cells of an

organism (Datta, 2017). Different omics tools help understanding the main differences in proteins, RNA, DNA, and

many other cellular molecules present among different individuals of a species. Hence, it can be inferred that omics is

an integrated field of genomics, transcriptomics, metabolomics, and proteomics. All these approaches ultimately lead to

the identification of the total number of genes, metabolites, mRNA, and proteins in a holistic way. Likewise, the omics

technology is also helpful in understanding disease etiology through the process of diagnosis, screening, prognosis, and

biomarker discovery (Poisot, Péquin, & Gravel, 2013).

Plant-omics is a fast-growing, effective, and vital field of study. There are a lot of new omics technologies such as

microarrays, RNA-Seq, proteomics, SNP genotyping, and NMR which are used to unravel the genetic circuits of vari-

ous biological functions. The characterization, detection, identification, and cell metabolic profiles of living organisms

under certain environmental circumstances, the fast-growing term metabolomics is used (Kumar, Kuzhiumparambil,

Pernice, Jiang, & Ralph, 2016). Transcriptome has been considered an invaluable tool to understand and predict gene

functions (Kobayashi, Ohyanagi, & Yano, 2014). Huge data on functional and structural changes within the cell can be
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produced by omics experiments conducted by high throughput assays. These advanced methods facilitated the percep-

tion of molecular responses to tissue and cell damage that also helped in the understanding of functional cellular sys-

tems (Aardema & MacGregor, 2003).

Fitting a crop cultivar to a particular environment is the main challenge for plant researchers. Moreover, it exposes

the reality that genotype only will not be enough to support the biotechnology-driven crop improvement program, but a

combination of omics technologies are required to provide reliable information (Sirangelo, 2019). The analysis of large

datasets of multiomics can only be performed computationally. Many packages and software are available for the better

processing of voluminous omics data, but the visualization of these large datasets remains a crucial task for bioinforma-

ticians (Shaheen, Iqbal, & Zafar, 2016).

15.1.3 Introduction of bioinformatics in the area of next-generation sequencing

All branches of biological sciences that depend on nucleic acid sequence data have been profoundly changed in the last

few decades, driven by the advent of next-generation sequencing (NGS) technologies. The NGS technologies offer

high-throughput methods to investigate the sequences of nucleic acids and have become a most important and valuable

tool in the applications of the life sciences (Koboldt, Steinberg, Larson, Wilson, & Mardis, 2013).

Compared to conventional Sanger sequencing, the NGS allows millions of bases to be sequenced at once at a rela-

tively low cost (Metzker, 2010). The impact of NGS is egalitarian in that it allows both small and large research groups

to solve problems in the field of biology and genetics including those in agriculture, virology, forensic science, and

plant biology. Moreover, this technology is developing in parallel with the online availability of a variety of biological

data, which makes it possible to address a kind of question never possible before. Bioinformatics approaches and web

databases are needed for effective use of genetic, proteomic, transcriptomic, and metabolomic data important in enhanc-

ing the crop yield. With the improvement in technology and biological data, we are quickly moving to that point where

not only the “model plants” but every plant is “open” to the power of NGS technology applications (Egan, Schlueter, &

Spooner, 2012).

Bioinformatics is providing multiple tools for analyzing the NGS data, ranging from short-read alignment programs

to algorithms for the recognition of structural variations (Sripathi et al., 2016). Concerning the growing challenges of

NGS data storage, analysis, and interpretation, bioinformatics is increasingly becoming the rate-limiting step for NGS

inclusion into translational research (Pereira, Oliveira, & Sousa, 2020). While using the NGS platforms, there is a mini-

mum of four levels of genomic sequence analysis to consider (Horner et al., 2009; Schlötterer, 2002). The first step is

the generation of DNA/RNA sequence reads. For this, sequencing devices integrated with software are used to convert

the raw sequencing signals into bases of short nucleotide reads associated with the base quality score. Research labora-

tories face the problem of computer resources in the storage of raw signal and sequencing files as short read collection

in FASTQ format. Safe storage of raw sequences is required for bioinformatics analysis. NGS technologies produced

raw DNA data that can be submitted to the sequence read archive database of NCBI, while mRNA-Seq can be submit-

ted to the Gene expression omnibus database (Hong et al., 2013).

The second step consists of contigs and scaffold alignment and assembly, which help to detect variants. The require-

ments for sequence alignment and variant detection depend on the NGS project format complexity (El-Metwally,

Hamza, Zakaria, & Helmy, 2013). Short reads from small genomes are less complex than the large genomes of higher

plants which make it easier to compute, align and assemble. Transfer of preedited sequencing data in the proper format

to a software of alignment, assembly, and variant detection is usually straightforward. Moreover, many free software

and packages offer to perform such kinds of tasks (Kulski, 2016).

The third step is the integration and visualization of assembled sequences. A lot of bioinformatics platforms are

available to virtually transcribe, translate as well as annotate the nucleotide sequences to an advanced informatics level,

like defining coding and noncoding regions, untranslated regions, repeat elements, and signal peptides. Five categories

of annotation software have been described by Yandell and Ence (Yandell & Ence, 2012): (1) ab initio and evidence-

based gene predictors; (2) aligners and assemblers for protein and RNA-Seq; (3) pipelines of genome annotation; (4)

selectors and combiners; (5) genome browsers for data curation. NCBI provides a typical pipeline of genome annota-

tion, while BUSCO, babelomics, PASA, MEGANTE, and MAKER are also considered important genome annotation

tools (Kulski, 2016). The fourth step includes the consolidation of data, from different platforms of NGS, into one sin-

gle bioinformatics output with accessible tools and web addresses. Integration and visualization of annotated data are

done with genome browsers like those displayed at JBrowse, Ensemble UCSC, and genome maps (Medina et al.,

2013).
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15.1.4 Brief description of “integration of omics”

Plant system biology focuses on the understanding of interrelationships among plant genotypes and the corresponding

phenotypes which allow the interpretation of the proteins or genes all at once (Greenbaum, Luscombe, Jansen, Qian, &

Gerstein, 2001). Investigation of the complicated biological processes is not only important to understand the gene’s

function but also to determine the interrelationship between different metabolic pathways (Schaal, 2019).

Advancement in the high throughput techniques based on nuclear magnetic resonance (NMR) and mass spectrome-

try has allowed the detection of a broad spectrum of small molecules. Metabolite profiling depends on the investigation

of the largest group of metabolites involved in particular metabolic pathways (Wolfender, Marti, Thomas, & Bertrand,

2015). It has been investigated the metabolites profiling had also been served as a method of diagnosing specific geno-

types (Fernie, Trethewey, Krotzky, & Willmitzer, 2004). Furthermore, it also enables the detection of biotic and abiotic

responses in a plant (Urano et al., 2009), as well as the determination of the function of unidentified genes (Saito, Hirai,

& Yonekura-Sakakibara, 2008). For a complete study of plant metabolic pathways, detection of an enzymatic gene is

not anymore acceptable, hence other omics fields include proteomics, genomics, and transcriptomics can also empower

with additional details to rigorously decipher the plant metabolic pathways (Oksman-Caldentey & Saito, 2005; Yuan,

Galbraith, Dai, Griffin, & Stewart, 2008).

Integration of omics has also evaluated the information flow obtained from one omics to others (Buescher &

Driggers, 2016). Therefore the objective of multiomics data integration is to combine the different types of data to build

a model that can be used to predict the composite traits and phenotypes (Fig. 15.1)

The main purpose behind the integration of omics is to remove the gap among the generation of data as well as the

capability to study and explore the complex biological mechanism. Omics also makes it possible to identify the biomar-

kers and the relationships among datasets that have not been examined (Rajasundaram & Selbig, 2016). Another main

benefit of the integration of omics is that there are fewer chances of false positives that are produced from the single-

source dataset (Misra, Langefeld, Olivier, & Cox, 2019).

FIGURE 15.1 The workflow of multiomics data integration.
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15.1.5 Why is multiomics study preferred over single-omics?

As compared to the studies of single-omics, multiomics techniques provide the opportunity to deeply understand the

biological mechanisms involved in plant growth, and disease development (Pinu et al., 2019). The adoption of multio-

mics strategies has become a common practice in many fields of biology (Fig. 15.2). Therefore scientists are now focus-

ing on the development of far-reaching multiple omics experimental methods and also trying the integration of different

datasets to achieve a deep understanding of various biological functions. Appropriate integration of multiple omics data

makes it easier to comprehensively examine the biological pathways. For example, it is possible to know how a given

genotype affects its phenotype, as well as to characterize the molecular mediators that control the principal mechanisms.

Multiomics also made it possible to find the important biological pieces of evidence in pathways that otherwise cannot

be clarified with the single-omics methods alone (Hasin, Seldin, & Lusis, 2017).

Integrated approaches have also great importance in plant sciences and helped a lot in understanding the mechan-

isms involved in plant senescence, diseases, or plant responses to stress (Großkinsky, Syaifullah, & Roitsch, 2018).

New practical methods and software to integrate the multiomics datasets are needed to explore and analyze the complex

pathways in plants. Machine learning methods are also necessary for the model-based interpretation of multiple omics

data for pathways analysis (Graw et al., 2021).

FIGURE 15.2 A schematic diagram repre-

sents the integration of omics approaches.
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15.2 Big data in biology and omics

System biology revolves around transcriptomics, metabolomics, and proteomics which together offer extensive informa-

tion regarding the expression level of the associated transcripts, metabolites, and proteins, respectively (Aizat, Goh, &

Baharum, 2018). A huge amount of data produced from these platforms often have no connection among them. For

example, it is not possible to compile several hundreds of millions of transcripts with their corresponding protein and

metabolic pathways. Indeed, the backbone of omics research serves as a crucial human resource/biological component

for the integration and processing of data (Palsson & Zengler, 2010). Considerably, multiomics techniques make it eas-

ier to view and understand the specific biological processes in terms of the whole plant as well as their environmental

interaction (Brauer, Singh, & Popescu, 2014).

In the present era of omics, data is being presented in different ways, representing information in different domains

including proteome, genome, epigenome, transcriptome, and metabolome. A plurality of distinct tools and approaches

are available to handle or analyze the big data and allow translating the big data into meaningful knowledge which

thereafter produces a potential bonanza. Big data biology is a field of data-intensive science so-called omics biology.

This discipline was proposed based on the availability of a large amount of omics data. Big data in biology facilitates

omics analysis to solve biology-related problems. Nowadays, big data is considered a burning issue in the scientific

community, but the understanding might be potentially tricky or sometimes misleading. The word itself refers to the

massive amount of data, representing a particular aspect (Afendi et al., 2013; Schatz, 2012). Plant Omics is a rapidly

emerging area in the scientific community because it became a need of the hour to tackle the major concerns that the

world has been confronted regarding agriculture. Various studies have been made to understand the physiological, ultra-

structural, and molecular mechanisms of the plant responses in terms of abiotic stresses. Such kind of investigation has

been performed which covered various omics approaches such as proteomics, genomics, metagenomics, metaproteo-

mics, metatranscriptomics, and metabolomics that reinforced our attentions toward the mechanisms of different meta-

bolic pathways, microbial interactions, accumulation of different types of metabolites, genes cascades, upregulation,

and downregulation of various genes (Meena et al., 2017).

Proteomics, metabolomics, transcriptomics, and peptidomics can offer innovative ideas concerning the interaction of

the plant with the environment, the internal functioning of plants, and cell-to-cell communication. RNA-Seq and gene

chips are used for analysis in transcriptomics, SNP genotyping is used in genomics, ELISA, gel electrophoresis, protein

microarrays, chromatography is used for further studies in proteomics, NMR, and chromatography are used in metabo-

lomics (Gemperline, Keller, & Li, 2016). Genomic research revolves around the complete understanding of the func-

tions of the genome at the whole genome level while proteomics aims to understand the systematic analysis of proteins.

Metabolomics aims to understand the cellular status at the time of plant development (Barh, Khan, & Davies, 2015),

while another field of omics named phenomics aims to understand the systematic analysis of traits in plants. During the

last couple of years, phenomics has gained more progress due to the emergence of imaging techniques and the develop-

ment of novel sensors for a variety of organs and traits (Brown et al., 2014; Fiorani & Schurr, 2013; Furbank & Tester,

2011).

Sequencing also facilities the identification of genes that have been involved in various agricultural traits, for exam-

ple through HTS, various studies have been made on miRNA involved in the ovule and fiber development in cotton.

These studies have led to the identification of sixty-five miRNA families that are found to be conserved in cotton and

from these sixty-nine families, fifty-nine miRNAs were found to express significantly. After the identification of

miRNAs, computational approaches were used for target identification. A total of 1498 miRNA-target were found that

comprised of 820 genes belonging to ninety-nine miRNA families. The results have shown that miR171, miR828,

miR160, and miR164 are concerned with the fiber development in cotton plants. The sequencing of cotton genomes

offers an extensive amount of genetic information which have not available in the past for example variants and geno-

mic structure of the cotton (Xie, Wang, Sun, & Zhang, 2015).

15.3 Bioinformatics resources for cotton-omics

Cotton is an economically important fiber crop, due to which it attracted the attention of evolutionary biologists and

taxonomists. To improve the yield and quality of cotton, understanding the genome structure and function is very

important. To do this, a functional understanding of bioinformatics resources such as analysis tools, software, and data-

bases is required (Sripathi et al., 2016). Below, we discussed the availability of bioinformatics resources (Table 15.1)

for the different areas of cotton omics.
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TABLE 15.1 List of bioinformatics resources used in different omics approaches to explore plant omics.

Omics

approaches

Resources Description URL References

Genomics Blast2GO Analysis and functional

annotation of plant

genomes

https://www.blast2go.com/ (Conesa et al., 2005)

CottonFGD Integrated functional

genomics database

https://cottonfgd.org (Zhu et al., 2017)

CGRD Database of cotton

genome resources

http://cgrd.hzau.edu.cn/index.php (Ashraf et al., 2018)

cottonGen Database of cotton

genetics, breeding and

genomic

https://www.cottongen.org/ (Yu et al., 2014)

ccNET Database of gene

coexpression networks

http://structuralbiology.cau.edu.cn/

gossypium/

(You et al., 2017)

CottonDB Database of cotton

genome

http://www.cottondb.org (Yu et al., 2007)

GraP Functional genomics

studies of G.raimondii

http://structuralbiology.cau.edu.cn/GraP/

about.html

(Zhang et al., 2015)

Transcriptomics Trinity Transcriptome assembler http://TrinityRNASeq.sourceforge.net (Pollard et al., 2009)

TopHat Aligner http://tophat.cbcb.umd.Edu/ (Trapnell, Pachter, & Salzberg,

2009)

Cufflinks Transcriptome assembler http://cufflinks.cbcb.umd.edu/ (Trapnell et al., 2010)

TRAPID Transcriptome analyzer http://bioinformatics.psb.ugent.be/webtools/

trapid/

(Van Bel et al., 2013)

EGENES Transcriptome-based plant

database

http://www.genome.jp/kegg-bin/

create_kegg_menu?

category5plants_egenes

(Masoudi-Nejad et al., 2007)

Proteomics OpenMS Analyzer for mass

spectrometry data

http://www.openms.de (Röst et al., 2016)

SALAD Protein sequence

annotations

http://salad.dna.affrc.go.jp/salad/ (Mihara, Itoh, & Izawa, 2010)

UniProtKb Protein sequence

information

http://www.uniprot.org/ (Boutet, Lieberherr, Tognolli,

Schneider, & Bairoch, 2007)

COGs Classification of proteins

on phylogenetic basis

https://www.ncbi.nlm.nih.gov/COG/ (Tatusov et al., 2001)

InterPro Collection Protein families http://www.ebi.ac.uk/interpro/ (Mitchell et al., 2015)

PDB Protein structure

storehouse

http://www.rcsb.org/ (Sussman et al., 1998)

BMRB Storehouse of NMR results

of proteins

http://www.bmrb.wisc.edu/ (Markley et al., 2008)

EMDB Storehouse of Electron

microscopy results of

protein

https://www.ebi.ac.uk/pdbe/emdb/ (Patwardhan, 2017)

HMMTOP transmembrane topology http://www.enzim.hu/hmmtop/ (Tusnady & Simon, 2001)

ModEval Structure evaluation http://modbase.compbio.ucsf.edu/

evaluation/

(Pieper et al., 2006)

CAVER Analysis and visualization

tool

http://www.caver.cz/ (Chovancova et al., 2012)

CASTp Visualization tool http://sts.bioe.uic.edu/ (Rayalu et al., 2012)

ProFunc Protein function https://www.ebi.ac.uk/thornton-srv/

databases/profunc/

(Laskowski, Watson, & Thornton,

2005)

(Continued )
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TABLE 15.1 (Continued)

Omics

approaches

Resources Description URL References

RADAR Detection of repeats https://www.ebi.ac.uk/Tools/pfa/radar/ (Heger & Holm, 2000)

SMART Identification of domains

and motifs

http://smart.embl-heidelberg.de/ (Ponting, Schultz, Milpetz, &

Bork, 1999)

CDART Prediction of conserved

domains

https://www.ncbi.nlm.nih.gov/Structure/

lexington/lexington.cgi

(Geer, Domrachev, Lipman, &

Bryant, 2002)

PMut Prediction of protein

mutations

http://mmb.irbbarcelona.org/PMut/ (López-Ferrando, Gazzo, De La

Cruz, Orozco, & Gelpı́, 2017)

I-mutant2.0

Server

Protein stability prediction http://folding.biofold.org/i-mutant/i-

mutant2.0.html

(Capriotti & Fariselli, 2005)

PyMol Visualization tool https://pymol.org/2/ (Yuan, Chan, Filipek, & Vogel,

2016)

BLASTp Similarity search tool https://blast.ncbi.nlm/ (Johnson et al., 2008)

FASTA Similarity search tool https://fasta.bioch.virginia.edu/fasta_www2/

fasta_http://www.cgi?rm5 select&pgm5 fa

(Donkor, Dayie, & Adiku, 2014)

HMMER Detects homologs https://toolkit.tuebingen.mpg.de/#/tools/

hmmer

(Finn, Clements, & Eddy, 2011)

ClustalOmega Similarity search tool https://www.ebi.ac.uk/Tools/msa/clustalo/ (Sievers & Higgins, 2014)

Metabolomics MetaGeneAlyse Metabolomics data

analyzer

http://metagenealyse.mpimp-golm.mpg.de/ (Daub, Kloska, & Selbig, 2003)

MeltDB Metabolomics data

analyzer

https://meltdb.cebitec.uni-bielefeld.de (Neuweger et al., 2008)

Galaxy-M Metabolomics data

analyzer

https://github.com/Viant-Metabolomics/

Galaxy-M

(Davidson, Weber, Liu, Sharma-

Oates, & Viant, 2016)

XCMS Metabolomics data

analyzer

https://xcmsonline.scripps.edu/ (Tautenhahn, Patti, Rinehart, &

Siuzdak, 2012)

MetaboSearch Metabolomics data

analyzer

http://omics.georgetown.edu/metabosearch.

html

(Zhou, Wang, & Ressom, 2012)

metaP-server Pathway analyzer http://metap.helmholtz-muenchen.de/ (Kastenmüller, Römisch-Margl,

Wägele, Altmaier, & Suhre,

2011)

MetExplore Pathway analyzer http://metexplore.toulouse.inra.fr/ (Cottret et al., 2010)

MetAssign Probabilistic annotation of

metabolites

http://mzmatch.sourceforge.net/ (Daly et al., 2014)

MetPA Pathway analyzer http://metpa.metabolomics.ca/ (Xia & Wishart, 2010)

MZedDB Interactive annotation tool http://maltese.dbs.aber.ac.uk:8888/hrmet/

index.html

(Draper et al., 2009)

MSEA Pathway analyzer http://www.metaboanalyst.ca/ (Xia & Wishart, 2010)

ADAP Data processing http://www.du-lab.org/software.html (Jiang et al., 2010)

MMCD Metabolomics data

analyzer

http://mmcd.nmrfam.wisc.edu/ (Cui et al., 2008)

GenePattern Analysis and visualization

tool

http://software.broadinstitute.org/cancer/

software/genepattern/

(Reich et al., 2006)
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15.3.1 Genomics

Genome research promises the development of genetically modified plants. Today, genome research is a rising star in

the field of omics. Genomic study of cotton is far behind in comparison to other model plants (Zhang, Li, Wang, &

Chee, 2008). Significant achievements made on the cotton genome are summarized below.

15.3.1.1 Translational genomics

Recent advancements in the field of genome research enable researchers to utilize genomics for developing efficient

breeding strategies (Morgante & Salamini, 2003). The knowledge regarding the organization along with the structure of

the genome in multiple species of plants might be capable of providing a new paradigm that how natural and artificial

selection influence genes to respond better under the various environmental conditions (Beissinger et al., 2014).

Through Sanger sequencing, only a few model plant genomes have been sequenced. There has been a great expectation

that a large part of these sequencing studies might be transmitted to the other plant species. Occasionally, this approach

is named translational genomics (Kang et al., 2016). The main objective behind translational genomics is to transfer the

knowledge of the newly generated genome to the unstudied plant genome (Salentijn et al., 2007).

With the advancement in NGS technology, the knowledge of plant genomes has been increased day by day due to

low sequencing costs. Translational genomics has been used extensively to study multiple traits in the plant such as

plant developmental processes, stress-tolerant, etc. In polyploids, especially in the case of cotton, breeding such com-

plex quality traits is considered to be a very difficult task (Salentijn et al., 2007). By transferring the genomic informa-

tion of Arabidopsis, soybean (Schmutz et al., 2010), sorghum (Paterson et al., 2009), poplar (Tuskan et al., 2006), and

rice (Goff et al., 2002; Yu et al., 2002), such complicated problems can be sorted out. The candidate-gene approach is

considered a new paradigm for cotton breeding (Pflieger, Lefebvre, & Causse, 2001). Recently, it has been suggested

that Gossypium raimondii shows more alignment with the Vitis vinifera and Arabidopsis, hence revealed that the tran-

scriptional genomics approach can be fruitful to better understand the genome (Lin et al., 2010). It has been suggested

that in case of cotton fiber, translational genomics might be helpful for making enormous improvements in variety of

biomass crops. Hence this led to the identification of function of unknown gene in cotton.

15.3.1.2 Epigenomics

Several studies have been made on the mechanisms adopted by a cell to better perform its functions. As the cell com-

prises the same set of the gene, so why each gene behaves differently from one another? Here comes a phenomenon

named epigenetics. Epigenetics is a rapidly emerging field of scientific research that emphasizes the alteration in gene

activity without any change in the DNA sequence (Kang, Daines, Warren, Cowan, & Education, 2019). The word “epi-

genetics” actually means “over and above the genome.” Epigenetics revolves around the study of a single locus or set

of loci, while epigenomics describes the universal study of epigenetic changes across the whole genome, such genome

is called epigenome (Weinhold, 2006).

Cotton is highly genotypic-dependent due to its regeneration ability. It plays an important role as a model plant in

various studies due to its genome evolution and polyploidization (Qin & Zhu, 2011). Within the genus Gossypium, cot-

ton’s genome offers a wide variety of information about the genomic size variation and polyploidy agronomic impor-

tance (Chen et al., 2007). The two widely cultivated species of cotton are G. hirsutum and G. barbadense, Due to high

cotton yield production, G. hirsutum dominates the global cotton market, while in contrast, the G. barbadense yields

high-quality cotton (Iqbal et al., 1997; Lee, Woodward, & Chen, 2007; Lovell et al., 2007). Cotton (Gossypium) fibers

are elongated single-celled trichomes, growing in the epidermis of outer ovule integuments. After fertilization, the cot-

ton ovule is developed into a seed coat with the division of the ovule into inner and outer integuments. Nearly 30% of

outer integuments are involved in fiber cell initiation (Osabe et al., 2014). Complex genetic and epigenetic changes

lead to polyploidy formation which contributes to the improvements in fiber quality traits (Kashkush, Feldman, &

Levy, 2002; Shaked, Kashkush, Ozkan, Feldman, & Levy, 2001; Wang et al., 2004). Recently, up to 500 genes have

been identified that are considered to be epigenetically modified among various varieties of wild and domesticated cot-

ton. For example, wild cotton varieties may have genes that helped to better respond to drought, hence this conception

makes it possible to complement genetic and epigenetic breeding systems in cotton.

There is partial genetic diversity in cotton due to successive domestication, topical polyploidization. Campbell,

Williams, and Park (2009). Interestingly, DNA methylation polymorphism event is more in cotton compared to the G.

hirsutum (Keyte, Percifield, Liu, & Wendel, 2006). During the process of breeding and domestication, studies revealed

that diversity in cotton increased due to DNA methylation. Studies explored the function of DNA methylation-
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regulation that contributes to the diversity of plant phenotypes and plant development. The diversity of DNA methyla-

tion in cotton was also explored by the process of methylation-sensitive amplified polymorphism that is also called

MSAP. Hence, it revealed that cotton genotypes have greater DNA methylation diversity. MSAP is also used to exam-

ine the level of post-transcriptional modifications such as methylation in tissues of G. hirsutum (Cao et al., 2011).

Recently scientists observed that methylated genes in wild cotton are concerned with the obstruction in flowering

during the hours of daylight. On the other hand, loss of methylation in the same gene in domesticated cotton leads to

induction of gene expression that allowed to reach the global cotton demand. In this modern era, breeders either use

CRISPR/Cas9 or chemicals to make modifications in the methylated genes. These advancements in technologies

enabled the researchers to induce the targeted change in cotton epigenome to create a new cotton breed with improved

characteristics (Osabe et al., 2014).

15.3.1.3 Transcriptomics

Transcriptomics is a genome-wide approach to measure the expression level of mRNA in the genome (Brady, Long, &

Benfey, 2006). Transcriptomics studies have a profound impact on major aspects of biological science because it

enables the researchers to analyze the variations among the gene expression of several mRNAs both qualitatively and

quantitatively (Tan, Ipcho, Trengove, Oliver, & Solomon, 2009). Transcriptomics aims to measure the genetic variabil-

ity during developmental processes and stress exposure in plants (Wang et al., 2009). The very first time in 1912, an

epidemic occurred in cotton producer countries due to a pathogen that caused cotton leaf curl disease (CLCuD).

Transcriptomics study revealed that cotton species named Gossypium arboreum was naturally immune against CLCuD.

It has also been studied that disease-resistant genes are concerned with the transport process and may have a critical

role to play in the defense mechanisms adopted by Gossypium arboreum against CLCuD (Naqvi et al., 2017). Another

study on cotton fiber development using transcriptomics analysis suggested that genes involved in fiber elongation are

associated with carbohydrates metabolism and biosynthesis of flavonoid and phenylpropanoid (Padmalatha et al.,

2012). Similarly, the same study was conducted with the aim of identification of genes that showed response against

stress conditions. Mainly, the genes associated with water stress are involved in the defense, regulation of gene expres-

sion along with cellular metabolisms (Park, Scheffler, Bauer, & Campbell, 2012). Upregulation in the expression level

was examined in the gene associated with the vesicular trafficking and vesicle coating during the cotton fiber develop-

ment (Hovav et al., 2008).

Recently, genes induced in response to Aspergillus flavus were identified using comparative transcriptomics analy-

sis. A total of 732 genes were examined which shows the response to aflatoxin. All these genes are expressed differ-

ently from each other. Upregulation of gene expression encoded for helix-loop-helix (HLH) proteins and UDP

glycosylation transferase were identified against aflatoxin. Moreover, another two genes encoded for 2OG and Fe(II)-

dependent oxygenase superfamily were also identified that respond against toxigenic strains on A. flavus (Mehanathan

et al., 2018). Transcriptomics is further categorized into transcriptomics of mRNAs and transcriptomics of non-mRNAs

(RNomics).

15.3.1.4 Functional genomics

In the past, several studies have been conducted to perform a comparison among structural variants in the cotton

genome to explore the expression level of the gene. Functional genomics is used for understanding plant biology for

exploiting genomic knowledge to improve cotton breeding to reach the global cotton demand. These advancements in

the genomics era led to the development of genetically modified cotton to produce a better cotton breed that is resistant

to insects. But there is slow advancement regarding the improvements in cotton at the genomic level. These improve-

ments include quality of fiber, stress-tolerant, yield, and flowering in cotton (Guo, Wang et al., 2015; Yu et al., 2016).

The whole-genome sequence of model plants promotes the effective implementation of the cotton plant that pro-

mises the consortium-based cotton genome research. NGS and in silico analysis introduce SNP in the cotton genome.

These polymorphisms offer a genetic analysis of cotton. As it has been known, the plant genome contains more copy

number variations, which might contribute to study the phenotypic variations. Several studies have made it clear that

the gene affected by these variations has introduced significant characteristics in cotton (Ashrafi et al., 2015; Fang

et al., 2017). It has also been studied that GhARG, DsRed2, and GhCLA1 are used for highly efficient multisite

genome-editing in allotetraploid cotton. In the future, CRISPR Case9 would be an effective approach for introducing

multiple mutants in the cotton genome (Wang et al., 2018).

Fiber quality becomes a primary interest in the global cotton market. Multiple studies have been conducted to pre-

dict the genes that influenced the quality of fiber such as GhExp1, E6, GA20ox, PIP2s, and GhSusA1 (Bai et al., 2014;
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Harmer, Orford, & Timmis, 2002; Jiang, Guo, Zhu, Ruan, & Zhang, 2012; John & Crow, 1992; Li, Ruan et al., 2013).

It is noteworthy that the quality of fiber is highly influenced by the flowering time. Several transcription factors are

involved in the floral initiation that includes MYB, B3, and MADS. By simply targeting the genes encoding these tran-

scription factors in cotton, the quality of fiber can be improved (Wu et al., 2015). 73% yield loss occurs under stress

exposure. Functional genomics revealed that with the identification of the stress-tolerant gene, the cotton yield has been

increased. Several transcription factors along with genes and physiological processes are involved that induced stress-

tolerant during the period of abiotic and biotic stress. By utilizing the candidate genes, the upregulation and downregu-

lation of gene expression can be revealed that lead to the development of cotton breed with improved traits (Guo, Shi

et al., 2015; Ranjan et al., 2012).

Recent studies give a new hand to cotton fiber development by incorporating RNA interference. RNA interference

assists to predict the candidate gene involved in the fiber development, stress tolerance, fiber quality, and other agro-

nomic characteristics of the cotton plant. RNA interference application is developed rapidly because it introduces a new

paradigm in cotton genomics.

Several functional genomics databases and tools are available that enable users to acquire and figure out the infor-

mation at the genomic level (Ashraf et al., 2018).

15.3.2 Proteomics

Proteins are involved in various biochemical and signaling pathways, so the proteomics studies revealed the whole

molecular mechanisms behind the growth, interaction, and development of plants (Mihr & Braun, 2003). Proteomics

approaches for dissecting the molecular mechanisms have been studied on the model plant as in Arabidopsis thaliana

and Oryza sativa to tackle multiple environmental stress conditions (Vanderschuren, Lentz, Zainuddin, & Gruissem,

2013).

In the last 10 years, protein expression studies have been conducted by exposing various cotton tissue to various

stresses. These environmental factors include drought, salinity, and pests. This protein expression analysis has led to the

production of a huge data that incriminated different proteins at a particular stress level along with their effect on cellu-

lar and subcellular metabolism of the cotton plant. Many of the cotton proteomes has been released in the last few years

(Du et al., 2013; Li, Zhang et al., 2013; Wang, Zheng, Gao, & Zhou, 2012; Yang, Bian, Yao, & Liu, 2008; Zhang,

Yang, Zhang, & Liu, 2013). The availability of a complete genome of cotton speed up the process of protein identifica-

tion using mass spectrometry.

The cotton plant has evolved a sophisticated system to better respond to various environmental conditions without

any adverse effect on its growth and development (Loka & Oosterhuis, 2012). Hence, it is necessarily important to

understand the mechanism underlying the development of cotton fiber to develop better cotton breeds. Recent advance-

ment in the proteomics technologies has advanced our knowledge in perspective of cotton fiber development and stress-

tolerant. In the last five years, numerous research work has been conducted that provides evidence regarding the appli-

cation of proteomics in cotton fiber development and stress tolerance (Basra & Malik, 1984).

Pathogenic fungi namely Verticillium dahlia, Thielaviopsis basicola, and Fusarium oxysporum caused a significantly

low yield of cotton (Beckman, 1966). In response to the pathogens attack, plant cells defend themselves using different

response strategies such as induced responses and constitutive responses. Hence, the understanding of complete

mechanisms of pathogen-plant response might contribute to the development of cotton transgenic plants for restraining

cotton plant diseases. The proteomic approach is very effective to determine the pathogen-plant interaction. Several

studies indicate that pathogenesis-related (PR) protein showed a great response against fungus (Wang et al., 2011).

PR10 expression in Zea mays showed a response to A. flavus infection. Reading that, PR10 was responsive against

Verticillium dahlia, Thielaviopsis basicola, and Fusarium oxysporumin in the cotton plant (Chen, Brown, Rajasekaran,

Damann, & Cleveland, 2006; Dowd, Wilson, & McFadden, 2004; Patil, Pierce, Phillips, Venters, & Essenberg, 2005).

Proteomics study on cotton fiber revealed that glycolysis, hydrogen peroxide, and sugar metabolism play an impor-

tant role in cotton fiber development (Pang et al., 2010; Yang et al., 2008; Zhang et al., 2013). These findings provide a

new perspective to combat plant diseases using proteomics approaches. Posttranslational modification is a key regula-

tory step in cotton fiber development (Kumar et al., 2013; Zhang & Liu, 2013). Recently TOF/MALDI TOF approaches

were applied with the aim of identification of various phosphorylation-sites in differentially expressed proteins (Zhang

& Liu, 2013). Based on phosphopeptide results, three enzymes named enolase (Mujer et al., 1995), UDP-L-rhamnose

synthase (Pang et al., 2010), and transketolase (Gerhardt et al., 2003) were predicted as phosphorylated (Zhang & Liu,

2013). These findings suggested that enzymes concerned with carbohydrate metabolism are involved in the elongation

process of cotton fiber.
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Proteomics-based studies on cotton revealed that during abiotic stress, the cotton plant adopted various strategies

that include tricarboxylic acid cycle, glycolysis supports, biosynthesis of ATP, photosynthesis, and biosynthesis of dif-

ferent defense-related proteins. In cotton, auxin, JA, ET, and BR have been discovered to form a major part of the cot-

ton fiber development along with stress tolerance (Deeba et al., 2012; Meng et al., 2011; Wang et al., 2012; Zheng,

Wang, Liu, Shu, & Zhou, 2012). Hence, the detailed knowledge of the hormones and their associated signaling path-

ways might encourage the understanding of biological processes in cotton.

15.3.3 Metabolomics

In 1998, the very first time, the metabolome term was originated to monitor the metabolomics complement (Oliver,

Winson, Kell, & Baganz, 1998). There is a wide disparity in our understanding of the signaling and biochemical path-

ways in plants (Jander et al., 2004). Most of the pathways and their associated functions are still unknown. Regarding

that, many types of research have been conducted but due to practical reasons, it mainly focused on the predefined

questions (Fridman & Pichersky, 2005).

Metabolomics is aimed to identify metabolites in biological samples. It incorporates multiple system biology

approaches including NMR and mass spectrometry. These methods provide effective data related to omics technologies

because metabolites are considered as end-products in various plant cellular pathways. In plants, the most widely stud-

ied areas of metabolomics are developmental processes, response to stress, mutant and phenotype, and interaction with

environments (Wolfender, Rudaz, Hae Choi, & Kyong Kim, 2013).

Cotton fiber development is an extremely complicated process that involves various pathways including metabolic

and signaling pathways. Recently, GC-Ms-based metabolites profiling was carried out on the ligon-lintless-2 (Li2)

mutation during cotton fiber development. This study revealed multiple pathways associated with the cell elongation

process, hence very helpful to understand the metabolic processes in cotton fiber elongation. Li2 mutation in cotton

changed the metabolome which leads to alteration in metabolic pathways of cotton. For example, higher accumulation

of tricarboxylic acid cycle-organic acids in mutant fiber signifying the high level of nitrate assimilation (Naoumkina,

Hinchliffe, Turley, Bland, & Fang, 2013). No significant studies are available on cotton hence, in the future more meta-

bolomics studies are required to understand their metabolic pathways.

15.4 Integration of multiomics data to cope with cotton plant diseases

Integration of omics is not easy work but in actual the integration of multiomics data is turned into a challenging task

for the researchers. In the case of plants, climate change has introduced many environmental changes which pave the

way for the infection of new diseases and insect pests in plants, hence it is needed of the hour to understand the under-

lying mechanism behind the pathogenesis of plant diseases. Many techniques are available but the science of omics

becomes important which enables the identification of plant-microbial interaction in respect to their genotype-

phenotype spectrum (Crandall, Gold, Jiménez-Gasco, Filgueiras, & Willett, 2020). The plant-microbial interaction is

concerned with genetic variability among plants that have a dramatic effect on the growth of the plant. Investigation of

plant defense responses is a very complicated task. Plants generally adopt multiple immune mechanisms, for example,

reactive oxygen species production, enzyme synthesis, and plant cell strengthening to better respond against the attack

of pathogens (Huang, Ullah, Zhou, Yi, & Zhao, 2019). Advancement in genomics, proteomics, metabolomics, and tran-

scriptomics leads to the identification of resistant genes involved in these pathways which help select the classical cot-

ton breed.

Significant research on plant diseases, interaction among plant and their microbiome should be considered. This can

be characterized as microbial symbioses and their genes that influence the plant-microbiome interaction. Thus a more

sophisticated understanding of the microbiome might be capable of reducing the chances of plant diseases which in turn

leads to better cotton yield. Omics approaches have made a significant contribution to achieving this aim (López-

Mondéjar, Kostovčı́k, Lladó, Carro, & Garcı́a-Fraile, 2017).

In cotton, multiomics offers a landscape of agronomic traits such as fiber yield and quality, resistance genes, and

stress tolerance, which promises to fuel the progress of cotton genetic improvement. Multiomics might be helpful in the

identification of genes involved in disease pathogenesis along with their associated signaling and metabolic pathways.

Before this, the unknown function of genes must be predicted and in this respect, CRISPR Cas9 is a useful approach

for genome editing at multiple sites (Peng, Jones, Liu, & Zhang, 2020). The production of cotton is highly affected by

the CLCuD. An epidemic of CLCuD leads to a reduction in cotton yield. The development of transgenic cotton using
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omics approaches permitted the production of cotton plants that are resistant to the pathogens associated with the

CLCuD (Rahman, Khan, Rahmat, Iqbal, & Zafar, 2017).

15.5 Challenges in the integration and analysis of multiomics data of cotton

The continuous evolution of data analysis software and databases is a compelling factor for the meaningful interpreta-

tion of multiple omics data. Over the past decades, platforms for multiomics data have greatly improved, but still, mul-

tiple challenges exist for the integration and analysis of multiomics data (Fig. 15.3) (Palsson & Zengler, 2010). The

first challenge originates due to the nature of omics datasets. Omics data are very noisy and variable. Most of the omics

data is qualitative which makes it very difficult to reproduce and compare (Pinu et al., 2019). While DNA data are

mostly accurate and reproducible, they are mostly considered qualitative with lots of false positives based on a large

number of sequences reads obtained. Datasets of proteomics, transcriptomics, and metabolomics are poorly reproducible

and extremely qualitative in nature. Many of the challenges that these omics techniques have are inherent to the prac-

tices adopted by various platform users (Guo et al., 2013; Kuo, Jenssen, Butte, Ohno-Machado, & Kohane, 2002;

Schloss, 2018; Sinha, Abnet, White, Knight, & Huttenhower, 2015; Tabb et al., 2010).

Lacks of appropriate metadata is another main hurdle to the effective integration of multiomics data (Hastings et al.,

2019). Metadata is essential to allow the reproducibility. These are also important for the biologically relevant interpre-

tation of the omics results. For instance, in plant multiomics analysis data about temperature trends, plant age, plant

breed, watering conditions could have a substantial impact on the protein and metabolite measurements (Pinu et al.,

2019).

There are many softwares and tools to integrate and analyze the multiomics data, but researchers may be unaware of

all the available tools. This problem may be arising due to the lack of a central repository that links or summarize these

tools. Another frequently cited problem with multiomics tools is the lack of support for achieving tool interoperability.

Different bioinformatics databases have different input and output formats, several of which are nonstandard and

FIGURE 15.3 Overview of challenges in inte-

grated omics.
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incompatible with the other programs. Such kinds of problems make it difficult to create a multidatabase workflow.

Users may require to spend their time writing some scripts which convert and reconvert the data according to every pro-

gram (Roumpeka, Wallace, Escalettes, Fotheringham, & Watson, 2017).

Statistical approaches such as correlation, clustering, and multivariate are used for multiple-omics integration, but

these methods are very limited in scope and understandings into biological knowledge. For example, certain correlation

approaches, such as Pearson’s may be biased to outliers, while using multivariate methods, different model selection,

and interpretation becomes very complicated (Cavill, Jennen, Kleinjans, & Briedé, 2016; Usadel et al., 2009).

15.6 Conclusion

Due to the advent of NGS technologies and the remarkable growth of omics data, now it looks doubtless that we are

facing a big change in the era of ‘big data’ in biology. These technical revolutions have led to the production of a mas-

sive amount of omics data such as genomic information and production of voluminous reference genomes, RNA-

sequencing for transcriptomes, and many others Integration of multiomics data provides advantageous insights into the

flow of biological info at multiple levels and consequently helps in unraveling the mechanisms underlying the biologi-

cal condition of interest. Research programs that depend on the generation of multiple omics data types need to appro-

priately allocate resources to data processing and integration so that the full benefit of the datasets and their intrinsic

information content is brought out. In part, seeking this balance is an economic challenge. Based on the challenges dis-

cussed in this study, we produced a list of recommendations that can be considered to find the potential solutions to the

challenges faced during the designing of multiple-omics data integration study. These are:

� Quantitatively measure multiomics data to confirm the reproducibility and oblige the comparability
� Gather and record complete metadata to guide and notify the well-designed multiomics studies.
� Perform the power analyses, before conducting large-scale multiomics studies.
� Use quality control samples, universal standardized operating protocols, and reference standards to enable reliable

multiomics measurements across the laboratories.
� Explain the clear utility of multiomics analyses to both the public and funding organizations.
� Construct centralized data repositories, reviewed database/software lists, and improved software interoperability to

improve the multiomics integration.

In addition to the aforementioned recommendations, we also encourage database/software developers to take further

initiative to design more user-friendly tools and software for multiomics data integration.
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Chapter 16

Omics-assisted understanding of BPH
resistance in rice: current updates and
future prospective

Satyabrata Nanda
MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha, India

16.1 Introduction

Rice (Oryza sativa L.) is regarded as the most important cereal in the world, feeding more than 50% of the global popu-

lation (Cheng, Zhu, & He, 2013). Consumption of rice provides more than 20% of the total calorie requirement in a typ-

ical human being. Apart from its usages as the most widely consumed staple food across the world, rice is also

considered to be a model monocot plant for research. Due to the multifaceted values associated with rice, this crop has

huge economic significance, especially in the countries like China, India, Vietnam, and Bangladesh. In addition, to sat-

isfy the demands of the ever-increasing world population, there is a tremendous need of increasing the rice production.

However, the global rice production is challenged by several abiotic and biotic factors. While the major abiotic factors

include, salinity, drought, and temperature stress, the rice pests constitute important biotic factors. Brown planthopper

(BPH) (Nilaparvata lugens Stål), commonly known as BPH is one of the dreadful insect pests of rice causing massive

crop losses worldwide (Nanda et al., 2018). BPH is a monophagous rice pest and infests on both vegetative and repro-

ductive stages of rice plants. It feeds on the phloem sap of rice and its excessive feeding leads to fatal drying of the

plants, a phenomenon known as “hopper burn” (Cheng et al., 2013). BPH damages rice plants not only by direct feed-

ing but also by transferring two rice viruses, including the rice grassy and the rice ragged stunt viruses. At present, the

use of insecticides is the most common method of controlling BPH infestations. However, its adverse effects on envi-

ronment and fear of BPH resurgence offer the need of new and more ecofriendly alternatives. Therefore controlling

BPH infestations via integrated pest management (IPM) is the most promising approach.

After the advent of omics technology substantial advancement in plant science research has been attained. The rice

resistance research outputs through omics-aided analysis have been proved to be crucial in discovering new insights

into rice agriculture and mechanism of stress response. In the case of rice�BPH interactions, several studies have been

conducted to reveal the molecular mechanisms of these complex interactions. For instance, genomics has resulted in the

identification and characterization of several BPH-resistant genes (Bph/bph) in rice that confer rice resistance against

BPH. Similarly, the use of proteomics has unearthed the role of several rice proteins in modulating the rice�BPH inter-

actions. Also, new discoveries in the field of metabolomics have provided significant information regarding the differ-

ent metabolic pathways and the rice metabolites that are involved in rice resistance response against BPH infestations.

In this chapter the state-of-the-art omics technologies, namely, genomics, transcriptomics, proteomics, and metabolo-

mics along with bioinformatics have been discussed extensively in deciphering the rice defense pathways against BPH.

Moreover, a conceptual model depicting the roles of genomics, transcriptomics, proteomics, and metabolomics is also

proposed related to rice resistance.

16.2 Rice genomics in brown planthopper resistance

The relatively small size of genome and diploidy nature made rice to be a perfect candidate from the cereal crops to

begin the genomic studies and subsequent genome sequencing. Two rice varieties, that is, 93�11 cultivar from indica

253
Bioinformatics in Agriculture. DOI: https://doi.org/10.1016/B978-0-323-89778-5.00003-9

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-89778-5.00003-9


and Nipponbare from japonica were first used for the sequencing of the rice draft genome via whole-genome-shotgun

sequencing method (Goff et al., 2002; Yu et al., 2002). In the next 3 years the complete rice genomes of these two vari-

eties were made available that covered nearly 95% of the rice genome of 389 Mb (International Rice Genome

Sequencing Project, 2005; Yu et al., 2005). These studies laid the foundation of rice genomics and also served as the

reference rice genome for the future resequencing studies. Upon arrival of the next-generation sequencing, many

researchers did the resequencing of several rice cultivars that revealed key genetic information and strengthen rice func-

tional genomics researches, including rice�BPH interactions (Guo, Gao, & Qian, 2014). The availability of the genome

sequences and other genomic resources of rice and its wild relatives proves to be immensely beneficial in delineating

rice resistance against BPH. In addition, they help in the molecular breeding of BPH-resistant rice varieties as an alter-

native approach under IPM. The first BPH-resistant gene Bph1 was identified in the 1970s in Mudgo rice, and till date,

39 Bph genes have been identified in different rice varieties and wild rice (Zhang et al., 2020) (Table 16.1). Some of

these identified genes have already been used in rice molecular breeding to produce elite rice cultivars with enhanced

BPH resistance (Liu et al., 2016; Nanda et al., 2018, 2020). Moreover, genetic elements in rice conferring resistance to

BPH, including both the resistance genes (Bph) and the quantitative trait loci (QTLs), have been identified and mapped

on to different rice chromosomes (Table 16.2). The genetic mapping analysis of these identified genetic elements

revealed that they are present in clusters on specific chromosomes. Chromosomes 3, 4, 6, and 12 harbor most of such

clusters and are crucial for regulating the genetics of rice�BPH-resistant response (Cheng et al., 2013). For instance, 12

BPH-resistant genes are clustered on chromosome 4, while 8 of them are present on chromosome 12. Apart from the

BPH-resistant genes, some QTLs have also been identified by using different crossing methods and from different map-

ping populations. For example, qBPH6(t) was mapped onto chromosome 6 lying between a set of microsatellite markers

RM469 and RM568 (Jairin et al., 2007). Similarly, qBPH3 was mapped onto chromosome 3, while qBPH4, qBPH4.2,

qBPH4.3, and qBPH4.4 were mapped onto chromosome 4 (Hu et al., 2015; Mohanty et al., 2017). It is hypothesized

that the cluster of genetic elements could be the tightly linked genes or different alleles of a particular gene or genes

having multiple insect-response specificities (Du, Chen, Guo, & He, 2020). The eight BPH-resistant genes clustered on

chromosome 12 were isolated and analyzed to be different alleles of the same gene (Zhao et al., 2016). These small

allelic variations result in great variation in the rice resistance levels against BPH infestations. Several studies have

revealed that the BPH feedings on rice phloem sap, production of honeydew, fecundity rate, and mortality rate goes

down when BPH infest on the rice varieties carrying these Bph genes (Cheng et al., 2013). Thus multiple efforts have

been made to use the Bph genes in molecular breeding of rice resistance through marker-assisted selection and gene

pyramiding (Hu et al., 2012, 2013; Qiu, Guo, Jing, Zhu, & He, 2012). These improved rice germplasms offer a better

tolerance/resistance capacity to BPH infestations and act as the source for the development of elite rice varieties.

On the other hand, mere identification of the rice genetic elements conferring resistance to BPH pressure is not

enough. Those genes need to be isolated and characterized. The structural and functional characterization of such genes

will be of huge interest in rice molecular breeding against BPH infestations and understanding the underlying molecular

mechanisms of rice�BPH interactions. In this connection, Bph14 was the first gene to be cloned and characterized in

rice from chromosome 3 (Du et al., 2009). Structural analysis of Bph14 revealed it to be from the NLR family of resis-

tance gene with a CC-NB-LRR conserved domain. Functional genomics studies confirmed that Bph14 modulates rice

resistance against BPH by activating the salicylic acid (SA) signaling and increased callose depositions at rice sieve tubes

(Du et al., 2009). The SA signaling ensures an improved resistance response at a molecular level, much like system

acquired resistance. On the other hand, the callose depositions make the sieve tubes difficult to penetrate for the BPH,

resulting in reduced growth and survival of BPH. In addition, the functional genomics studies on Bph genes revealed that

rice carries multiple NLR family proteins that confer BPH resistance. For instance, Bph26 was found to be another NLR

protein having a CC-NBS-LRR domain (Tamura et al., 2015). Interestingly, Bph18 and Bph26 were identified to share

the same locus on rice chromosome. Bph18 is also an NLR protein containing a dual nucleotide binding (CC-NB-NB-

LRR) domain (Ji et al., 2016a). Similarly, Bph9 was cloned and characterized to be a CC-NB-NB-LRR resistance gene

conferring both antibiosis and antixenosis against BPH (Zhao et al., 2016). In addition, molecular cloning and characteri-

zation of Bph6 revealed that it is an LRR-type resistance protein, localized in the exocyst (Guo et al., 2018). Under BPH

attacks, elevated expressions of Bph6 activate downstream signaling cascades, including SA and jasmonic acid (JA) path-

ways, facilitate exocytosis, and induce the cell wall reinforcements. Conversely, another widely explored BPH-resistant

gene in rice, that is, Bph3 is a cluster of lectin receptor�like kinases that is localized at the cell membrane. Cloning and

characterization of Bph3 resulted in the identification of the members of this cluster to be OsLecRK1�4 in the Rathu

Heenati cultivar (Liu et al., 2015). Its functional validation revealed that OsLecRKs are involved in rice�BPH interac-

tions and provide a wide-spectrum rice resistance against insect pests (Liu et al., 2015; Nanda et al., 2018). Overall, these

diversities of the BPH-resistant genes/QTLs in rice offer a better opportunity for successful BPH resistance.

254 SECTION | II Omics application



TABLE 16.1 List of brown planthopper (BPH)-resistant (Bph) genes identified in rice varieties and its wild relatives.

Gene name Source of identification References

Bph1 Mudgo Athwal, Pathak, Bacalangco, and Pura (1971)

bph2 ASD7 Athwal et al. (1971)

Bph3 Rathu Heenati Laksminarayana and Khush (1977), Liu et al. (2015)

bph4 Babawee Sidhu and Khush (1978)

bph5 ARC 10550 Khush, Karim, and Angeles (1985)

Bph6 Swarnalata Kabis and Khush (1988)

bph7 T12 Kabis and Khush (1988)

bph8 Chin Saba Nemoto, Ikeda, and Kaneda (1989)

Bph9 Pokkali Nemoto et al. (1989)

Bph10 O. australiensis Ishii, Brar, Multani, and Khush (1994)

bph11 O. officinalis Hirabayashi (1998)

Bph12 B14 (O. officinalis) Qiu et al. (2012)

Bph13 O. officinalis Renganayaki et al. (2002)

Bph14 B5 (O. officinalis) Du et al. (2009)

Bph15 B5 (O. officinalis) Yang et al. (2004)

Bph16 M1635�7 Hirabayashi et al. (2004)

Bph17 Rathu Heenati Sun, Su, Wang, Zhai, and Wan (2005)

Bph18 O. australiensis Ji et al. (2016b)

bph18(t) IR65482�7-216�1-2 Jena, Jeung, Lee, Choi, and Brar (2006)

bph19(t) AS20�1 Chen, Wang, Pang, and Pan (2006)

Bph20(t) IR71033�121�15 Rahman et al. (2009)

Bph21(t) IR71033�121�15 Rahman et al. (2009)

Bph22(t) O. glaberrima Ram et al. (2010)

Bph23(t) O. minuta Ram et al. (2010)

bph24(t) IR72678�6�9-B Deen and Rammesh (2008)

Bph25 ADR52 Myint et al. (2012)

Bph26 ADR52 Tamura et al. (2015)

Bph27(t) Balamawee He et al. (2013)

Bph28(t) DV85 Wu et al. (2014)

bph29 RBPH54 Wang et al. (2015)

Bph30 AC-1613 Wang et al. (2018)

Bph31 CR2711�76 Prahalada et al. (2017)

Bph32 PTB33 Ren et al. (2016)

Bph33 KOLAYAL Hu, Chang, Zou, Tang, and Wu (2018)

Bph34 IRGC104646 Kumar et al. (2018)

Bph35 RBPH660 Zhang et al. (2020)

Bph36 RBPH16, RBPH17 Li et al. (2019)

Bph37 IR64 Yang et al. (2019)

Bph38(t) BC1F5 of HHZ x Khazar Balachiranjeevi et al. (2019)

bph39(t) RPBio4918�230S Akanksha et al. (2019)

Bph40(t) RPBio4918�230S Akanksha et al. (2019)
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16.3 Rice transcriptomics in brown planthopper resistance

Analysis of plant transcriptomes under stress conditions has provided new insights by revealing more details about plant stress

biology. It has proven to be effective in delineating the complexes of plant�insect interactions. In rice, several transcriptome

studies have been performed to get better insights into rice�BPH interactions (Jing et al., 2017; Kumar et al., 2020; Tan et al.,

2020). Prior to the transcriptome era, the identification of rice differentially expressed genes (DEGs) in response to BPH attacks

was performed by using cDNA-amplified fragment length polymorphism (cDNA-AFLP). By the use of cDNA-AFLP, several

TABLE 16.2 Chromosome location of different Bph genes identified in rice.

Gene name Chromosome References

Bph1 12L Hirabayashi (1998)

bph2 12L Murai et al. (2001)

Bph3 4S Laksminarayana and Khush (1977)

bph4 6S Jairin et al. (2007)

Bph6 4L Kabis and Khush (1988)

bph7 12L Kabis and Khush (1988)

Bph9 12L Su et al. (2006)

Bph10 12L Lang and Buu (2003)

bph11 3L Hirabayashi (1998)

Bph12 4L Qiu et al. (2012)

Bph13 3S Renganayaki et al. (2002)

Bph14 3L Du et al. (2009)

Bph15 4S Yang et al. (2004)

Bph17 4S Sun et al. (2005)

Bph18 12L Jena et al. (2006)

bph19(t) 3S Chen et al. (2006)

Bph20(t) 4S Rahman et al. (2009)

Bph21(t) 12 Rahman et al. (2009)

Bph22(t) 6S Harini et al. (2010)

Bph25 6S Myint et al. (2012)

Bph26 12L Tamura et al. (2015)

Bph27(t) 4L He et al. (2013)

Bph28(t) 11L Wu et al. (2014)

bph29 6S Wang et al. (2015)

Bph30 4S Wang et al. (2018)

Bph31 3L Prahalada et al. (2017)

Bph32 6S Ren et al. (2016)

Bph33 4S Hu et al. (2018)

Bph34 4L Kumar et al. (2018)

Bph36 4S Li et al. (2019)

Bph37 1 Yang et al. (2019)

Bph38(t) 1L Balachiranjeevi et al. (2019)
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rice transcripts were identified to be involved in physiological processes, including stress signaling, transcriptional control, and

detoxification (Yang, Zhang, Zhu, & He, 2006). Further, Zhang, Zhu, and He (2004) reported multiple cDNA clones to be

upregulated in the resistant B5 rice variety in response to insect feeding and pathogen infection. These cDNAs were function-

ally attributed to major pathways, including stress signaling, cellular oxidation, wound response, and pathogen-related protein

synthesis. After the advent of the next-generation sequencing and transcriptome profiling, the rice transcript dynamics under

BPH infestations were better explored. Gene expression profiles in a BPH-resistant rice carrying the Bph15, exhibited constitu-

tive expression of the LRR domain�containing gene and jacalin-related lectin protein genes (Lv et al., 2014). The comparative

transcriptome analysis of two rice varieties, one susceptible and the other being resistant to BPH, revealed that several genes

related to SA and JA signaling were upregulated in the resistant rice (Li et al., 2017). Similarly, differential expression analysis

in rice revealed that BPH infestation caused the upregulation of lignin biosynthesis and antioxidant genes that aid in the rice

resistance (Jannoey, Channei, Kotcharerk, Pongprasert, & Nomura, 2017). In addition, BPH feedings activated the wound-

induced genes and signaling responses, including the mitogen-activated protein kinase (MAPK) signaling cascade. Multiple

MAPKs have been reported to be involved in the rice�BPH interactions (Nanda et al., 2018). For instance, OsMPK3 that regu-

lated JA, jasmonoyl-L-isoleucine (JA-Ile), and SA levels in rice under BPH infestation plays crucial role in rice�BPH interac-

tions (Zhou et al., 2019).

Apart from the mRNA transcripts of the key genes, several small noncoding RNA take part in the rice�BPH inter-

actions. Small RNA transcriptome or sRNA profiling of rice varieties under BPH infestations revealed that microRNA

(miRNA) plays a major role in modulating the rice resistance pathways. In a recent study the combined transcriptome

and miRNA analysis revealed that 34 DE miRNAs targeted 42 DEGs in rice and these mRNA�miRNA pairs served as

candidates for BPH resistance in rice (Tan et al., 2020). In addition to that, multiple miRNAs were found to show dif-

ferential expressions during compatible and incompatible rice�BPH interactions. For instance, 104 DE miRNAs were

identified in a Bph15 introgression line as compared to the susceptible recipient rice plant (Wu et al., 2017). Similarly,

in another study, 138 numbers of DE miRNAs were found during the compatible rice�BPH interaction, whereas 140

DE miRNAs were obtained during the incompatible interaction (Nanda et al., 2020). Furthermore, two miRNAs, includ-

ing OsmiR156 and OsmiR396, have been considered as the primary regulators of the rice�BPH interactions (Nanda,

Mishra, & Joshi, 2021). Both of these miRNAs negatively modulate the rice resistance against BPH; OsmiR156 modu-

late the rice JA pathway, whereas OsmiR396 regulates the flavanone 3-hydroxylase that in turn controls the flavonoid

biosynthetic pathway (Ge et al., 2018; Dai et al., 2019). These findings suggest that analysis of rice transcriptome and

small RNA profiling provides an illustrative idea of the rice resistance response against BPH. Moreover, analysis of

these mRNA and miRNA profiles is hugely beneficial in understanding the transcriptional and posttranscriptional regu-

lations of several genes of the major pathways linked to rice immune response.

16.4 Rice proteomics in brown planthopper resistance

Proteomics have gained enormous importance recently for their ability to produce better insights into the cellular physi-

ological changes, including plant stress responses. Although huge data have been generated based on proteomic studies

of rice against several abiotic and biotic stresses, under BPH infestation the rice comparative proteomics still offers

scope to explore. To explore rice proteome, techniques like mass spectrometry (MS) and isobaric tag-based methodol-

ogy for relative peptide quantification (iTRAQ) are the most preferred ones. iTRAQ often works coupled with the mul-

tidimensional liquid chromatography and MS enabling the accurate assessment of protein levels in rice samples

(Hussain et al., 2019). These proteomic studies have proven to be a powerful approach to unravel the complex rice

molecular responses against BPH (Agarwal et al., 2016). For example, the comparative proteome analysis of the Bph15

containing resistance rice and susceptible Taichung Native 1 (TN1) rice revealed that the upregulation of the glycine

cleavage system H-protein could be an important and unique rice defense system against BPH infestation (Wei et al.,

2009). In another study the differential proteome analysis between IR64 rice and its two near-isogenic mutant varieties

was performed to evaluate the relative expression of proteins during rice�BPH interaction (Sangha et al., 2013). The

results revealed that the BPH-resistant mutant lines possessed elevated proteins related to stress response and protein

synthesis metabolism as compared to the wild types. Similarly, upregulation of several proteins, including a heat shock

protein (HSP20), two lipoxygenases (LOX), an Ent-cassa-12,15-diene synthase (DTC1), and two dirigent proteins

(DIRs) with potential roles in BPH-resistant breeding, was observed in the BPH-resistant lines originated from Oryza

officinalis under BPH pressure (Zhang et al., 2019). As BPH is a sucking pest of rice feeding exclusively on phloem

sap, both the salivary gland of BPH and the phloem exudates become valuable resources to understand the molecular

mechanism of rice�BPH interactions. Many studies have been carried out to understand the protein dynamics and to

identify candidate effectors in BPH salivary repertoire. On the other hand, the comparative proteome analysis of rice
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phloem exudates of the resistant Bph14 and Bph15 introgressed lines and the susceptible 9311 recipient variety revealed

that proteins specific for defense signaling, cellular proteins, and carbohydrate metabolism were accumulated in the

resistant plants (Du et al., 2015). These comparative proteome studies have not only helped to understand the molecular

dynamics of BPH infestation in rice but also being extrapolated to unravel the interactions of rice and small BPH

(SBPH). Moreover, advancements in the field of proteomics and comparative DEP analysis have greatly facilitated the

understanding of rice defense responses against BPH attacks.

16.5 Rice metabolomics in brown planthopper resistance

The analysis of plant metabolites and complete metabolome reveals several key details about the plant physiological

processes, especially in stress response. Infestation of BPH on rice drives series of metabolic activities that in turn can

modulate the rice resistance responses (Cheng et al., 2013). Depending on the type of rice�BPH interaction, that is,

compatible or incompatible, the rice metabolite repertoire varies accordingly. The evolutionary developments in the

omics led to the popularization of rice metabolomics studies under BPH pressure by employing techniques, including

gas chromatography (GC), nuclear magnetic resonance, and MS (Kang, Yue, Xia, Liu, & Zhang, 2019). Moreover, rice

metabolomics studies are combined with the transcriptomic or gene expression studies to derive better and insightful

inference on rice�BPH interactions. For instance, the combined gene expression and metabolomics study in B5 rice, a

resistant variety carrying Bph14 and Bph15, revealed that BPH feeding reprogrammed the rice metabolome as com-

pared to the susceptible TN1 rice. Most of the metabolites with elevated concentrations were found to be involved in

processes like carbohydrate metabolism, amino acid metabolism, and other stress-responsive secondary metabolisms

(Liu et al., 2010). Upregulation of carbohydrate metabolism and metabolism of amino/nucleotide sugars were observed

in the resistance Mudgo rice under BPH attacks (Ji et al., 2013). Similarly, another study involving the GC�MS-medi-

ated metabolomic analysis of rice leaf sheaths reported that BPH infestations induce glycolysis, β-oxidation, and shiki-

mic acid synthesis pathway during the incompatible rice�BPH interactions (Peng et al., 2016). On the other hand, the

comparative metabolomic study between two BPH-resistant rice varieties IR56 and IR36 showed that in IR56 rice the

thiamine, taurine, and hypotaurine metabolisms were increased, whereas in IR36 rice the cyano-amino acids and lipids

metabolism were abundant (Kang et al., 2019). In addition, the metabolic profiling of the resistant rice IL308 and sus-

ceptible rice variety KDML105 revealed that the levels of apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside, rhoifolin,
schaftoside, and iso-schaftoside were comparatively higher in the resistant plant than the susceptible under BPH infesta-

tion (Uawisetwathana et al., 2019). All these findings indicate that the metabolite pool in rice has a significant role in

determining the success of rice immune response against BPH attacks. Moreover, a complex yet fine-tuned network

among the rice genomics, transcriptomics, proteomics, and metabolomics could be responsible for regulating the

rice�BPH interactions and their molecular consequences (Fig. 16.1).

FIGURE 16.1 A schematic representing the holistic approach for BPH resistance in rice by using the omics approaches. BPH, Brown planthopper.
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16.6 Bioinformatics in brown planthopper resistance in rice

Bioinformatics plays an important role in the modern omics-driven researches. In silico analysis of genes and prediction

of different interaction models have proven to be an effective mean of the functional genomics research. In rice�BPH

interactions, several rice genetic elements, including QTL and Bph genes, have been identified by the computational

biology applications. For instance, using bioinformatics and functional analysis approaches, Bph32 was identified in the

PTB33 rice (Ren et al., 2016). Further structural analysis revealed that the gene encodes a protein containing a short

consensus repeat. In addition to this, advances in bioinformatics have led to the establishment of several dedicated data-

bases and tools that provide vital information on rice genes and proteins. For instance, databases like PhosphoRice,

PRIN, and Oryza PG-DB have significantly contributed to rice resistance researches. PhosphoRice is a meta-predictor

of rice-specific phosphorylation sites, whereas PRIN predicts the rice interactome network (Gu, Zhu, Jiao, Meng, &

Chen, 2011; Que et al., 2012). On the other hand, Oryza PG-DB serves as a rice proteome database store and dissemi-

nates information on shotgun proteogenomics (Helmy, Tomita, & Ishihama, 2011). Further, the use of computational

biology and different bioinformatics tools are common in analyzing the sRNA-mediated rice resistance. In particular,

analysis of sRNA structure and prediction of their targets are done by using the bioinformatics tools. Recently, 246

miRNAs were identified in a Bph3 carrying rice variety (IR56) in response to BPH feedings. In addition, analysis of

differential expressive miRNA and the prediction of their targets were facilitated by bioinformatic approaches (Nanda

et al., 2020). On the other hand, bioinformatic-mediated identification of candidate genes and gene families has been

reported in BPH. Wan et al. (2016) performed the genome-wide identification of the basic helix-loop-helix transcription

factors in BPH. Similarly, identification of the Ca21/calmodulin-dependent protein kinase II isoforms in BPH was car-

ried out by using various bioinformatic approaches (Wang, Lai, Wan, Fu, & Zhu, 2019). Moreover, the characterization

of genes and their interaction models in both rice and BPH provided valuable information. Further, these in silico analy-

sis results serve as the foundation for the wet lab validations and functional genomic studies. In addition, the databases

dedicated to rice and BPH research act as the repertoire for various genes, transcription factors, and proteins.

16.7 Conclusion and future prospective

Rice and BPH interactions are complex and involve many layers, from genes to metabolites. The current understandings

of these interactions have suggested that rice resistance response can be regulated by multiple players, either indepen-

dently or in collaboration. On the one hand, rice multiple genetic elements, including QTLs and Bph genes, have been

identified and mapped that provide BPH resistance. On the other hand, rapid evolution of different BPH populations can

adapt to different rice varieties and cause their resistance breakdown. Therefore it’s essential to look for alternative options

in contributing toward rice resistance other than the resistant Bph genes. Apart from these genetic elements, other broad-

spectral genes, including OsLecRKs, OsMPKs, and OsGIDs, have been reported to regulate the rice resistance against

BPH. However, their applicability in real-life BPH problems is yet to be realized. Thus evaluation of their effects in fields

and in different weather conditions can reveal further details. On the contrary, transcriptomic studies have provided even

deeper insights into the rice transcriptional dynamics in response to BPH feedings. These results have also paved way to

select and validate new candidate genes in rice�BPH interactions. Moreover, the outputs related to the roles of small

RNAs are interesting, showing promising results in conferring rice resistance. The sRNA and their target gene network

should be explored in detail to get even better understating of their molecular mechanisms in controlling rice resistance

against BPH. Similarly, proteomics and metabolomics studies have unraveled the rice proteome and metabolome and the

candidates playing roles in rice�BPH interactions. However, in-depth analysis of these candidate proteins or metabolites,

such as loss of function and complementation, can provide their detailed roles. The hot-trend of CRISPR-mediated

genome engineering has not well-explored in rice�BPH interactions. Therefore there is a huge scope of the application of

genome editing technologies to understand the molecular mechanisms of rice�BPH interactions. Moreover, the combina-

tional outputs of all these omics-assisted domains can better illustrate the rice�BPH interactions.
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17.1 Importance and origin of tomatoes

Lycopersicon esculentum Mill, the cultivated tomato, is widely grown around the world. According to the latest data

from FAOSTAT, the worldwide production of tomatoes amounts to 182 million tons in 2018, and for the period

1988�2018 it has increased 2.7 times (FAOSTAT, 2018; http://faostat.fao.org). Tomato is the second most-consumed

vegetable after potato (FAOSTAT, 2018; http://faostat.fao.org). However, unlike potatoes, tomatoes can be consumed

both fresh and processed in a variety of forms. Major tomato-producing countries are China, the United States, India,

and Turkey (http://faostat.fao.org).

Tomato fruits contain 95% water, 3%�4% carbohydrates, 1% protein, and 0.2% lipids. They are low in calories

(only 16�18 kcal/100 g) but are rich in vitamins and trace elements, which makes them suitable for different types of

diets. Tomatoes contain calcium, iron, magnesium, phosphorus, potassium, sodium, zinc, copper, manganese and sele-

nium, vitamin A (retinol), vitamin E (α-tocopherol), vitamins from the B-group (thiamine, riboflavin, niacin, choline,

pantothenic acid, pyridoxine), and vitamin K (phylloquinone). Vitamin C is in high content (B1/3 of RDA/100 g).

Tomatoes also contain all nine essential amino acids, although in modest amounts. Tomatoes with different fruit colors

have minimal differences in composition except for the ratio of carotenoids. Some varieties have been selected with an

increased content of vitamin C and carotenoids, which are one of the most important indicators of the quality of the

variety (Framar, 2016; USDA, 2016). Most interesting from biochemical and medical point of view are the compounds

from the groups of peptides, alkaloids, and carotenoids.

Solanum lycopersicum contains the alkaloids α-tomatin and dehydrotomatin in different proportions in all plant parts

except the ripe fruits. α-Tomatin inhibits the growth of fungi by binding to 3β-hydroxy sterols in their membranes and

both the alkaloids are toxic to animal cell lines (Kozukue, Han, Lee, & Friedman, 2004). Although tomatin is consid-

ered toxic, its concentration in the leaf mass and green fruits is too low to be dangerous. Moreover, it was found that it

binds to cholesterol in the digestive tract in mice and is excreted from the body (Barceloux, 2009; McGee, 2009).

Tomato plants contain also solanine—another toxic alkaloid but its concentration in green fruits is even lower compared

to potatoes (Barceloux, 2009; McGee, 2009). Esculeoside A (contained in rose fruits), esculeoside B (contained in red

fruits), and lycoperoside (contained in fruits and leaves) are other alkaloids of steroidal nature in tomatoes. While ripen-

ing, the content of α-tomatin, dehydrotomatin, and solanine in the fruits decreases, and that of esculeoside increases

(Eltayeb & Roddick, 1984; Katsumata et al., 2011; Kozukue et al., 2004; Moco et al., 2007). Esculeoside A can be

metabolized to various steroid hormones used in the human body and thus have a beneficial effect on human health.

Cherry tomatoes are particularly rich in esculeoside. Lycoperoside is higher in immature fruits but is also present

in ripe fruits (Manabe et al., 2011; Moco et al., 2007). Tomato fruits contain various phenolic compounds
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(p-hydroxybenzoic acid, naringenin, kaempferol, quercetin, myricetin, astragalin, and some of their derivatives) which

are very effective neutralizers of peroxide radicals due to their chemical structure. In addition, they can chelate iron

ions that catalyze lipid oxidation (Martinez-Valverde, Periago, Provan, & Chesson, 2002; Nice, 2013). Phenolic com-

pounds are natural preservatives due to their antibacterial or/and antifungal effect (Eklund, 1985; Nice, 2013).

Naringenin derivative—naringenin chalcone inhibits the release of histamine thus having an antiallergic effect

(Yamamoto et al., 2004; Nice, 2013). Quercetin is contained in good amounts in ripe fruits and has a complex action—

strong antibacterial and antifungal effect, combined with antiinflammatory effect in humans. In addition, this substance

is an antioxidant and reduces the risk of cancer (Nice, 2013; Omodamiro & Amechi, 2013). Astragalin has both antimi-

crobial activity, antiallergic and antiinflammatory, and effect (Nice, 2013).

Despite the rich content of vitamins, minerals, and phenolic acids, the most valued in tomato fruit are pigments.

Pigments are found in different colors: red (lycopene), orange (β-carotene), yellow-orange (zeaxanthin), yellow (lutein),

green (chlorophyll), blue-violet (anthocyanins) (Kong et al., 2010). Anthocyanins are found mainly in purple varieties

of tomatoes. Their color actually varies from red to purple depending on the concentration and pH. They are usually in

the form of glycosides. They are known for their antioxidant properties but also have other effects: antiinflammatory,

immunomodulatory, and immunostimulating. Plants are thought to synthesize anthocyanins as protective molecules

against environmental stressors—ultraviolet light, low temperatures, drought (Ghosh & Konishi, 2007; Riaz, Zia-Ul-

Haq, & Saad, 2016; Webb, 2014). Lutein and zeaxanthin are two similar carotenoid isomers that are not involved in the

synthesis of vitamin A. Both the pigments accumulate in the macula of the eye, with the main role to absorb ultraviolet

rays, protecting the inner layers of the eye. It has been found that diets rich in lutein and zeaxanthin prevent the devel-

opment of macular degeneration, eye cataracts, and diabetic retinopathy and improve night vision (Heiting, 2014;

Koushan, Rusovici, Li, Ferguson, & Chalam, 2013; Stankovic, 2004). Tomatoes rank third in the content of the red pig-

ment lycopene, with red tomatoes accumulating six times more than red peppers (Cooper & Nicola, 2014;

HealthAliciousNess, 2016; Kong et al., 2010). Both red and orange tomatoes contain lycopene and β-carotene, and the

final color of the fruit depends on the ratio between these two main pigments (Martinez-Valverde et al., 2002). Both

lycopene and β-carotene are composed of hydrogen and 40 carbon atoms. But unlike β-carotene, lycopene has a linear

structure and two additional C�C bonds that increase light absorption and turn orange to red. There are several com-

mon isomers of lycopene, and the possible isomers are 72 (Cooper & Nicola, 2014; Martinez-Valverde et al., 2002).

However, in tomato fruits, about 95% of lycopene is in trans form, while with higher bioavailability is cis form. The

absorption of lycopene in the human body depends on various factors, temperature treatment, light, and concomitant

consumption of sunflower oil being some of them. Studies have suggested that the acidic environment in the stomach

partially catalyzes the isomerization of lycopene from trans to cis form. Sun-dried tomatoes provide the highest bio-

availability of lycopene compared to raw and canned tomatoes (Kong et al., 2010). Lycopene has various beneficial

effects on the human body. It is the most effective carotenoid, neutralizing oxygen- and peroxide-free radicals, mainly

due to a large number of double bonds in its molecule (Kong et al., 2010; Martinez-Valverde et al., 2002). Lycopene is

two times more effective than β-carotene in neutralizing free radicals and 10 times more effective than α-tocopherol
(vitamin E) (Kong et al., 2010). The main mechanism by which antioxidants (such as phenols, vitamin E, and flavo-

noids) inhibit lipid autooxidation is the elimination of the peroxide radical by delivering a hydrogen atom and the for-

mation of a lipid peroxide and a resonance-stabilized antioxidant radical (Sies & Stahl, 1995). As a carotenoid,

lycopene can eliminate free radicals through other mechanisms. The combinations of lycopene and other antioxidants

contained in tomato fruit have synergistic effect in exhibiting antioxidant properties (Kong et al., 2010). Various studies

have shown that diets rich in lycopene reduce the likelihood of developing various types of cancer, cardiovascular dis-

ease, atherosclerosis, and neurodegenerative diseases. A chemoprotective effect, as well as antibacterial and antifungal

properties have also been established (Kong et al., 2010; Krishna, Bhaumik, & Kumar, 2013; Martinez-Valverde et al.,

2002; Omodamiro & Amechi, 2013). The content of lycopene in tomatoes varies greatly depending on several factors.

Varieties containing the so-called crimson genes accumulate higher pigment content. Temperatures also have an effect,

with optimal temperatures between 16�C and 20�C, and temperatures above 30�C inhibiting lycopene synthesis

(Martinez-Valverde et al., 2002).

S. lycopersicum is very adaptive and is grown in almost every part of the world from the tropics to within a few

degrees of the Arctic Circle in the fields or in greenhouses (http://faostat.fao.org). Among all Lycopersicon species,

only L. esculentum has become a domesticated crop (Peralta & Spooner, 2007; Rick, 1978). The wild species Solanum

pimpinellifolium (with fruit diameter B1 cm) is also casually planted for consumption in Peru. Crossing the cultivated

tomato with this species in the selection aims to improve the color and qualities of the fruit, as well as to inherit disease

resistance. Solanum cheesmaniae is endemic to the Galapagos Islands with yellow, orange to purple fruits. It is charac-

terized by salt tolerance and resistance to viral diseases. A closely related and also endemic to the region species with
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orange fruits is Solanum galapagense, which grows mainly along the coast, near seawater, and enters the territories

only up to 50 m above sea level. Nine other wild species with green fruits have been described. They are adapted to dif-

ferent habitats—dry soils, rocky or wet places, and their preferences for altitude also vary widely. Highly adaptable and

drought-resistant is Solanum chilense with purple fruits, which grows from 0 to 3250 m above sea level (Peralta &

Spooner, 2007) and is also used for improving the resistance and drought-tolerance in S. lycopersicum. All of these spe-

cies grow naturally in Peru, which is the reason why tomato species were traditionally thought to origin from this coun-

try (Juvik, Berlinger, Ben-David, & Rudich, 1982; Rick, 1976a, 1976b, 1978).

The first systematic study was done by DeCandolle in 1886, who combined data from botany, history, and philology.

DeCandolle believed that the homeland of tomatoes is the west coast of the continent and the Galapagos Islands, and the

ancestor of the cultivated tomato is a wild tomato with very small fruits, reaching only 2.5 cm in diameter. The ancient

inhabitants of Peru cultivated it before the discovery of America by Christopher Columbus. In 1623 Bauhin described the

tomato as “mala peruviana” and “pomi del Peru” (Peruvian apple), which suggests the transfer of the plant from Peru to

Europe. Peruvian origins were supported by other authors in the first half of the 20th century (Peralta & Spooner, 2007).

The first record of tomatoes in Europe is credited to descriptions published in 1554 by Italian herbalist Matthiolus who

made a description and an illustration of the plant and called it “pomi d’oro” or in Latin—“mala aurea” (golden apple).

The plant was undoubtedly a tomato, but without reference to a geographical origin (Jenkins, 1948; Rick, 1978). These

and equivalent names persisted well into the 19th century. Seventeen years later, Anguillara first used the name “pomi del

Peru” together with “pomi d’oro,” but it is not clear whether he called the same plant by those names. According to

Jenkins, “pomi del Peru” actually refers to other plants of the Solanaceae family, such as Datura stramonium (tatul)

(Jenkins, 1948). The author also points out that there are data on the early cultivation of tomatoes in Mexico in the pre-

Columbian era, while such data for South America are lacking (Jenkins, 1948). At the same time, biodiversity in native

Mexican varieties was claimed to be significantly higher than in Peruvian varieties (Rick, 1976a, 1976b, 1991). Vavilov

and Jenkins suggested that it was possible that the wild relative of the cultivated tomato was transported to Mexico, where

it was cultivated in pre-Columbian times before, later transported to Europe (Jenkins, 1948; Peralta & Spooner, 2007).

However, greater varietal diversity in Mexico has not been confirmed by later comparative studies (Villand et al., 1998).

At the same time, in 1975, Rick and Fobes found that tomatoes from Europe and North America had the same isozymes

as those in Mexico and Central America (Peralta & Spooner, 2007). Comparative genetic studies based on RAPD (random

amplified polymorphic DNA) and restriction fragment length polymorphisms (RFLP) (restriction fragment length poly-

morphism) of old native varieties from Mexico, Central America, and Peru, neither support nor deny the hypothesis of

Mexican origin (Rick & Holle, 1990; Villand et al., 1998; Williams & St. Clair, 1993). The first contact of Europeans

with Mexico was in 1519 during the conquest of Mexico City, and with Peru—12 years later during the conquest of Peru.

Botanists at that time were mainly interested in the medicinal and culinary applications of plants. Due to its close relation-

ship with poisonous plants of the Solanaceae family, such as mandrake (Mandragora sp.) and dog grape (Solanum

nigrum), the plant was originally considered poisonous and was grown for decoration (Peralta & Spooner, 2007).

Consumption of tomatoes began first in the south, while in the northeastern regions it happened in the 19th century

(Peralta & Spooner, 2007). It is arguably accepted that the wild cherry (L. esculentum var. cerasiforme, with fruit diameter

of B1.5�3 cm) is the immediate progenitor of the cultivated tomato though Lycopersicon pimpinellifolium is also a likely

candidate (Jenkins, 1948; Rick, 1976a, 1976b).

S. lycopersicum is characterized by many varieties and cultivars. Plants can be of limited growth (determinant varie-

ties) or of unlimited growth (indeterminate varieties grown with stakes). Fruits come in a wide range of shapes, sizes,

and colors. Some may be globe, round, flattened, oval, oblong, heart-shaped, lemon-shaped, pear-shaped, even pepper-

shaped, and some varieties have an interesting decorative shape, such as the varieties “Heart of Albenga” and “Rose,”

which have vertical ribs (Varietal Seeds and Plant Protection Ltd., 2016). The size of the fruits also varies greatly

between different varieties—from 7 to 8 g for some varieties of cherry to 2 kg for the variety Gigant (Bulgarian

Farmer, 2016; Varietal Seeds and Plant Protection Ltd., 2016). Their colors may be red, raspberry-red, pink, red-

orange, orange, golden, yellow, purple, green, striped, or white/ivory (Bulgarian Farmer, 2016; Varietal Seeds and Plant

Protection Ltd., 2016). There are more varieties of tomato sold worldwide than any other vegetable.

17.2 Organization of tomato genome and genetic variation of tomato cultivars

Along with the modern tomato (S. lycopersicum L. var. esculentum) and its wild form [S. lycopersicum L. var.

Cerasiforme (Dun.)], there are eight other related wild species—S. pimpinellifolium, S. cheesmanii, S. chmielewskii,

S. chilense, S. parviflorum, S. peruvianum, S. hirsutum, S. pennellii, which occur as native forms in Peru, Western

South America, and the Caribbean (Rick, 1976a, 1976b, 1979). European tomato varieties were introduced by Spanish
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researchers, and the population of S. lycopersicum shows about 5% genetic variability (Miller & Tanksley, 1990; Rick

& Fobes, 1975). The natural habitats of tomatoes as diploid species with similar chromosomes vary widely, from dry to

wet and from flat to high mountain geographical places (Rick & Butler, 1956; Warnock, 1988). Many of these different

tomato species create a variety of qualities that can be used to improve the desired qualities of the cultivated tomato.

Those of them that have problems with sexual hybridization can cross by embryo rescue techniques or by pollen mix-

ture (Rick, 1973, 1976a, 1979; Scott, Jones, & Somodi, 1995; Scott, Olson, et al., 1995). Resistance to tobacco mosaic

virus (TMV) and nematodes has been achieved in some of the crosses. Thus, these wild tomato species represent a valu-

able genetic source for improving the qualities of the cultivated tomato (Bretó, Asins, & Carbonell, 1993; Miller &

Tanksley, 1990). During the long-term selection, many wild species with desired characteristics have been selected,

such as better quality fruits, abiotic stress resistance, diseases, and pest resistance. The improvement and development

of molecular biology techniques and the discovery of new molecular markers would facilitate the selection process,

with thousands of tomato species and varieties being stored in genetic banks in many countries around the world (Rossi

et al., 1998).

The tomato genome is represented by approximately 35,000 genes, with an approximate gene density of 6.7 kb/gene

(Khush & Rick, 1968; Peterson, Pearson, & Stack, 1998; van der Hoeven, Ronning, Giovannoni, Martin, & Tanksley, 2002;

Wang, van der Hoeven, Nielsen, Mueller, & Tanksley, 2005). The nuclear genome of the tomato is 950 Mbp of DNA

located on 12 chromosomes, with only about 30% encoding, 60% noncoding information, and 10% transposons. A large pro-

portion of tomato euchromatin is in the methylated state in the intergenic regions (Wang et al., 2005). About two-thirds of

the chromosomal DNA of a tomato are represented by heterochromatic regions that do not contain genes, with the genes

located in the distal euchromatin regions (Khush & Rick, 1968; Wang, van der Hoeven, & Nielsen, 2006).

Genetic libraries taken from wild species are used to improve the quality of cultivated tomato varieties (Zamir,

2001). Such DNA libraries are introgression lines (IL) that are derived from interspecific crosses involving much of the

wildlife genome. By using reverse genetics and screening for quantitative trait loci (QTLs) from populations of IL, can-

didate genes of such desired trait characteristics are identified (Ballester et al., 2016). This allows finding the loci and

cloning of the desired QTL and genes, genetic links to the transcriptome, metabolome, and evaluation of a selected spe-

cific set of genes, avoiding the occurrence of wild-type gene segregation and epistasis. Thus the loci of genetic areas

responsible for vegetative traits such as plant viability, as well as those related to fruits—organoleptic quality, morphol-

ogy, color, and secondary metabolism in the tomato fruit wig can be located (Alseekh et al., 2015; Barrantes et al.,

2016; Hanson et al., 2007). To avoid the long selection process in IL and to improve the quality of the donor genome,

single-nucleotide polymorphism (SNP) genotyping is created (Barrantes et al., 2014).

Nowadays, we have the most diverse and numerous genetic resources obtained through sequencing, transcriptome,

and metabolic data of scientists from many countries (Calafiore et al., 2016). Tomatoes as a species have a relatively

small genome composed of 24 acrocentric to metacentric chromosomes with a high level of homozygosity, containing

about 32,000 genes (Anderson, Covey, Larsen, Bedinger, & Stack, 2010; El-Awady, El-Tarras, & Hassan, 2012; Koo

et al., 2008; The Tomato Genome Consortium, 2012). The tomato genome is represented by 77% heterochromatin and

23% euchromatin (Peterson, Stack, Price, & Johnston, 1996). Tomatoes can be grown in a variety of conditions, have a

short life cycle of 70�90 days, produce many seeds and its sexual reproduction is easily controlled. It can also be asex-

ually propagated by grafting or tissue culture, with a high regenerative capacity (Gerszberg, Hnatuszko-Konka,

Kowalczyk, & Kononowicz, 2015). With the development of genetic engineering, the accumulation of many genetic

and genomic resources, and cytogenetic research, tomato selection is one of the most advanced areas in agriculture,

with methods available for the effective transformation of tomatoes (Calafiore et al., 2016).

One of the first plants for which a molecular map was created was the tomato (Foolad, 2007a, 2007b). These maps

are used to identify gene loci and chromosome segments in different tomato species and to identify genetic changes and

mutations (Karp, 2002). This makes it possible to study the chromosomal locations of the QTL genes to improve the

quantity and quality of tomato production (Frary et al., 2000). Various molecular maps of tomatoes, with more than

2200 identified loci, currently exist using methods such as amplified fragment length polymorphisms (AFLP), cleaved

amplified polymorphic sequences (CAPS), RFLP, RAPD, simple sequence repeats (SSR), and polymerase chain reac-

tion (PCR) codominant markers (Shirasawa et al., 2010). With the help of population genetics and germplasm genotyp-

ing, allelic diversity was detected by genome scanning (Labate, Robertson, & Baldo, 2009).

The nucleotide sequence of the tomato genome is established during the transition from the era of sequencing by the

method of multiparallel sequencing of Sanger to the era of new-generation sequencing (NGS). The tomato genome

sequencing project started in 2004 as a consortium of 10 countries (Korea, China, Great Britain, India, the Netherlands,

France, Japan, Spain, Italy, and the United States). Sequencing initially included a BAC-by-BAC (bacterial artificial

chromosome) approach, which was successfully applied to previous model plants, and three BAC libraries of 30,800
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BAC clones were built—based on the enzymes EcoRI, MboI, and HindIII (Peters et al., 2006; Sato et al., 2008). In

2009 the introduction of 3 NGS sequencing platforms began—454 (Margulies et al., 2005), SOLiD (McKernan et al.,

2009), and Illumina (Harris et al., 2008). NGS has also been used successfully for transcriptional sequencing

(Nagalakshmi et al., 2008).

The detection of mutations in selected genes is greatly facilitated by the use of the TILLING method (Targeting

Induced Local Lesions in Genomes), which accelerates the functional genomic analysis of organisms. NGS identifies

mutations in the population of S. lycopersicum. About 25 genes responsible for the metabolism of carotenoids and folate

have been PCR-amplified and screened to find potentially useful alleles for improving tomato quality. Various software

programs such as CAMBA, CRISP, GATK UNIFIED GENOTYPER, LOFREQ, SNVER, and VIPR have been used to

predict mutations in the tomato genome. False-positive results are eliminated by using more than two different software

programs. Screening of the 23.47 Mb tomato genome predicted 75 mutations, 64 of which were confirmed by sequenc-

ing with an average mutation density of 1/367 Kb.

17.3 Tomato breeding

Breeding new varieties of tomato started more than 200 years ago in Europe (mainly in Italy). Breeding included meet-

ing of different needs, including fresh market and processing industries. Other important goals were disease resistance,

earliness in maturity, and adaptability to different climatic conditions, for example, tolerance to adverse temperatures,

resistance to rain-induced cracking while retaining and developing nutrition and taste quality (Stevens & Rick, 1986;

Tigchelaar, 1986). However, yield remains aim number one for breeders. Generally, for a new variety to be successful,

it has to guarantee at least the same if not exceeding yield potential, even if it possesses other improved characteristics

(Warren, 1998). Since yield is an aggregate result of individual traits, breeding is usually pointed toward these traits—

for example, weight of fruits, disease resistance, heat tolerance, all contribute to improved yield (Scott, 1993; Scott,

Bryan, & Ramos, 1997; Scott, Miller, & Stall, 1997).

Traditional breeding is based on phenotypic selection and progeny testing, and its efficacy in improving crop pro-

ductivity and fruit quality has been proven through the years (Duvick, 1986, 1996; Warren, 1998). However, the major

drawback of these methods is time consumption and difficulties. Often desired traits, such as disease and pest resis-

tance, abiotic stress tolerance, and improved fruit quality, can be acquired only from wild species. The process of gain-

ing the necessary genes encounters a variety of problems. After interspecific hybridization, a number of undesirable

genes introduced from the wild donor have to be eliminated. This includes a series of backcrosses to the cultivated par-

ent which can occasionally lead to limiting the expression of the desired genes or even their omission. For these reasons

the traditional breeding of a cultivar takes somewhere between 10 and 15 years.

In the past, breeding was based predominantly on developing open-pollinated inbred cultivars and their use for com-

mercial production. Since the 1970s, however, F1 hybrids have become a significant part of the production. The use of

hybrids in tomato allows combining of important and valuable traits and protection of breeders’ work (Foolad, 2007a).

17.4 Disease resistance

The selection of disease-resistant tomato varieties is a major goal of most tomato-growing programs due to the rapid

emergence of new breeds and strains of existing pathogens. The ultimate goal is to reduce the use of pesticides in

tomato production by screening for disease resistance. More than 110 pathogenic species cause about 160 serious dis-

eases in tomato cultivars, including plant pathogenic fungi, bacteria, and viruses (Tanksley & Fulton, 2007).

Disease control is crucial to prevent economic losses in fresh tomato production as well as industry (http://faostat.

fao.org). Resistance to bacterial and fungal pathogens such as powdery mildew and bacterial wilt is a horizontal poly-

genic resistance without established resistance genes. Resistance resources to diseases have been found in most wild

tomato species, such as L. pimpinellifolium, L. peruvianum, and L. hirsutum. Both vertical and horizontal resistance

have been identified for some tomato fungal diseases caused by Phytophthora infestans and Oidium lycopersicum

(Scott & Jones, 1986; Scott, Francis, Miller, Somodi, & Jones, 2003; Scott, Bryan, et al., 1997; Scott, Jones, et al.,

1995; Scott, Miller, et al., 1997; Scott, Olson, et al., 1995; Stommel & Zhang, 1998; Yang, Sacks, Lewis, Miller, &

Francis, 2005).

About 770 datasets for pathogen recognition genes are categorized according to their loci in the genome, the pres-

ence and arrangement of protein domains, and phylogenetic analysis (Andolfo et al., 2013). These are the genes for

resistance to cortical root rot—Py1 located on chromosome 3, the gene for resistance to Pseudomonas syringae—Pto on

chromosome 5, the gene for resistance to Tomato yellow leaf curl virus—Ty1 on chromosome 6 and the gene for
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resistance to Tomato spotted wilt virus—Sw5 on chromosome 9 (Doganlar, Frary, Daunay, Lester, & Tanksley, 2002;

Hanson et al., 2000; Martin, Williams, & Tanksley, 1991; Stevens, Lamb, & Rhoads, 1995). Some of these resistance

genes have been cloned using genetic map�based methods, and many others have been localized but not cloned

(Ercolano, Sanseverino, Carli, Ferriello, & Frusciante, 2012; Foolad, 2007b).

17.5 Insect resistance

Tomatoes are attacked by various pests, causing great losses such as insects, including mites, whiteflies, aphids, repre-

sentatives of Lepidoptera, Coleoptera, thrips, and worms. Unlike tomato varieties developed for disease resistance,

pest-resistant varieties are significantly fewer. Resistance to the main insect pests on tomatoes has been established

within the isolated wild species S. hirsutum and S. pennellii (Farrar, Barbour, & Kennedy, 1994; Juvik et al., 1982;

Muigai, Bassett, Schuster, & Scott, 2003; Mutschler et al., 1996; Schalk & Stoner, 1976; Tigchelaar, 1986; Weston,

Johnson, Burton, & Snyder, 1989). L. hirsutum is a source of resistance to more than 16 species of arthropods (Farrar &

Kennedy, 1991; Weston et al., 1989). Resistance to more than nine species, including greenhouse whitefly and potato

aphid, has been observed in S. pennellii (Muigai et al., 2003). The species S. lycopersicum var. cerasiforme, S. pimpinel-

lifolium, S. cheesmanii, S. chmielewskii, S. peruvianum, and S. chilense also have some resistance to insect pests (Farrar

& Kennedy, 1991).

17.6 Abiotic stress tolerance

The growth and development of cultivated tomatoes are significantly sensitive to various environmental stressors such

as drought, moisture, salinity, temperature, pollutants, and lack of minerals. There are few cultivated species that are

resistant to various adverse environmental factors. Some wild species such as S. chilense, S. peruvianum, S. pennellii, S.

pimpinellifolium, S. hirsutum, S. cheesmanii, S. chmielewskii, S. rickii, S. juglandifolium, S. ochranthum, and S. parvi-

florum are sources of such resistance to abiotic stress (Foolad, 2005; Rick, DeVerna, Chetelat, & Stevens, 1987; Rick,

DeVerna, & Chetelat, 1990; Rick, 1988). The plant’s response to adverse conditions is due to various physiological and

anthropogenic factors that are controlled by different genes, whose expression is also influenced by environmental fac-

tors. In addition, tolerance during one stage of plant development is not related to tolerance during other stages of

development (Asins, Bretó, Cambra, & Carbonell, 1993; Foolad & Chen, 1998; Foolad, Chen, & Lin, 1998; Foolad,

1999; Jones & Qualset, 1984). To ensure efficient production of tomatoes under abiotic stress, tolerance is needed at all

major stages of plant development from seed germination, vegetative growth, flowering, and fruit ripening.

In the case of tomatoes, significant progress has been made in the selection of varieties tolerant to temperature influ-

ences. Highly temperature-resistant commercial tomato varieties have been successfully developed (Scott, Everett, &

Bryan, 1985; Scott, Volin, Bryan, & Olson, 1986; Scott, Jones, et al., 1995; Scott, Olson, et al., 1995). QTLs responsi-

ble for salt resistance during seed germination, vegetative growth, and later stages of the life cycle have been identified.

Such genes have been found in different wild tomato species and at different concentrations of saline. Such QTLs were

found in crosses between S. lycopersicum 3 S. pennellii and S. lycopersicum 3 S. pimpinellifolium (Foolad & Chen,

1998; Foolad, Stoltz, Dervinis, Rodriguez, & Jones, 1997). These QTLs from different populations of the same cross

show stability over generations. Also, the same QTLs contribute to tolerance at different levels of salt stress (Foolad &

Jones, 1991).

Several QTLs of interspecific crossings between S. lycopersicum and S. pimpinellifolium have been established dur-

ing seed germination for cold tolerance. The results of these studies show that resistance to cold during seed germina-

tion in tomatoes is controlled by more than one gene. Comparison of such QTLs in different populations of the same

cross shows conservatism of detected QTLs in different interspecific tomato populations, including those derived from

crosses between S. lycopersicum 3 S. pennellii and S. lycopersicum 3 S. pimpinellifolium (Foolad & Chen, 1998).

There are large variations in the shape of the fruit in the cultivated tomato, including round, ovoid, heart-shaped,

elliptical, plum-shaped, elongated, and pear-shaped. Several genes responsible for fruit shape have been identified, such

as pr (pyriform), o (ovate), bk (beaked tomato), n (nipple-tip tomato), f (fasciated), and lc (for locule number) (Young

& MacArthur, 1947). The QTL responsible for fetal shape (called fs8.1) was located on chromosome 8 and later cloned

and characterized (Grandillo, Ku, & Tanksley, 1996; Ku, Grandillo, & Tanksley, 2000). fs8.1 changes the length of the

fruit during parenthesis, resulting in longer and larger ripe fruits. Thus another fetal shape QTL controls the transition

from round to pear-shaped fruit (Ku, Doganlar, Chen, & Tanksley, 1999). Variation in fruit shape is controlled by sev-

eral major loci due to allelic variation in these loci (Ku et al., 2000).
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Fruit color is an important characteristic of the quality of fruits in tomatoes due to the growing demands of the con-

sumer for health benefits. The presence of lycopene, the main carotenoid in tomatoes, which is responsible for the red

color of the fruit, has become a desirable feature (Gerster, 1997; Mascio, Kaiser, & Sies, 1989; Stahl & Sies, 1996).

Several genes are responsible for the high content of fruit lycopene (Hp-1, hp-2, dg, and ogc) and carotenoids (Liu,

Gur, & Ronen, 2003; Stevens & Rick, 1986).

Tomato fruit yield is a complex characteristic that is associated with various genetic and nongenetic factors, making

it difficult to pass on to offspring. Genetic markers of yield such as QTL were found in different interspecific popula-

tions of tomatoes and were mapped on all 12 chromosomes. Genes responsible for fruit ripening in tomatoes, such as

the rin gene, have been identified and characterized, their loci have been mapped, and their effects on tomato fruit rip-

ening have been traced (Fox & Giovannoni, 2007; Giovannoni, Yen, & Shelton, 1999; Giovannoni, 2001).

17.7 Tomato genetic markers for selection

The use of classical morphological markers in the selection of tomatoes is associated with difficulties such as expres-

sion of dominance, epistatic interactions, and pleiotropic effects. More than 1300 morphological, physiological, and dis-

ease resistance genes have been found in the tomato population, including those for sterility, fruit ripening, and

isozyme genes mapped to the 12 tomato chromosomes (Kalloo, 1991; Tanksley & Bernatzky, 1987; Tanksley, 1993).

With the advent of modern molecular DNA markers, many limitations associated with morphological and isozyme

markers have been avoided by significantly advancing the effectiveness of plant genetic and breeding research. A

molecular DNA marker is a small region of DNA that shows sequence polymorphism between individuals within or

between species. DNA markers allow scanning of the entire genome. DNA markers can be obtained using various

methods such as RFLP, RAPD, AFLP, variable number of tandem repeats, SSR, CAPS, sequence-characterized ampli-

fied regions, single-strand conformation polymorphisms, expressed sequence tags, conserved ortholog sets, and SNPs

(Adams, Kelley, & Gocayne, 1991; Botstein, White, Skolnick, & Davis, 1980; Fulton, van der Hoeven, Eannetta, &

Tanksley, 2002; Jeffreys, Wilson, & Thein, 1985; Konieczny & Ausubel, 1993; Orita, Iwahana, Kanazawa, Hayashi, &

Sekiya, 1989; Paran & Michelmore, 1993; Tautz, 1989; He, Poysa, & Yu, 2003; Williams, Kubelik, Livak, Rafalski, &

Tingey, 1990).

The use of PCR-based markers in tomato selection is increasing because they are easier to use, cheaper, faster, and

less time-consuming to develop compared to the use of RFLP and AFLP (Huang, Cui, Weng, Zabel, & Lindhout, 2000;

Zhang & Stommel, 2001). One of the problems in the development of markers in tomatoes is the lack of polymorphism

in cultivated species or between cultivated species (Ruiz, Garcı́a-Martı́nez, Picó, Gao, & Quiros, 2005; Williams & St.

Clair, 1993). This limits the use of genetic markers in breeding programs that attempt to use intraspecific genetic varia-

tions. One way to overcome this limitation is to use high-resolution genetic markers such as SNPs that detect poly-

morphisms between individuals or varieties of tomatoes of one species (Labate & Baldo, 2005; Suliman-Pollatschek,

Kashkush, Shats, Hillel, & Lavi, 2002; Yang, Bai, & Kabelka, 2004).

Marker-assisted selection (MAS) for any tomato trait requires precise information about gene loci and molecular

markers (Francia et al., 2005; Kumari, Mir, Tyagi, Balyan, & Gupta, 2019). MAS as a method of genotyping based on

SNPs is used for the selection of disease-resistant varieties (Foolad, 2007a, 2007b; Sonah et al., 2013). Thus millions of

SNPs have been identified in different parts of the genome (Tomato Genome Sequencing Consortium et al., 2014).

Technological advances have created several branches of omics that include genomics, transcriptomics, proteomics,

metabolomics, phenomics, and ionomics, thus providing a comprehensive study of processes at different structural

levels (Chaudhary, Deshmukh, Mir, & Bhat, 2019; Fukushima, Kusano, Redestig, Arita, & Saito, 2009; Hong, Yang,

Zhang, & Shi, 2016; Shah et al., 2018). The development of new methods of DNA sequencing gives a significant impe-

tus to the development of genomics and transcriptomics of species, while proteomics and metabolomics remain less

developed. Tomatoes with their great economic importance and commercial value require the integration of different

scientific achievements from different fields to create quality varieties with high yields in all adverse environmental

conditions.

17.8 Genomic selection for abiotic stress in tomato

Genomic selection is effective in simultaneously tracking all loci contributing to the development of a trait regardless

of size, making it one of the best methods for predicting genetic selection traits using molecular markers in combination

with population phenotypic traits (Shah et al., 2018). Genomic selection is used to improve the yield, weight, and taste
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of tomatoes. The use of phenotyping together with genomic information helps to improve the accuracy of prediction

and accelerate the desired genetic gains by shortening the reproductive cycle (Yamamoto et al., 2016).

17.9 Tomato transcriptomics

In response to various adverse environmental factors, the tomato plant activates protective mechanisms for their elimi-

nation. Understanding these regulatory cascades is important for effective control of abiotic stressors. Comparing the

transcripts of different tissues and at different stages of development contributes to a deeper understanding of the effec-

tive regulation of the protective responses of tomatoes to environmental stressors and to the identification of the genes

involved in these mechanisms (Shinde, Behpouri, McElwain, & Ng, 2015). Microchips have been used to differentially

detect gene transcription in response to various abiotic stresses, including salinity, cold, drought, and oxidative stress.

With the rapid development of next-generation sequencing, RNA sequencing is becoming a very economical, efficient,

and high-performance transcriptome technology. Thus the method is not only limited to comparing transcript levels but

is also effective in detecting new genes. The information generated by the use of microchips is extremely useful for

finding regulatory genes and molecular mechanisms for drought tolerance in tomatoes (Albert et al., 2018; Iovieno

et al., 2016).

17.10 Tomato proteomics

About 52 proteins have been identified in tomato leaves in response to stress from overwetting. They are involved in

various energy and metabolic processes such as photosynthesis, disease resistance, stress, and defense mechanisms

(Ahsan et al., 2007). Tolerance to cold damage is due to the prevention of protein denaturation and the activation of

antioxidant compounds (Salazar-Salas et al., 2017). Proteins responsive to NaCl, NaHCO3, temperature stress, and

drought have been identified (Gong et al., 2014; Muneer, Ko, Wei, Chen, & Jeong, 2016; Tamburino et al., 2017).

Using 2 D-gel electrophoresis and MALDI-TOF/TOF Ms, 67 proteins were detected in tomato seedlings in response to

high temperature. New and more in-depth proteomic studies will help identify more candidate proteins for the develop-

ment of stress-resistant and higher yielding and quality tomato varieties (Sang et al., 2017).

17.11 Tomato metabolomics

Metabolomics is a method that provides a biochemical assessment of the phenotype of an organism by identifying and

quantifying low molecular weight molecules that are closely related to important toxicological and nutritional characteris-

tics. Genomics, transcriptomics, and proteomics are not sufficient to fully and completely identify cellular mechanisms.

Therefore it is necessary to study the primary and secondary metabolites. Methods such as gas chromatography�mass

spectrometry, capillary electrophoresis�mass spectrometry, and nuclear magnetic resonance were used to determine meta-

bolites in tomato plants as a protective response to stress (Kaspar et al., 2011; Lee, Perdian, Song, Yeung, & Nikolau,

2012; Schripsema, 2010). To determine the water stress on the production of flavonoids, different varieties of drought-

resistant tomatoes were studied. In five varieties of cherry tomatoes, water stress leads to a reduction in shikimate and phe-

nolic compounds (Ampofo-Asiama et al., 2014). Storage of fruits in a closed atmosphere causes low oxygen stress, which

changes the metabolic profile of tomato cells through the accumulation of glycolysis intermediates, lactate, and sugar alco-

hols (Ampofo-Asiama et al., 2014). The integration of metabolomics, genomics, and transcriptomics provides comprehen-

sive information on natural variations in metabolism, its genetic and biochemical control in tomatoes, and the

development of tolerant tomato plants with increased yields (Zhu et al., 2018). A total of 42 positive and 76 negative

mQTLs have been identified that are involved in the regulation of carbon and nitrogen metabolism in tomato leaves in

response to stressors (Nunes-Nesi et al., 2019).
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Cell, Tissue and Organ Culture, 82, 317�342.

Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., van der Knaap, E., Cong, B., et al. (2000). fw2.2: A quantitative trait locus key to the evolution of

tomato fruit size. Science (New York, N.Y.), 289(5476), 85�88.

Fukushima, A., Kusano, M., Redestig, H., Arita, M., & Saito, K. (2009). Integrated omics approaches in plant systems biology. Current Opinion in

Chemical Biology, 13, 532�538.

Fulton, M., van der Hoeven, R., Eannetta, N. T., & Tanksley, S. D. (2002). Identification, analysis, and utilization of conserved ortholog set markers

for comparative genomics in higher plants. The Plant Cell, 14(7), 1457�1467.

Gerster. (1997). The potential role of lycopene for human health. Journal of the American College of Nutrition, 16(2), 109�126.

Gerszberg, A., Hnatuszko-Konka, K., Kowalczyk, T., & Kononowicz, A. K. (2015). Tomato (Solanum lycopersicum L.) in the service of biotechnol-

ogy. Plant Cell, Tissue and Organ Culture, 120(3), 881�902.

Ghosh, D., & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: Role in diabetes and eye function. Asia Pacific Journal of Clinical

Nutrition, 16(2), 200�208.

Giovannoni, J. J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52,

725�749.

Giovannoni, J. J., Yen, H., Shelton, B., et al. (1999). Genetic mapping of ripening and ethylene-related loci in tomato. Theoretical and Applied

Genetics, 98(6�7), 1005�1013.

Gong, B., Zhang, C., Li, X., Wen, D., Wang, S., Shi, Q., & Wang, X. (2014). Identification of NaCl and NaHCO3 stress responsive proteins in tomato

roots using iTRAQ-based analysis. Biochemical and Biophysical Research Communications, 446, 417�422.

Grandillo, S., Ku, H.-M., & Tanksley, S. D. (1996). Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Molecular Breeding, 2

(3), 251�260.

Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., . . . Chen, J. (2000). Mapping a wild tomato introgression

associated with Tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for Horticultural Science,

125, 15�20.

Hanson, P. M., Sitathani, K., Sadashiva, A. T., Yang, R.-Y., Graham, E., & Ledesma, D. (2007). Performance of Solanum habrochaites LA1777 intro-

gression line hybrids for marketable tomato fruit yield in Asia. Euphytica, 158(1�2), 167�178.

Harris, T. D., Buzby, P. R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., DiMeo, J., Efcavitch, J. W., et al. (2008).

Science (New York, N.Y.), 320, 106�109.

HealthAliciousNess. (2016). Top 10 foods highest in lycopene. From: U.S. Agricultural Research Service Nutrition Data Releases. (online). https://

www.healthaliciousness.com/articles/high-lycopene-foods.php.

He, C., Poysa, V., & Yu, K. (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relation-

ships among Lycopersicon esculentum cultivars. Theor Appl Gen, 106(2), 363�373.

Heiting, G. (2014). Lutein and zeaxanthin: Eye and vision benefits. All about vision. Access Media Group (online). Available from http://www.alla-

boutvision.com/nutrition/lutein.htm.

Hong, J., Yang, L., Zhang, D., & Shi, J. (2016). Plant metabolomics: An indispensable system biology tool for plant science. International Journal of

Molecular Sciences, 17, 767.

Huang, C., Cui, Y.-Y., Weng, C. R., Zabel, P., & Lindhout, P. (2000). Development of diagnostic PCR markers closely linked to the tomato powdery

mildew resistance gene Ol-1 on chromosome 6 of tomato. Theoretical and Applied Genetics, 101(5�6), 918�924.

Iovieno, P., Punzo, P., Guida, G., Mistretta, C., Van Oosten, M. J., Nurcato, R., Bostan, H., Colantuono, C., Costa, A., Bagnaresi, P., et al. (2016).

Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Frontiers in Plant Science, 7, 371.

Jeffreys, J., Wilson, V., & Thein, S. L. (1985). Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314(6006), 67�73.

Jenkins, J. A. (1948). The origin of the cultivated tomato. Economic Botany, 2, 379�392.

Jones, A., & Qualset, C. O. (1984). Breeding crops for environmental stress tolerance. In G. B. Collins, & J. F. Petolino (Eds.), Application of genetic

engineering to crop improvement (pp. 305�340). Dordrecht, The Netherlands: Nijihoff/Junk.

Juvik, A., Berlinger, M. J., Ben-David, T., & Rudich, J. (1982). Resistance among accessions of the genera Lycopersicon and Solanum to four of the

main insect pests of tomato in Israel. Phytoparasitica, 10, 145�156.

274 SECTION | II Omics application

http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref35
http://hranene.framar.bg/
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref49
https://www.healthaliciousness.com/articles/high-lycopene-foods.php
https://www.healthaliciousness.com/articles/high-lycopene-foods.php
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optHJFIlIKLOv
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optHJFIlIKLOv
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optHJFIlIKLOv
http://www.allaboutvision.com/nutrition/lutein.htm
http://www.allaboutvision.com/nutrition/lutein.htm
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref57


Kalloo, G. (1991). Genetic improvement of tomato. Berlin, Germany: Springer.

Karp, A. (2002). The new genetic era: Will it help us in managing genetic diversity? In J. M. M. Engels, V. Ramanatha Rao, A. H. D. Brown, &

M. T. Jackson (Eds.), Managing plant genetic diversity (pp. 43�56). Wallingford: CABI Publishing. Available from http://doi.org/10.1079/

97808519952, 29.0043.

Kaspar, S., Peukert, M., Mock, H. P., Svatos, A., Matros, A., & Mock, H. (2011). MALDI-imaging mass spectrometry—An emerging technique in

plant biology. Proteomics, 11, 1840�1850.

Katsumata, A., Kimura, M., Saigo, H., Aburaya, K., Nakano, M., Ikeda, T., . . . Nagai, R. (2011). Changes in esculeoside A content in different regions

of the tomato fruit during maturation and heat processing. Journal of Agricultural Food Chemistry, 59(8), 4104�4110.

Khush, S., & Rick, C. M. (1968). Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma, 23, 452�484.

Kong, K. W., Khoo, H. E., Prasad, K. N., Ismail, A., Tan, C. P., & Rajab, N. F. (2010). Revealing the power of the natural red pigment lycopene.

Molecules (Basel, Switzerland), 15, 959�987.

Konieczny, A., & Ausubel, F. M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers.

Plant Journal, 4(2), 403�410.

Koo, D.-H., Jo, S.-H., Bang, J.-W., Park, H.-M., Lee, S., & Choi, D. (2008). Integration of cytogenetic and genetic linkage maps unveils the physical

architecture of tomato chromosome 2. Genetics, 179(3), 1211�1220.

Koushan, K., Rusovici, R., Li, W., Ferguson, L. R., & Chalam, K. V. (2013). The role of lutein in eye-related disease. Nutrients, 5, 1823�1839.

Kozukue, N., Han, J. S., Lee, K. R., & Friedman, M. (2004). Dehydrotomatine and alpha-tomatine content in tomato fruits and vegetative plant tissues.

Journal of Agricultural and Food Chemistry, 52(7), 2079�2083.

Krishna, J., Bhaumik, A., & Kumar, P. (2013). Phytochemical analysis and antimicrobial studies of various extracts of tomato (Solanum lycopersicum

L.). Scholars Academic Journal of Biosciences, 1(2), 34�48.

Ku, H.-M., Doganlar, S., Chen, K.-Y., & Tanksley, S. D. (1999). The genetic basis of pear-shaped tomato fruit. Theoretical and Applied Genetics, 99

(5), 844�850.

Ku, H.-M., Grandillo, S., & Tanksley, S. D. (2000). fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theoretical and

Applied Genetics, 101(5�6), 873�878.

Kumari, S., Mir, R. R., Tyagi, S., Balyan, H. S., & Gupta, P. K. (2019). Validation of QTL for grain weight using MAS-derived pairs of NILs in bread

wheat (Triticum aestivum L.). Journal of Plant Biochemistry and Biotechnology, 28, 336�344.

Labate, J. A., & Baldo, A. M. (2005). Tomato SNP discovery by EST mining and resequencing. Molecular Breeding, 16(4), 343�349.

Labate, J. A., Robertson, L. D., & Baldo, A. M. (2009). Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato

(Solanum lycopersicum L.). Heredity, 103(3), 257�267.

Lee, Y. J., Perdian, D. C., Song, Z., Yeung, E. S., & Nikolau, B. J. (2012). Use of mass spectrometry for imaging metabolites in plants. The Plant

Journal: For Cell and Molecular Biology, 70, 81�95.

Liu, Y.-S., Gur, A., Ronen, G., et al. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnology Journal, 1(3), 195�207.

Manabe, H., Murakami, Y., El-Aasr, M., Ikeda, T., Fujiwara, Y., Ono, M., & Nohara, T. (2011). Content variations of the tomato saponin esculeoside

A in various processed tomatoes. Journal of Natural Medicines, 65(1), 176�179.

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braveman, M. S., Chen, Y. J., Chen, Z., et al. (2005).

Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376�380.

Martin, G. B., Williams, J. G., & Tanksley, S. D. (1991). Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using

random primers and near-isogenic lines. Proceedings of the National Academy of Sciences of the USA, 88, 2336�2340.

Martinez-Valverde, I., Periago, M., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties

of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82, 323�330.

Mascio, D., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and

Biophysics, 274(2), 532�538.

McGee, H. (July 29, 2009). Accused, yes, but probably not a killer. The New York Times. Retrieved 03.11.16.

McKernan, K. J., Peckham, H. E., Costa, G. L., Mclaughlin, S. F., Fu, Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C., et al.

(2009). Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base

encoding. Genome Research, 19, 1527�1541.

Miller, J. C., & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and

Applied Genetics, 80(4), 437�448.

Moco, S., Capanoglu, E., Tikunov, Y., Bino, R. J., Boyacioglu, D., Hall, R. D., . . . De Vos, C. H. (2007). Tissue specialization at the metabolite level

is perceived during the development of tomato fruit. Journal of Experimental Botany, 58, 4131�4146.

Muigai, S. G., Bassett, M. J., Schuster, D. J., & Scott, J. W. (2003). Greenhouse and field screening of wild Lycopersicon germplasm for resistance to

the whitefly Bemisia argentifolii. Phytoparasitica, 31(1), 27�38.

Muneer, S., Ko, C. H., Wei, H., Chen, Y., & Jeong, B. R. (2016). Physiological and proteomic investigations to study the response of tomato graft

unions under temperature stress. PLoS One, 11, e0157439.

Mutschler, A. R., Doerge, W., Liu, S.-C., Kuai, J. P., Liedl, B. E., & Shapiro, J. A. (1996). QTL analysis of pest resistance in the wild tomato

Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theoretical and Applied Genetics, 92(6), 709�718.

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The transcriptional landscape of the yeast genome

defined by RNA sequencing. Science (New York, N.Y.), 320, 1344�1349.

Contemporary genomic approaches in modern agriculture for improving tomato varieties Chapter | 17 275

http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref58
https://doi.org/10.1079/97808519952
https://doi.org/10.1079/97808519952
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optStuVMsg3EM
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optStuVMsg3EM
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/optStuVMsg3EM
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00022-2/sbref86


Nice, K. (2013). Antimicrobial screening of secondary metabolites from Solanaceae. Ph.D. thesis, Royal Holloway, University of London.

Nunes-Nesi, A., Alseekh, S., Silva, F. M. D. O., Omranian, N., Lichtenstein, G., Mirnezhad, M., González, R. R. R., Garcia, J. S. Y., Conte, M.,
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18.1 Introduction

Maize is the third most significant crop for food, feed, and necessary raw material for different industries after wheat

and rice. It belongs to the Poaceae family and is a tall annual plant with an extensive fibrous root framework. Maize is

cultivated in every country across the world with a total production of 1099.61 million tons (Statista, 2020). The United

States has been the major producer of maize and it is the driver of the US economy, trailed by China, representing about

40% and 25%, respectively. In India, area under maize cultivation is 9,027,130 ha with 27,715,100 tonnes production

(Food & Agriculture Organisation of the United Nations FAOSTAT, 2019). About 15 Million farmers are engaged in

maize cultivation and it provides employment to more than 650 million people in India. The distinctive characteristics

of maize make the crop a suitable crop candidate for enhancing farmer’s income and livelihoods in India. States, for

example, Karnataka, Rajasthan, Andhra Pradesh, and Madhya Pradesh, contribute toward half of the total maize acreage

in the nation. Though, it is extremely pertinent to observe that the national efficiency of maize is considerably lesser

than the global standards. India stands almost half the global yield standards and therefore there lies immense scope for

improvement as the strategically important crop in the country. A shift in the global demand of cereals, particularly

maize requirements of developing countries to surpass that of rice and wheat by 2020 was already projected as reported

in Pingali and Heisey (2001). More than 85% of the maize land is possessed under rainfed conditions during the mon-

soon pattern and rising temperature prompts different abiotic constraints which thus contribute an apparent decrease in

yield profitability (Sheikh, 2017). Rise in temperature and change in climatic conditions leads to many different abiotic

constraints. Amongst the all abiotic stresses, drought stress is considered as a most devastating environmental stress

amongst the natural anxieties worldwide as it decreases yield profitability (Sheikh, 2017) and has rendered enormous

region of global agricultural land inefficient or unproductive (Huang et al., 2015; Langridge & Reynolds, 2015;

Obidiegwu, Bryan, Jones, & Prashar, 2015; Zhan, Schneider, & Lynch, 2015).

Drought is a multidimensional stress imposing a series of cellular processes, such as morphological, physiological,

and biochemical to get adapted to dehydration. Leaf rolling, stomatal closure, membrane stability, osmotic alteration,

antioxidant accumulation, reactive oxygen species (ROS) are some of the manifestation of adaptation for drought condi-

tion. Besides it reduces leaf size, stem expansion and root multiplication, disturbs plant water relations and diminishes

water-use productivity, which ultimately hampers crop productivity to extreme levels. The general outline about

drought tolerance is given in Fig. 18.1.

Maize inflorescence (male and female flowers) is most susceptible to drought stress throughout the flowering time

(Grant, Jackson, Kiniry, & Arkin, 1989; Pantuwan, Fukai, Cooper, Rajatasereekul, & O Toole, 2002). Timing of

drought is imperative as if the stress occurs before flowering, the silk growth with respect to male flowering gets

delayed and results in a prolonged anthesis-silking interval (ASI) (Bolanos & Edmeades, 1996). The extended ASI

causes the silks to all dried up when the pollen reaches it during fertilization (Bassetti & Westgate, 1994) or may be

after the period when ovaries have used their saved starch (Saini & Westgate, 2000; Zinselmeier, Habben, Westgate, &

Boyer, 2000). This results in hindered ear and silk development causing kernel and ear abortion (Edmeades, Bolanos, &
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Lafitte, 1992) and eventually loss in productivity. Maize productivity is reported to get reduced by 15%�30% (Lobell

et al., 2014) following increased water scarcity as a function of climatic drifts.

As per survey by Living-water Ltd, United Kingdom (2018), India is listed at second position among the drought

prone countries after Morocco. Therefore there is an urgent need to make concrete efforts to accomplish the increasing

demand for food for highly populated geographical areas with water scarcity. Current scenario makes it imperative to

understand the response and adaptation of maize to water/drought stress. Generally, plant drought resistance involves

drought escape via a short life cycle or developmental plasticity (Manavalan, Guttikonda, Phan Tran, & Nguyen, 2009),

drought avoidance via enhanced water uptake and reduced water loss (Luo, 2010; Tardieu, 2013), or drought tolerance

via osmotic adjustment, antioxidant capacity, and desiccation tolerance (Luo, 2010; Yue et al., 2006).

18.2 Drought timing

Depending upon the time point drought occurs in a life cycle of plant, it could be either terminal drought and intermit-

tent drought. In terminal drought, the soil water availability decreases slowly and this condition leads to rigorous

drought stress at the later grain filling and development stages. Intermittent drought occurs as a consequence of limited

periods of insufficient rain or irrigation occurring at one or more interval throughout the growing season and is not nec-

essarily lethal. Stages of drought, that is, in premature stage, mid-season, or terminal stage transpires the effect on pro-

ductivity and quality losses. In drought prone areas, strategies used to maintain crop yield which means, breeding

varieties with improved yield under drought stress as well as under irrigated conditions. Early stage drought stress

reduces plant growth and inhibits plant development (Heiniger, 2001; Shaw, 1983). Drought that occurs at V8

(Vegetative stage) (Collar of 8th leaf visible occurs approximately 45 days after emergence) to V17 (8 weeks after

FIGURE 18.1 Schematic representation of drought tolerance in plants.
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emergence) leaf stages has considerable impact on plant architecture, growth, cob size and number of kernels (Farre &

Faci, 2006; Westgate & Boyer, 1985). Drought stress that occurs between 2 weeks before or after the emergence of silk

could be the reason of significant decreases in overall revenue in terms of number of kernel’s set and their weight

(Schussler & Westgate, 1991; Westgate & Bassetti, 1990), resulting in an average yield loss of 20%�50% (ACIAR;

Nielsen, 2007).

18.3 Plant response to drought

Growth maintenance of crop under drought is more substantial than its survival (Dolferus, 2014). So for this mainte-

nance, different types of drought-adaptive strategies/mechanisms are evolved in plants, which allow them to acclimatize

to specific environmental conditions for their growth and development (Fang & Xiong, 2015). Various morphological

and physiological responses are involved in plants under drought stress for adaptation (Wang & Huang, 2004) as shown

in Fig. 18.2. Several physiological factors are affected due to drought stress injury such as drought stress damages both

photosynthetic apparatus and reduce chlorophyll content (Jiang & Huang, 2001). An in-depth insight into the mechan-

isms of drought response and adaptation adopted by the plants is essential for the accomplishment of the goals to

develop drought tolerant crop varieties. Numerous changes occurring at physiological and developmental levels in plant

as a response to stress conditions are governed by the expression of stress inducible genes (Philippe et al., 2010). These

FIGURE 18.2 Effect of drought stress on morphophysiological traits.
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genes further interact with numerous partners, and constitutes a complex interactome governing a drought tolerance

response (Lin et al., 2007). Thus plant response to drought stress depends upon the genetic makeup of plant, plant spe-

cies, plant age, the severity of drought and developmental stage (Ali, Basra, Munir, Mahmood, & Yousaf, 2011; Gall

et al., 2015).

Agronomists defined the term Drought resistance in terms of “relative yield of genotypes” or “the capacity of a plant

to produce an economic product with minimum loss in a water-scarcity environment in comparative to the water-

constraint free management” (Fang & Xiong, 2015; Fukai & Cooper, 1995). Drought resistance is a complex trait and

its expression depends on the action and interaction of several morphological, physiological, and biochemical features.

(May & Milthorpe, 1962) reported three types of drought resistance, that is, drought escape, drought avoidance and

drought tolerance.

Plants regulate their growth period to avoid moisture stress is labeled as drought escape. Under favorable conditions,

plants undergo longer vegetative phase because shorter vegetative period reduces the time available photosynthetic pro-

ductivity and accumulation of seed nutrients resulting in an overall decline in plant biomass. This mechanism, involves

several key factors such as early flowering and early maturity (phenology), developmental plasticity as well as remobili-

zation of assimilates (preanthesis) to developing grain (Turner, 1979). The plants thus usually undergo a short vegeta-

tive period. This is a classical adaptive mechanism in which plants undergo speedy development in order to complete

the full life-cycle of growth before onset of drought stress. It is observed in some cereal crops such as maize. In maize,

speedy flowering time and shorter vegetative period in response to terminal drought can be very important and benefi-

cial. During the sensitive period of flowering, the above mentioned strategies in maize can help to reduce exposure to

dehydration and plants evolve postanthesis grain filling. The Eastern part of India and Bangladesh are drought-prone

upland areas, in these areas, drought escape is an imperative phenomenon which permits maize to produce kernels even

under restricted water accessibility conditions (Bernier, Atlin, Serraj, Kumar, & Spaner, 2008). Drought avoidance is

the sustaining of important physiological processes such as stomatal regulation, when exposed to mild drought. In this

mechanism, relatively high tissue water potential is maintained regardless of deficiency of soil moisture. Water stress

avoidance strategy is adopted by all those maize varieties in which plants maintain their water status even under stress

conditions through their well-developed roots organization and structure. In such varieties, yield losses thus minimized

caused by drought as plants store water in cells with less water loss (Singh, van Oosterom, Jordan, & Hammer, 2012).

Maize varieties that avoid drought generally have deep roots, higher root:shoot, increased root surface, branching rate,

and root length with a higher penetrability, high cuticular resistance, stomatal closure in the early phase and suppleness

in leaf rolling (Wang et al., 2006). Drought tolerance is the ability of plants to produce a higher yield at limited tissue

water content. In cereals, drought tolerance mechanism usually works in the reproductive phase. Tolerant cultivars

show better germination, seedling growth, and photosynthesis. It involves amalgamation of several mechanisms aiming

at avoiding or tolerating water scarcities and relies on the capacity of plants to undergo severe dehydration via osmotic

alteration and osmoprotectants. Drought recovery is defined as the plants ability to recommence growth and gain yield

after plant gets exposure to rigorous drought stress which causes absolute loss of turgor pressure and dehydration of

leaves (Fang & Xiong, 2015; Luo, 2010). Recovery after stress is a very multifaceted process as it involves the reorga-

nization of many metabolic pathways to restore drought-induced damage and to continue plant growth again. It requires

far more than simply a return to the state before stress onset (Vankova, Dobra, & Storchova, 2012).

18.4 Progress with conventional breeding strategies for drought tolerance in maize

Breeding programs are used for screening, characterizing, and identifying germplasm for drought tolerance for transfer-

ring of the required trait into the elite varieties so as to maximize the yield gains under water stress conditions. Deep

root system in maize genotypes has been observed as an important feature to tolerate the drought effects on its growth

and yield. Haseeb, Nawaz, Rao, Ali, and Malik (2020) observed two genotypes B-316 and Raka-poshi with improved

performance for all traits involved in drought tolerance, particularly shoot and root length, thus suggesting that selection

of maize genotypes on the basis of root length, shoot length and dry shoot weight may be fruitful for development of

drought stress tolerance maize hybrids and synthetic varieties. Guo et al. (2020) studied the phenotype associated with

the root morphological characters and estimated the drought tolerance index using different maize association panel at

seedling stage and concluded that the seminal root length could be beneficial for improving drought tolerance.

Djemel et al. (2018) evaluated 51 different open-pollinated maize populations from diverse temperate regions under

water deficit conditions at germination, seedling establishment and early growth stage and identified potential sources

of drought tolerance which could be used to study and get a deeper insight into drought tolerance under different devel-

opment stages. They concluded BS17 maize population to exhibit higher germination rate, early vigor, and rapid
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seedling growth, no effect on water use efficiency under drought conditions. Another population, Enano Levantino/

Hembrilla exhibited no effect on the stomatal conductance, rate of transpiration, and photosynthesis. Similar studies

thus hold the potential to offer new possibilities for development of drought tolerant hybrids using breeding programs

by combining diverse mechanisms conferring tolerance through crossings between potential donors (Djemel et al.,

2018).

18.4.1 Seedling and physiological traits for drought tolerance

Trait-based approaches are often used to predict the ecological consequences of climate change. Relationships of seed-

ling and root traits are more commonly measured traits. Higher genotypic coefficient of variation was observed for dif-

ferent traits, that is, dry root weight and fresh shoot weight (Mehdi & Ahsan, 2000), fresh shoot weight, fresh root

weight, dry root weight and dry shoot weight (Mehdi & Ahsan, 2000), dry shoot weight, dry root weight, emergence

percentage, fresh shoot weight and fresh seedling weight (Khan, Habib, Sadaqat, & Tabir, 2004) suggesting that these

traits can be used as selection criteria while selecting families for high green maize fodder yield. Ahsan et al. (2011)

found that fresh shoot length and fresh root weight were positively correlated with fresh shoot weight. The partial domi-

nance effect was observed for thermostability of cell membrane, net photosynthetic rate (Chohan, Muhammad, &

Muhammad, 2012) and mean germination time increases with decrease in osmotic potential (Khodarahmpour, 2012)

under drought stress conditions. Positive correlations were found between shoot and root traits with medium to high

heritability of shoot and root seedling traits (Badr, El-Shazly, Tarawneh, & Börner, 2020). Several studies have been

conducted through selection of physiological traits to identify a candidate drought resistant maize genotypes with higher

yield generally includes cell membrane thermostability, stomatal conductance, survival rate of maize seedlings (Aslam,

Iftikhar, Saleem, & Ali, 2006), length and biomass of root, root density, shoot biomass, and leaf temperature, etc. (Ali

et al, 2011).

18.4.2 Yield traits for drought tolerance

Ultimately, yield productivity under stress conditions is a prime factor in selection of a drought tolerant genotype.

Significant positive genotypic correlation was found for plant height with grain yield (GY)/plant, number of cobs/plant,

grains/cobs and 100-seed weight (Ali et al., 2011; Banziger & Diallo, 2004; Khatun, Begham, Motin, Yasmine, &

Islam, 1999; Umakanth, Satyanarayana, & Kumar, 2000; Waseem et al., 2014) and these can be used as selection crite-

ria for improving GY. Also, maize GY was found to be positively and significantly associated with circumference and

diameter of cob, and also with number of grain rows per cob (Vaezi, Mishani, Samadi, & Ghannadhs, 2000). From cor-

relation analysis, it was concluded that grains per cob, cobs per plant, cob length, and 100-seed weight significantly

affects the GY (Torun & Koycu, 1999). The general and specific combining ability effects were observed to be signifi-

cantly high for all yield related parameters, that is, cobs per plant, height of plant, grain rows per cob, weight of 100

seeds, leaf area GY per plant, length and weight of cob (Akbar & Saleem, 2008; Gautam, 2003; Muraya, Ndirangu, &

Omolo, 2006; Zhou, Cheng, Yaohal, & Young, 2004). But in some studies, general combining ability effects were sig-

nificantly positive for grain quality traits and other agronomic traits except GY (Bhatnagar, Betran, & Rooney, 2004).

Under drought stress, the significant genetic variation, heritability and superior performance of several quantitative

traits could help to increase GY (Qayyum et al., 2003). Hader (2006) stated that leaf area may be a convenient indirect

factor to improve maize yield, through a positive and direct effect and significant correlation with size of stomata and

frequency (Ahsan, Hadar, Saleem, & Aslam, 2008). Significant positive association between stomatal conductance with

GY and flag leaf area could be used as benchmarks for the selection of higher yielding maize genotypes (Yousafzai,

Al-Kaff, & Moore, 2009) Further, morphophysiological traits, that is, flag leaf area, cobs per plant, green fodder yield,

cob length and weight, grain rows per cob, plant height, GY per plant and grain weight (100 seeds) can be used as

selection criterion for the development of higher yield drought tolerant maize variety and fodder yield hybrid (Saif-ul-

malook, Ali, Shakeel, Sajjad, & Bashir, 2014).

Conventional plant breeding approaches have been used to address the drought tolerance potential in maize

(Richards, 1985), however plant response based selection criterion are affected by low heritability, genetic

interaction, environment and genotype interactions, and polygenic effects, thus making the selection process time-

consuming and laborious as immense phenotypic screening is mandatory. Traditional approaches needs to integrated

with technological advancements so as to provide a required momentum for providing drought tolerant maize cultivars

and varieties.
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18.5 Omics for characterizing drought stress responses in maize

Modern technological advancements have led to the development of high performance tools which can be utilized to

delve into and examine the plant genomes for crop betterment. In this aspect, “Omics” approaches have risen with most

promising perspectives of developing varieties with improved quality. The omics methodologies work to decipher the

whole genome to look up into plant molecular responses and these high-throughput and integrated approaches have

been used in several crops successfully to investigate the temporal and spatial system fluctuation that occurs under vari-

ous stresses.

Maize response to drought stress involves rearrangements occurring during gene expression at molecular level,

beginning from transcription regulation, leading to mRNA processing, translation and modification. Under stress condi-

tions, the transcriptome expression is affected due to plants stress specific regulation of transcription. Some of the func-

tions of these transcriptionally regulated genes are to mediate transcription, translation, signaling, metabolism, and

common stress responses. Generally, stages such as vegetative and reproductive have been observed to be more inclined

toward stress. In recent years, ample amount of survey has been undertaken to deduce the mechanism involved in

numerous stress tolerance in crop plants. Modernistic progressions in microarray and intense deep sequencing technolo-

gies have led to augmentation of genomic and transcriptomic data under several abiotic stresses. To date, transcript

levels are commonly used as the only measure for gene upregulation/downregulation in high throughput approaches

also known as expression analysis which is stage specific. A considerable amount of studies has shown a depressed cor-

relation among the transcripts and protein content starring the imperative post transcriptional processes as defined pre-

dictive value of transcripts for protein expression.

18.5.1 Genomics

In recent years, the potential and advancement in DNA sequencing technologies (2nd/3rd generation sequencers) have

been attributed to abundance of sequence information giving rise to whole genome sequences providing an in depth

peek through in the physical structure of genome. The maize genetics and genomics database (Maize GDB) is the

model database for maize. It currently hosts 12 fully sequenced and assembled maize genomes, including B73, B104,

CML247, W22, Mo17, PH207, EP1, and F7. The current B73 assembly version, Zm-B73-REFERENCE-NAM-5.0

released in January 2020, was sequenced and assembled along with a set of 25 inbred lines known as the NAM

founder lines by the NAM Consortium. These advances have given birth to the exploitation of plant genomics studies

for breeding climate resilient varieties utilizing gene/ quantitative trait loci (QTL) identification, SNP marker develop-

ment, etc (Table 18.1). Usage of QTL (Capelle, Remoue, & Moreau, 2010) and oligomicroarray (Luo, 2010) scruti-

nizes, various QTLs/genes linked with kernel desiccation were found to be involved in ABA synthesis. Various

studies have reported that many drought responsive proteins or genes, such as ZmTPA, ZmRFP1, and ZmCPK4

were induced by ABA dependent or ABA independent manner. Studies by Huang, Møller, and Song (2012); Jiang,

Zhang, and Wang (2013); and Xia, Liu, Wu, and Ding (2012) identified major effect QTLs on chromosome (Chr) num-

ber 1, 2, 8 and 10 for maize drought tolerance in a set of 230 recombinant inbred lines developed by CIMMYT.

A major QTL for ASI (anthesis-silking interval) and ear number per plant under drought stress was detected on Chr 1

(bin 1.03) and Chr 9 (bins 9.03�9.05) (Hao et al., 2008) from a cross between X178 and B73 which corresponded to

several QTLs identified in different experiments carried out worldwide. Several such identified “consensus QTLs” have

served as good candidates in marker assisted breeding program to enhance maize production under drought stress.

MARS (Marker Assisted Recurrent Selection) has been used to improve frequency of favorable alleles in maize

through bi-parental population that combined drought tolerance with resistance against armyworm infestation

(Striga hermonthica) (Abdulmalik et al., 2017). Bankole et al. (2017) used MARS approach in maize and suggested

the effectiveness of this method to improve drought tolerance and GY in a biparental population developed from

drought tolerant lines. Zhou, Dong, and Shi (2017) identified a major QTL associated with grain weight using simple

sequence RBackspace repeats (SSR) markers and further, qGW1.05-NILs were developed by Marker Assisted

Selection. Cerrudo et al. (2018) also used QTL-MAS approach to improve genetic gain for tolerance to drought in

maize (Table 18.1).

Functional genomics: The introductory knowledge on molecular phenotypes exposes genotypic variation that domi-

nates morphophysiological traits. Functional genomic studies have been proven to be the most pertinent knowledge for

crop improvement. Functional genomics give the applicability to study gene functions and interactions between genes

and their regulatory network. These systems can be exploited to generate improved crop varieties using either sequence

or hybridization based technologies.
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TABLE 18.1 List of genes/ quantitative trait loci associated with drought stress.

Genes/quantitative trait

loci (QTLs)

Chromosome no. Annotation Reference

5 QTLs 1,2,3,5 Anthesis-silking interval (ASI) Li et al. (2003

3 QTLs 2, 6 Zhang et al. (2004)

43 QTLs 1, 2, 3, 4, 5, 6, 7, 8,
9, 10

Grain yield, leaf width, plant height, ear height,
leaf number

Nikolic A et al.
(2011)

11 QTLs 1, 2, 3, 5, 6, 7 ASI, ear setting Xin-Hai and Xian-DE
(2003)

22 QTLs 1, 3, 6, 7, 9 Sugar concentration, relative leaf water, root
density,
root dry weight, total biomass, grain yield,
osmotic potential

Rahman et al. (2011)

12 QTLs 2, 3, 4, 5, 7, 10 Kernel per ear, grain yield Nikolic et al. (2013)

64 QTLs 1, 2, 3, 4, 5, 6, 10 Relative leaf water content Nikolic et al. (2012)

9 QTLs 3, 6, 7, 8 ASI Liu et al. (2010)

34 QTLs Chen et al. (2012)

9 QTLs 1, 2, 3, 4, 5, 6, 7 Cob weight Upadyayula et al.
(2006)

3 QTLs 1, 7 SPAD Trachsel et al. (2010)

1 QTL 1 Chlorophyll content Messmer et al. (2011)

1 QTL 3 Chlorophyll content Almeida et al. (2014)

1 QTL 9 Ear weight Zhao et al. (2018)

3 QTLs 1, 7 Kernel number per ear Ribaut et al. (1997)

6 QTLs 1, 3, 9 Kernel per ear Xiao et al. (2005)

9 QTLs 1, 4, 7, 8, 9 Grain yield Cerrudo et al. (2018)

18 QTL 3, 5, 7, 10 Grain yield, ear setting, ASI Hu et al. (2021)

827 probe sets � Differential expression levels of cell-wall
related
and transporter genes

Zheng et al. (2010)

619 Genes and 126 transcripts � Altered regulation under drought conditions.
Beta-amylase,
chitinase, carotenoid hydroxylase, heat shock
proteins
and were upregulated by drought.

Song et al. (2017)

29 Differentially expressed
proteins

� Involved in metabolism, stress response,
photosynthesis,
and protein modification

Kim et al. (2015)

61 Differentially expressed
proteins

� Zhao et al. (2016)

1 Gene � bZIP4 Ma et al. (2018)

1 Gene � bZIP17 Jia et al. (2009)

1 Gene � DREB2.7 Liu et al. (2013)

2 Gene � DBF1, DBF2 Kizis and Pagès
(2002)

(Continued )
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Sequence based approaches: Expressed sequence tags (ESTs) are one of the earliest methods to study gene and genome

annotation. Over millions of EST data have been deposited at National Center for Biotechnology Information database.

Around 2 million ESTs are drawn from 10 inbred lines are deposited in GenBank. EST sequencing can be utilized extensively

even if the entire transcriptome is not fully represented. EST sequencing has the potential for gene discovery by comparing

different genotypes under both controlled and stressed conditions. A computer-based methodology was developed by Batley,

Barker, O’Sullivan, Edwards, and Edwards (2003) to aid in the identification of candidate single nucleotide polymorphisms

(SNPs) as well as small insertions/deletions from expressed sequence tag data. The applicability of this method was verified

by applying these SNPs and insertions/deletions to 102,551 maize (Zea mays) expressed sequence tag sequences screening out

a total of 14,832 candidate polymorphisms. The predicted SNPs and insertion/deletions represent true genetic variation in

maize. Hao et al. (2011) identified 1536 SNP markers using Illumina GoldenGate assay and genotyped maize inbred lines.

Furthermore, they determined the functional genetic variations underlying drought tolerance by association analysis. A total of

1006 polymorphic SNPs were detected. Pairwise linkage disequilibrium and association mapping with phenotypic traits was

done under water stress and irrigated conditions and about 29 SNPs were found to be affiliated with two phenotypic traits

which were correlated with drought tolerant genes. Another approaches, that is, Serial Analysis of Gene Expression (SAGE),

Massively Parallel Signature Sequencing expression data for maize is publicly available (https//mpss.udel.edu) which can be

interpreted and analyzed for gene expression studies. Poroyko et al. (2005) made use of SAGE to characterise the relative

amount of transcripts in the root tips of irrigated maize seedlings (Z. mays cv. FR697). A total of 161,320 tags were detected

representing a minimum of 14,850 genes, based on at least two tags determined per mRNA. Moreover, they confirmed the

expression of few selected transcripts correlating with tag frequency using quantitative reverse transcription-PCR.

Hybridization-based approaches, on the other hand, exploit hybridization of the perfectly matched or mismatched

target DNA with the oligonucleotide or cDNA probes which are adhered to the surface to check the expression. In the

array based methods, prior knowledge of the transcript is required for designing probes. In a study, Luo (2010) exam-

ined gene expression in developing kernels under drought stress and identified drought responsive genes. Gene expres-

sion profiles were done in the developing kernels of Tex6 maize line under both drought stress and well watered

regimes using the 70-mer maize oligoarrays. About 9573, positive array spots were identified and 7988 were common

under drought stress and well-watered samples. Further expression patterns of some genes in several stress response-

associated pathways were examined, and it was found that specific genes were responsive to drought stress.

Since the plant genomes shared massive similarities among themselves, comparative genomics can be primarily uti-

lized for species with unexplored genomes to access information among closely as well as distantly related plant spe-

cies. Grasses are the main focus of the study via comparative genomics due to their agronomic importance. The scope

of genome conservation first became distinct by genome mapping based comparative studies, which advocated a colin-

ear order of genes and markers encompassing on genomes of different species. In spite of having comprehensive analy-

sis which reveal notable rearrangements at molecular level such as inversions, deletions, and translocations, extensive

linearity across grass genomes has been calculated for gene discovery and isolation. “Genome zipper” is one of the con-

cepts that have emerged from comparative genomics that basically helps in determining the virtual gene order in par-

tially sequenced genomes. The approach relies on syntenic genes. However, recently evolved genes or certain

TABLE 18.1 (Continued)

Genes/quantitative trait

loci (QTLs)

Chromosome no. Annotation Reference

1 Gene � NAC111 Mao et al. (2015)

1 Gene � NF-YA1 Luan et al. (2015)

1 Gene � NF-YA3 Su et al. (2018)

1 Gene � NF-YB2 Nelson et al. (2007)

1 Gene � NF-YB16 Wang et al. (2018)

1 Gene 9 ZmTIP1—encodes S-acyltransferase Zhang et al. (2020)

4552 Differentially expressed
genes

� Phenylpropanoid biosynthesis, taurine
metabolism and cell wall biosynthesis.

Zhang et al. (2020)
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rearrangements at the molecular level cannot be examined by this method. In contrast, nonsyntenic genes provide valu-

able information on evolution and speciation of the genome. To forecast the gene order and its organization in these

species it is indisputable that species-specific genomic features can only be accessed through a fully annotated reference

genome sequences genetically mapped markers, despite the presence of comparative genomics and genome zippers. In

maize, ZmASR3 gene, which activates the antioxidant system and regulates the ABA-dependent pathway under water

stressed conditions acts as a positive regulator of drought tolerance in crop breeding programs. Its overexpression in

drought stressed Arabidopsis showed lower malondialdehyde levels and higher relative water content and proline con-

tent than the wild type, demonstrating that ZmASR3 can improve drought tolerance (Liang et al., 2019). Further,

CDPKs (Calcium dependent protein kinases) have been shown to be involved in abiotic stress tolerance in various crop

species. Over-expression of OsCPK7 and AtCPK6 in rice and Arabidopsis, respectively, led to enhanced drought toler-

ance (Saijo, Hata, Kyozuka, Shimamoto, & Izui, 2000; Xu et al., 2010). Mittal et al. (2017) studied the syntenic rela-

tionship among a set of 32 CDPK genes under drought stress in maize with Arabidopsis, rice and sorghum and led to

conclusion that Maize-rice species genes were less divergent as compared to maize-sorghum and maize-Arabidopsis

owing to the divergence during evolutionary time scale. Among transcription factors (TF), overexpression of WRKY

TF � ZmWRKY40 from maize, improved drought tolerance in transgenic Arabidopsis by regulating other stress respon-

sive genes including STZ, DREB2B, and RD29A, and the ROS content in transgenic lines by enhancing the activities of

peroxide dismutase and catalase under drought stress (Wang et al., 2018). In another study, breeding values of 240

maize subtropical lines phenotyped for drought across different environments using 29,619 cured SNPs. A total of 77

SNPs associated with 10 drought-responsive TF (stomatal closure, root development, hormonal signaling and photosyn-

thesis) with higher marker effects was selected across all datasets to validate the genes and QTLs associated with

drought tolerance (Shikha et al., 2017).

The recent enormous research done in the areas of structural, functional, and comparative genomics showed that the

information generated from one plant species can be implemented for the advancement of other related species or gen-

era or taxa.

18.5.2 Transcriptomics

Transcriptomic approaches have set the ball rolling to understand the plant responses to abiotic stresses. In past decade,

application of transcriptome analysis such as next generation sequencing and RNA�seq has been used by the plant

genomic resources. The ability of transcriptomic technologies to provide deep coverage and representation of abundant

transcript has a huge potential. Transcriptome analysis has proven to be an advantageous tool to filter candidate genes,

anticipate gene function, and detect cis-regulatory motifs. Transcriptomic changes between drought-tolerant and control

maize lines were investigated using a drought-tolerant maize mutant. Delayed wilting and higher drought tolerance was

observed under both controlled and field conditions in the mutant C7�2t in comparison to its wild type C7�2, entailing

its high water-holding ability. A total of 4552 differentially expressed genes were identified based on transcriptomic

profiling. The differentially expressed genes (DEGs) involved in phenylpropanoid biosynthesis were also enriched in

cell components associated with cell wall biosynthesis and membrane systems (Zhang, Liu, Wu, & Wang, 2020).

RNA-seq has also been demonstrated to identify large-scale identification of drought-responsive genes and to expe-

dite the extraction of key drought tolerance genes in plants, for example, maize (Lu et al., 2017). For instance, RNA-

seq in maize RILS under drought stress have depicted that the upregulation of cell wall biosynthesis/aquaporin-related

genes are associated with drought adaptability (Min et al., 2016). Genes conferring cell wall remodeling, biosynthesis

of certain amino acids and carbohydrates have been revealed to be linked with drought-response mechanism (Zenda

et al., 2019). The bioinformatics tools along with RNA-seq have been applied to study the correlation between flower-

ing time and drought stress in maize. In a total of 619 genes identified, the expression of 126 transcripts was altered by

drought stress, which included zinc finger and NAC domains. The study also identified 20 genes encoding for TF like

HY5, PRR37 and CONSTANS regulating the flowering time mechanism (Song et al, 2017). Transcriptomic studies of

drought-tolerant YE8112 and drought-sensitive MO17 lines identified several TF to play a primary role, that is, two

WRKY genes were down-regulated, two MYB-related genes were up-regulated, and two GARP-G2-like genes were

down-regulated, whilst one NAC gene was up-regulated in response to drought stress. Another study identified the role

of DnaJ in conferring drought tolerance in maize, a protein belonging to heat shock protein Hsp40 family, and complet-

ing the correct folding of protein, maintain the stability of peptide chain, and prevent cell damage caused by environ-

mental stress (Wang & Huang, 2004). Many studies (Hu et al., 2015; Thirunavukkarasu et al., 2014) have shown that

DnaJ protein plays an important role in the life activities of plants to cope with environmental stress. However, there

was a little effect on the progression of developmental stages during drought suppressed plant growth. The parallel

Characterization of drought tolerance in maize: omics approaches Chapter | 18 287



RNA-seq profiling of ears, leaves, tassels in response to drought stress conditions, at several developmental stages,

exposed tissue specific differences (Danilevskaya et al., 2019). The study inferred significant down-regulation of genes

which controlled DNA replication, cell cycle, and cell division in stressed ears and inflorescence meristem.

18.5.3 Proteomics and metabolomics

Drought affects multiple life processes that are convoluted in plant growth and development, such as osmotic potential

adjustment, antioxidant capabilities, photosynthetic rate reduction, and abscisic acid accumulation (Cramer, Urano,

Delrot, Pezzotti, & Shinozaki, 2011). Many differentially expressed proteins control these processes at various develop-

mental stages in various resistant species. The presence of recurrent discordance between protein levels and the plenty

of cognate gene transcripts proposed the demand for complementary analysis of the proteome, leading to further valida-

tion of candidate genes and pathways. There have been elaborative studies using two-dimensional gel electrophoresis

(2-DE)/Mass spectrometry (Ms)-based proteomics, in seeds, leaves, and roots in response to drought in maize. Huang

et al. (2012) identified several differentially expressed proteins like 17.4 kDa Class I HSP3, EMB564, and other stress

responsive proteins through 2-D and Ms/MS approach, and concluded their role in conferring drought tolerance during

embryogenesis and seed germination. In other study, difference was observed among the levels of drought protective

proteins such as CAT, APX, and SOD in drought-tolerant and drought-sensitive maize genotypes. The drought-tolerant

maize had higher accumulation of these proteins (Benesova, Hola, & Fischer, 2012). A study conducted by Bahrun,

Jensen, Asch, and Mogensen (2002) on maize ABA signaling pathway, inferred that it is one of the fundamental signal-

ing pathways that mediate maize to adapt in drought stress. Proteomic analysis of drought stressed maize led to the

identification of proteins involved in metabolism, photosynthesis and stress responses (Kim et al., 2019). These key pro-

teins were comprised of 11 metabolism-related proteins, 7 defense/stress-related proteins, 2 photosynthesis-related pro-

teins, 1 protein involved in protein synthesis, and 3 unknown function proteins. The major class of enzymes responded

to water deficit plants were related to carbohydrate metabolism. The abundance of malate dehydrogenase, two isoforms

of NAD-dependent epimerase/dehydratase, alpha-galactosidase, and isocitrate dehydrogenase under water deficit condi-

tions has been observed. Correspondingly, the revelation of proteomic analysis of Arabidopsis under drought stress

showed that branched-chain amino acid aminotransferase 3 protein and zinc finger transcription factor oxidative stress

2 proteins had a vital role to play under drought stress responses in plants that over-expressed ethylene response factor

AtER (Scarpeci, Frea, Zanor, & Valle, 2017). The two ABA-deficient maize mutants namely vp5 and wild-type Vp5

were analyzed under drought stress on the basis of proteomic differences using 2-DE and Ms/MS. From this analysis, it

was inferred that in maize roots, proteins associated with drought stress were majorly involved in energy and metabo-

lism, redox homeostasis, and regulatory processes (Hu et al., 2011). The proteins identified in the leaves of maize, per-

formed a vital role in processes such as ATP synthesis, protein synthesis, chlorophyll synthesis, CO fixation,

gluconeogenesis, antioxidant defense, and signal transduction. In response to light stress and drought stress, most of the

proteins that differentially assembled in leaves were localized to the chloroplast, functioned in an ABA-dependent man-

ner (Hu et al., 2012) thus suggesting the importance of ABA in regulating the synthesis of drought-induced proteins.

Such studies provide an integrated picture to correlate the transcript level changes with the observed proteome

structure.

Stable-isotope labeling has been done in several large scale studies to characterize maize proteome and phosphopro-

teome dynamics under drought stress. Bonhomme, Valot, Tardieu, and Zivy (2012) identified unique 3664 phosphoryla-

tion sites on 2496 proteins, that could potentially affect epigenetic regulation, transcriptional control, cell cycle-

dependent mechanisms, phytohormone-mediated responses, histone modifications, DNA methylation patterns, and

ABA-, ethylene-,auxin- and/or jasmonate-related responses through these phosphopeptidyl proteins. Benesova et al.

(2012) studied and analyzed changes induced by drought in the maize leaf proteome using LC based isobaric tags for

relative and absolute quantitation (iTRAQ) for proteome characterization and gel-based 2-DE analysis. They character-

ized 326 proteins by iTRAQ and 11 proteins by 2-DE combined with Ms/MS analysis. Out of these proteins, only four

proteins were identified by both the methods. This result suggested the compatibility of the two technologies though

partially overlapping. Omics studies have determined predominately protective proteins such as HSPs (Benesova et al.,

2012; Hu et al., 2010; Li et al., 2009; Luo, 2010), late embryogenesis-abundant proteins (LEAs), stress response-related

proteins (such as NBSLRR resistance-like protein) (Hu et al., 2012), 14�3-3-like proteins (Huang et al., 2012; Li et al.,

2009), phytohormone related proteins, and signaling proteins (such as auxin repressed protein and serine/threonine pro-

tein kinase) to be involved in the maize drought response.

There is still a scope of advancement in the methodology of maize stress omics studies. For instance, most of the

maize stress proteomic studies rely on gel-based technology and for protein detection methods Coomassie Brilliant
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Blue Staining is used. However, the low resolution of the 2-D electrophoresis has proved to be a drawback particularly

for membrane proteins. Therefore methods with increased detection based sensitivity, such as iTRAQ (gel-free), can be

applied using diverse genetic backgrounds which differ greatly with an abundance of drought tolerance variations in

maize stress proteomics studies.

Protein profiling provides evidence on changes in protein abundance or adjustment in response to stress that could

be correlated with the metabolomics analysis to investigate the region related with a major change in levels of any

metabolite. Utilizing, metabolomics approaches it has been showed that, to regulate physiological stress responses under

drought stress, endogenous gene expression of ABA level rises significantly. Metabolite profiling has displayed the

accumulation of ABA during drought also regulates the accumulation of various amino acids and sugars such as glucose

and fructose. In particular, correlation of the drought-inducible expression of key biosynthetic genes, that is, BCAT2,

LKR/SDH, P5CS1, and ADC2 with the drought-inducible accumulations of branch-chain amino acids (BCAAs), like

proline, saccharopine, and agmatine respectively, can be observed, that is regulated by endogenous ABA. On the flip-

side, the accumulation of galactinol and raffinose is not regulated by ABA under drought stress (Soni et al., 2015).

18.5.4 Advances in phenomics

With an available whole genome sequence of certain species, whole genome tiling arrays is one the rewarding transcript

profiling to examine abiotic stress responses (Rensink & Buell, 2005). Genome wide expression profiles help in detec-

tion of candidate genes for desired traits, for example, stress tolerance. The inactivation or overexpression of these pro-

files will further aid in their characterization and utilization. The whole development of high-throughput phenotyping,

or “phenomics,” has expanded into a highly active research field. In the area of phenomics, high throughput techniques

such as robotics, spectroscopy and imaging have been introduced recently. These highly advanced technological

advancements as well as high performing computing systems can efficiently analyze the obtained data (Rahaman,

Chen, Gillani, Klukas, & Chen, 2015). For instance, a phenotyping system such as LemnaTec Scanalyser, it offers prox-

imal remote sensing technology which captures the image of individual plants as well as data related to plant growth,

architecture, health and responses providing help in observation and analyzing the genotype X environment interactions

in precise manner (Petrozza et al., 2014). Furthermore, utilization of nondestructive imaging technologies can help in

efficiently measuring the dissection of series of component trait during drought stress (Berger, Parent, & Tester, 2010).

To illustrate, (Honsdorf, March, Berger, Tester, & Pillen, 2014) used a set of 47 wild barley introgression lines for the

high-throughput phenotyping to evaluate drought tolerance. In this study, a significant correlation of the biomass esti-

mated with the image processing with the actual biomass was found. High throughput phenotypic approaches have

proved to be beneficial as they help in precise detection of QTLs, over the previous traditional labor-intensive measures

of height, biomass, flowering time, harvest index, and GY. The root structures are vital components of drought stress

tolerance. The conventional methods are highly destructive to study phenotyping of the root traits, as they involve com-

plete removal of plants from the soil. Therefore the era of phenomics has catered to provide nondestructive methods for

analyzing root traits through imaging under drought stress. For instance, a high throughput method (BRACE) reported

by Sharma and Carena (2016) can efficiently perform phenotyping of root traits in a nondestructive manner under maize

drought stress conditions. Its high speed and efficiency usually takes less than 2 min per plot. Therefore it has proven to

be useful and reliable method for large-scale, high-throughput phenotyping screening. Similarly, one of the reliable,

fast, and much more efficient methods such as thermography has been used for tropical maize population under water

stress for high throughput phenotyping (Romano et al., 2011).

Due to the complex nature of drought stress, there has been involvement of number of genes for its study revealing

the presence of multiple pathways conferring drought stress tolerance. The recent progress in genomics and bioinfor-

matics are offering better opportunities to assess and enhance diversity in germplasm collections, introgress valuable

traits from new sources and identify genes that control key traits.

18.5.5 Bioinformatics tools and databases

Rapid advances in bioinformatics has played a significant role in the development of the agricultural sector, with the

increase of sequencing projects, rapid DNA and RNA sequencing tools, and high-throughput SNP genotyping techni-

ques, functional characterization are now available to understand the genetics of drought tolerance and which are

believed to play a major role in stress responses. Many publicly available databases, such as ARAMEMNON, focus on

specific protein classes enables the identification of a series of stress-related integral membrane proteins in both mono-

cots (maize, banana, rice, and brachypodium) and dicots (Arabidopsis, poplar, grape, tomato, and muskmelon). Alter
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et al. (2015) has developed Drought Stress Gene Database, DroughtDB, a specific, valuable resource and information

tool for researchers working on drought stress that includes manually curated compilation of molecularly characterized

originally identified genes, their information about physiological and/or molecular function and provides detailed infor-

mation about computed orthologous genes in nine model and crop plant species including maize and barley. The Plant

Phosphorylation database (P3DB) enables the investigation of changes in stress-induced phosphorylated proteins in six

plant species (Arabidopsis, rapeseed, soybean, barrelclover, rice and maize) (Zenda et al., 2019).

The coupled use of omics-data, specific genetic designs, and pertinent analytical methods provides the integrative

information that increases our understanding between plant stress response and crop yield and quality. Using the bioin-

formatics tools, has helped researchers in finding many target genes involved in a vast diversity of functions in various

plant species (Axtell & Bowman, 2008), genomic selection, rapid generation advancement, and other tools. Upadhyay

et al. (2019) used psRNA Target and RNA hybrid tools to predict the target genes in maize by investigating differential

expression of transcripts for drought tolerance. A total of seven microRNAs targeting 16 mRNAs were predicted and

were validated by qRT-PCR. Under drought stress, the differential expression of microRNAs regulates the expression

of their target genes, resulting in multiple responses of physiological and biochemical pathways relative to drought tol-

erance of maize (Table 18.1).

18.6 Conclusion

Numerous modern breeding techniques in conjunction with multiomics platforms along with high-throughput phenotyp-

ing have been done to identify putative QTLs/genomic regions for drought tolerance in maize. However, fine mapping

of these regions and the identification of candidate genes involved in crucial metabolic pathways and mechanisms

through which the associated genetic variants exert their effects are still rarely unknown. Therefore it is important to

inculcate “omics” sciences into linkage and association mapping to bridge this knowledge gap. Leveraging knowledge

from physiological, biochemical, and molecular regulatory mechanisms of drought response may uncover the complex-

ity of drought tolerance and can provide a useful foundation for breeding drought-tolerant sesame hybrids.

Undoubtedly, a multidisciplinary approach, will help synergistic understanding and fine-tune the development of new

maize hybrids that can adapt water scarcity.
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Djemel, A., Álvarez-Iglesias, L., Pedrol, N., López-Malvar, A., Ordás, A., & Revilla, P. (2018). Identification of drought tolerant populations at multi-

stage growth phases in temperate maize germplasm. Euphytica, 214(8), 1�18.

Dolferus, R. (2014). To grow or not to grow: A stressful decision for plants. Plant Science (Shannon, Ireland), 229, 247�261.

Edmeades G.O., Bolanos J., Lafitte H.R. (1992). Progress in breeding for drought tolerance in maize. In Wilkinson D (Ed.) Proceedings of the fifty-

seventh annual corn and sorghum industry research conference ASTA, Washington, USA, (pp. 93�111).

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular

and Molecular Life Sciences: CMLS, 72(4), 673�689.

Farre, I., & Faci, J. M. (2006). Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a

Mediterranean environment. Agricultural Water Management, 83(1�2), 135�143.

Food and Agriculture Organisation of the United Nations (FAOSTAT) (2019) [cited 2021]. ,http://www.fao.org/faostat/en/#data/QC..

Fukai, S., & Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, 40(2),

67�86.

Gall, H. L., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4(1),

112�166.

Gautam, A. S. (2003). Combining ability studies for grain yield and other agronomic characters in inbred lines of maize. Journal of Crop Research,

26, 482�485.

Grant, R. F., Jackson, B. S., Kiniry, J. R., & Arkin, G. F. (1989). Water deficit timing effects on yield components in maize. Agronomy Journal, 81,

61�65.

Guo, J., Li, C., Zhang, X., Li, Y., Zhang, D., Shi, Y., & Wang, T. (2020). Transcriptome and GWAS analyses reveal candidate gene for seminal root

length of maize seedlings under drought stress. Plant Science (Shannon, Ireland), 292, 110380.

Hader. (2006). [master’s thesis] Association of various physiomorphological characters in maize (Zea mays L.). Pakistan: University of Agriculture

Faisalabad.

Hao, Z., Li, X., Xie, C., Li, M., Zhang, D., Bai, L., & Zhang, S. H. (2008). Two consensus quantitative trait loci clusters controlling anthesis�silking

interval, ear setting and grain yield might be related with drought tolerance in maize. Annals of Applied Biology, 153, 73�83.

Hao, Z., Li, X., Xie, C., Weng, J., Li, M., Zhang, D., . . . Zhang, S. (2011). Identification of functional genetic variations underlying drought tolerance

in maize using SNP markers. Journal of Integrative Plant Biology, 53, 641�652.

Haseeb, A., Nawaz, A., Rao, M. Q. A., Ali, Q., & Malik, A. (2020). Genetic variability and association among seedling traits of Zea mays under

drought stress conditions. Biological and Clinical Sciences Research Journal, 2020(1), e020-e020.

Heiniger, R. W. (2001). The impact of early drought on corn yield. Raleigh, NC: North Carolina State University.

Honsdorf, N., March, T. J., Berger, B., Tester, M., & Pillen, K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley

introgression lines. PLoS One, 9(5), e97047.

Characterization of drought tolerance in maize: omics approaches Chapter | 18 291

http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref12
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref13
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref13
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref13
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref14
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref14
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref15
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref15
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref15
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref16
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref16
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref16
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref17
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref17
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref18
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref18
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref18
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref19
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref19
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref19
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref20
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref20
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref21
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref21
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref21
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref22
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref22
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref22
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref23
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref23
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref23
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref24
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref24
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref24
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref25
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref25
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref25
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref26
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref26
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref27
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref27
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref27
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref28
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref28
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref28
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref28
http://www.fao.org/faostat/en/#data/QC
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref29
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref29
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref29
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref39


Hu, X., Li, Y., Li, C., Yang, H., Wang, W., & Lu, M. (2010). Characterization of small heat shock proteins associated with maize tolerance to com-

bined drought and heat stress. Journal of Plant Growth Regulation, 29(4), 455�464.

Hu, X., Lu, M., Li, C., Liu, T., Wang, W., Wu, J., . . . Zhang, J. (2011). Differential expression of proteins in maize roots in response to abscisic acid

and drought. Acta Physiologiae Plantarum / Polish Academy of Sciences, Committee of Plant Physiology Genetics and Breeding, 33(6), 2437.

Hu, X., Wu, L., Zhao, F., Zhang, D., Li, N., Zhu, G., . . . Wang, W. (2015). Phosphoproteomic analysis of the response of maize leaves to drought,

heat and their combination stress. Frontiers in Plant Science, 6, 298.

Hu, X., Wu, X., Li, C., Lu, M., Liu, T., Wang, Y., & Wang, W. (2012). Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea

mays) in response to drought and light. PLoS One, 7(11), e49500.

Huang, H., Møller, I. M., & Song, S. Q. (2012). Proteomics of desiccation tolerance during development and germination of maize embryos. Journal

of Proteomics, 75(4), 1247�1262.

Huang, Q., Zhao, Y., Liu, C., Zou, X., Cheng, Y., Fu, G., & Lu, G. (2015). Evaluation of and selection criteria for drought resistance in C. hinesesemi

winter rapeseed varieties at different developmental stages. Plant Breeding, 134(5), 542�550.

Jiang, S., Zhang, D., Wang, L., et al. (2013). A maize calcium dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling

and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 71, 112�120.

Jiang, Y., & Huang, B. (2001). Physiological responses to heat stress alone or in combination with drought: A comparison between tall fescue and

perennial ryegrass. Horticultural Science, 36(4), 682�686.

Khan, I. A., Habib, S., Sadaqat, H. A., & Tabir, M. H. N. (2004). Comparative evaluation and analysis of seedling traits for drought tolerance in

Maize. Journal of Agricultural Science and Botany, 2, 246�251.

Khatun, F., Begham, S., Motin, A., Yasmine, S., & Islam, M. R. (1999). Correlation coefficient and path analysis of some maize hybrids. Bengladesh

Journal of Botany, 28, 9�15.

Khodarahmpour, Z. (2012). Evaluation of maize (Zea mays L.) hybrids, seed germination and seedling characters in water stress conditions. African

Journal of Agricultural Research, 7, 6049�6059.

Kim, S. G., Lee, J. S., Bae, H. H., Kim, J. T., Son, B. Y., Kim, S. L., . . . Jeon, W. T. (2019). Physiological and proteomic analyses of Korean F1

maize (Zea mays L.) hybrids under water-deficit stress during flowering. Applied Biological Chemistry, 62(1), 1�9.

Langridge, P., & Reynolds, M. P. (2015). Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology, 32, 130�135.

Li, H. Y., Huang, S. H., Shi, Y. S., Song, Y. C., Zhong, Z. B., Wang, G. Y., . . . Yu, L. (2009). Isolation and analysis of drought-induced genes in

maize roots. Agricultural Sciences in China, 8(2), 129�136.

Liang, Y., Jiang, Y., Du, M., Li, B., Chen, L., Chen, M., et al. (2019). ZmASR3 from the maize ASR gene family positively regulates drought toler-

ance in transgenic arabidopsis. International Journal of Molecular Sciences, 20(9), 2278.

Lin, M. K., Belanger, H., Lee, Y. J., Varkonyi-Gasic, E., Taoka, K. I., Miura, E., & Lough, T. J. (2007). FLOWERING LOCUS T protein may act as

the long-distance florigenic signal in the cucurbits. The Plant Cell, 19(5), 1488-06.

Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater sensitivity to drought accom-

panies maize yield increase in the US Midwest. Science (New York, N.Y.), 344(6183), 516�519.

Lu, X., Zhou, X., Cao, Y., Zhou, M., McNeil, D., Liang, S., & Yang, C. (2017). RNA-seq Analysis of Cold and Drought Responsive Transcriptomes

of Zea mays ssp. mexicana L. Frontiers in Plant Science, 8, 136.

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany, 61(13), 3509�3517.

Manavalan, L. P., Guttikonda, S. K., Phan Tran, L. S., & Nguyen, H. T. (2009). Physiological and molecular approaches to improve drought resistance

in soybean. Plant & Cell Physiology, 50(7), 1260�1276.

May, L. H., & Milthorpe, F. L. (1962). Drought resistance of crop plants. Field Crop, 15, 171�179.

Mehdi, S. S., & Ahsan, M. (2000). Genetic coefficient of variation, relative expected genetic advance and inter-relationships in maize (Zea mays L.)

for green fodder purposes at seedling stage. Pakistan Journal of Biological Science, 3(11), 1890�1891.

Min, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., . . . Xie, Q. (2016). Identification of drought tolerant mechanisms in maize seedlings based on

transcriptome analysis of recombination inbred lines. Frontiers in Plant Science, 7, 1080.

Mittal, S., Mallikarjuna, M. G., Rao, A. R., Jain, P. A., Dash, P. K., & Thirunavukkarasu, N. (2017). Comparative analysis of CDPK family in maize,

arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry, 5, 115.

Muraya, M. M., Ndirangu, C. M., & Omolo, E. O. (2006). Heterosis and combining ability in diallel crosses involving maize (Zea mays L.) S1 lines.

Australian Journal of Experimental Agriculture, 46, 387�394.

Nielsen, R. L. (2007). Assessing effects of drought on corn grain yield. West Lafayette, IN: Purdue University.

Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for

improvement. Frontiers in Plant Science, 6, 542.

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., & O Toole, J. C. (2002). Yield response of rice (Oryza sativa L.) genotypes to different types

of drought under rainfed lowlands: Part 1. Grain yield and yield components. Field Crops Research, 73(2�3), 153�168.

Petrozza, A., Santaniello, A., Summerer, S., Di Tommaso, G., Di Tommaso, D., Paparelli, E., . . . Cellini, F. (2014). Physiological responses to

Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae, 174, 185�192.

Philippe, R., Courtois, B., McNally, K. L., Mournet, P., El-Malki, R., Le Paslier, M. C., & This, D. (2010). Structure, allelic diversity and selection of

Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theoretical and Applied Genetics, 121(4), 769�787.

Pingali, P. L., & Heisey, P. W. (2001). Cereal-crop productivity in developing countries: Past trends and future prospects. Agricultural Science Policy:

Changing Global Agendas, 99-03.

292 SECTION | II Omics application

http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref70


Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Nguyen, H. T., Sharp, R. E., & Bohnert, H. J. (2005). The maize root transcriptome by

serial analysis of gene expression. Plant Physiology, 138(3), 1700�1710.

Qayyum, A., Ahmad, S., Liaqat, S., Malik, W., Noor, E., Saeed, H. M., & Hanif, M. (2003). Screening for drought tolerance in maize (Zea mays L.)

hybrids at an early seedling stage. African Journal of Agricultural Research, 7, 3594�3604.

Rahaman, M., Chen, D., Gillani, Z., Klukas, C., & Chen, M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth

and development. Frontiers in Plant Science, 6, 619.

Rensink, W. A., & Buell, C. R. (2005). Microarray expression profiling resources for plant genomics. Trends in Plant Science, 10(12), 603�609.

Richards R.A. (1985). Physiology and the breeding of winter-grown cereals for dry areas. In J.P. Srivastana, E. Porceddu, E. Acevedo and S. Varma

(eds.). In Proceedings of an international workshop on drought tolerance in winter cereals 1987; 27�31 Oct., Capri, Italy, (pp. 171�190).

Romano, G., Zia, S., Spreer, W., Sanchez, C., Cairns, J., Araus, J. L., & Müller, J. (2011). Use of thermography for high throughput phenotyping of

tropical maize adaptation in water stress. Computers and Electronics in Agriculture, 79(1), 67�74.

Saif-ul-malook., Ali, Q., Shakeel, A., Sajjad, M., & Bashir, I. (2014). Genetic variability and correlation among various morphological traits in stu-

dents of UAF, Punjab Pakistan. International Journal of Case Reports, 1, 1�4.

Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over-expression of a single Ca21 -dependent protein kinase confers both cold and

salt/drought tolerance on rice plants. The Plant Journal, 23(3), 319�327.

Saini, H. S., & Westgate, M. E. (2000). Reproductive development in grain crops during drought. In D. L. Spartes (Ed.), Advances in agronomy

(pp. 59�96). San Diego, CA, USA: Academic Press.

Scarpeci, T. E., Frea, V. S., Zanor, M. I., & Valle, E. M. (2017). Overexpression of AtERF019 delays plant growth and senescence, and improves

drought tolerance in Arabidopsis. Journal of Experimental Botany, 68(3), 673�685.

Schussler, J. R., & Westgate, M. E. (1991). Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Science,

31(5), 1196�1203.

Sharma, S., & Carena, M. J. (2016). BRACE: A method for high throughput maize phenotyping of root traits for short-season drought tolerance. Crop

Science, 56(6), 2996�3004.

Shaw R.H. (1983). Estimates of yield reductions in corn caused by water and temperature stress. Crop reactions to water and temperature stresses in

humid, temperate climates; (pp. 49�66).

Sheikh, F. A. (2017). Recent advances in QTL mapping and quantitative disease resistance approach. International Journal of Current Microbiology

and Applied Sciences, 6(4), 1967�1984.

Shikha, M., Kanika, A., Rao, A. R., Mallikarjuna, M. G., Gupta, H. S., & Nepolean, T. (2017). Genomic selection for drought tolerance using

genome-wide SNPs in maize. Frontiers in Plant Science, 8, 550.

Singh, V., van Oosterom, E. J., Jordan, D. R., & Hammer, G. L. (2012). Genetic control of nodal root angle in sorghum and its implications on water

extraction. European Journal of Agronomy, 42, 3�10.

Song, K., Kim, H. C., Shin, S., Kim, K. H., Moon, J. C., Kim, J. Y., & Lee, B. M. (2017). Transcriptome analysis of flowering time genes under

drought stress in maize leaves. Frontiers in Plant Science, 8, 267.

Soni, P., Nutan, K. K., Soda, N., Nongpiur, R. C., Roy, S., Singla-Pareek, S. L., & Pareek, A. (2015). Towards understanding abiotic stress signaling

in plants: Convergence of genomic, transcriptomic, proteomic, and metabolomic approaches. Elucidation of abiotic stress signaling in plants

(pp. 3�40). New York, NY: Springer.

Statista [Internet]. (2020) Oct 30 [cited 2021]. ,https://www.statista.com/topics/986/corn/#dossierSummary..

Tardieu, F. (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit.

Frontiers in Physiology, 4, 17.

Thirunavukkarasu, N., Hossain, F., Arora, K., Sharma, R., Shiriga, K., Mittal, S., et al. (2014). Functional mechanisms of drought tolerance in subtrop-

ical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genomics, 15(1), 1�12.

Torun, M., & Koycu, C. (1999). Study to determine the relationship between grain yield and certain yield components of maize using correlation and

path coefficient analysis. Turkish Journal of Agriculture and Forestry, 23, 1021�1027.

Turner, N. C. (1979). Drought resistance and adaptation to water deficits in crop plants. Stress Physiology Crop Plants, 343�372.

Umakanth, A. V., Satyanarayana, E., & Kumar, M. V. (2000). Correlation and heritability studies in Ashwini maize composite. Annals of Agricultural

Research, 21, 228�230.

Upadhyay, N., Kar, D., Deepak Mahajan, B., Nanda, S., Rahiman, R., Panchakshari, N., et al. (2019). The multitasking abilities of MATE transporters

in plants. Journal of Experimental Botany, 70(18), 4643�4656.

Vaezi, S., Mishani, A., Samadi, Y., & Ghannadhs, M. R. (2000). Correlation and path coefficient analysis of grain yield and its components. Iranian

Journal of Agriculture Science, 31, 71�83.

Vankova, R., Dobra, J., & Storchova, H. (2012). Recovery from drought stress in tobacco: an active process associated with the reversal of senescence

in some plant parts and the sacrifice of others. Plant Signaling & Behavior, 7(1), 19�21.

Wang, C. T., Ru, J. N., Liu, Y. W., Yang, J. F., Li, M., Xu, Z. S., & Fu, J. D. (2018). The maize WRKY transcription factor ZmWRKY40 confers

drought resistance in transgenic Arabidopsis. International Journal of Molecular Sciences, 19(9), 2580.

Wang, Y., Duan, L., Lu, M., Li, Z., Wang, M., & Zhai, Z. (2006). Expression of NAC1 up-stream regulatory region and its relationship to the lateral

root initiation induced by gibberellins and auxins. Science China Life Sciences, 49(5), 429�435.

Wang, Z., & Huang, B. (2004). Physiological recofvery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44(5),

1729�1736.

Characterization of drought tolerance in maize: omics approaches Chapter | 18 293

http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref86
https://www.statista.com/topics/986/corn/#dossierSummary
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref97


Waseem, M., Ali, Q., Ali, A., Samiullah, T. R., Ahmad, S., Baloch, D. M., & Bajwa, K. S. (2014). Genetic analysis for various traits of Cicer arieti-

num under different spacing. Life Sciences, 11(12s), 14�21.

Westgate M.E., Bassetti P. (1990). Heat and drought stress in corn: What really happens to the corn plant at pollination. In Proceedings of the forty-

fifth annual corn and sorghum research conference, Chicago, IL, (pp. 12�28).

Westgate, M. E., & Boyer, J. S. (1985). Carbohydrate reserves and reproductive development at low leaf water potentials in Maize 1. Crop Science,

25(5), 762�769.

Xia, Z., Liu, Q., Wu, J., & Ding, J. (2012). ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought

stress in an ABA-dependent manner in maize. Gene, 495(2), 146�153.

Xu, J., Tian, Y. S., Peng, R. H., Xiong, A. S., Zhu, B., Jin, X. F., et al. (2010). AtCPK6, a functionally redundant and positive regulator involved in

salt/drought stress tolerance in Arabidopsis. Planta, 231(6), 1251�1260.

Yousafzai, F., Al-Kaff, N., & Moore, G. (2009). The molecular features of chromosome pairing at meiosis: The polyploidy challenge using wheat as a

reference. Functional & Integrative Genomics, 10, 147�156.

Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., & Zhang, Q. (2006). Genetic basis of drought resistance at reproductive stage in rice:

Separation of drought tolerance from drought avoidance. Genetics, 172(2), 1213�1228.

Zenda, T., Liu, S., Wang, X., Liu, G., Jin, H., Dong, A., . . . Duan, H. (2019). Key maize drought-responsive genes and pathways revealed by compara-

tive transcriptome and physiological analyses of contrasting inbred lines. International Journal of Molecular Sciences, 20(6), 1268.

Zhan, A., Schneider, H., & Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168

(4), 1603�1615.

Zhang, Q., Liu, H., Wu, X., & Wang, W. (2020). Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physio-

logical, biochemical and transcriptomic analyses. BMC Plant Biology, 20(1), 1�14.

Zhou, Q., Dong, Y., Shi, Q., et al. (2017). Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.).

Molecular Genetics and Genomics, 292, 871�881.

Zhou, X. H., Cheng, Y. X., Yaohal, Y., & Young, G. Z. (2004). Study on heterosis utilization of maize inbred lines in different ecological areas.

Journal of Maize Sciences, 12(4), 35�38.

Zinselmeier, C., Habben, J. E., Westgate, M. E., & Boyer, J. S. (2000). Carbohydrate metabolism in setting and aborting maize ovaries. In M.

Westgate, & K. Boote (Eds.), Physiology and modeling kernel set in maize (pp. 1�13). Madison, USA: CSSA and ASA.

294 SECTION | II Omics application

http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref103
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref103
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref103
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref104
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref104
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref104
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref107
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref107
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref107
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref108
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref108
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref108
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref109
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref109
http://refhub.elsevier.com/B978-0-323-89778-5.00032-5/sbref109


Chapter 19

Deciphering the genomic hotspots in
wheat for key breeding traits using
comparative and structural genomics

Dharmendra Singh1, Pritesh Vyas2, Chandranandani Negi2, Imran Sheikh2 and Kunal Mukhopadhyay3

1Government Model College, Jhabua, Madhya Pradesh, India, 2Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib,

Himachal Pradesh, India, 3Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Jharkhand, India

19.1 Introduction

Wheat (Triticum aestivum L., 2n5 6x5 42, AABBDD) is a dietary staple of 35% of the world’s population and pro-

vides B20% of the protein consumed by humans (Shiferaw et al., 2013). The bread wheat constitutes about 95% of the

globally cultivated wheat and the remainder 5% is durum wheat, which is mostly grown in the Mediterranean region

(Shewry, 2009). Bread wheat has a large and complex allopolyploid genome of 17 Gb size, having .80% repetitive

and 20% structural and functional sequences. The intrachromosomal duplications of 24% of the total genes further

enhance the complexity of the genome (Uauy, 2017). In the last years the primary focus of wheat breeding was improv-

ing yield, end-use quality, and resistance to certain stresses. However, continuous past selection for limited number of

traits led to narrowness in the genetic base of wheat, making it vulnerable to various stresses (i.e., biotic and abiotic)

(Mujeeb-Kazi et al., 2017). The rate of increase in wheat yield has been about 0.9% per annum, which is far less than

the required 2.4% increase needed to feed more than 9 billion humans by 2050 (Ray, Mueller, West, & Foley, 2013).

The challenge of meeting the target becomes even more difficult under climate change events, scarcity of water, and

shrinkage of arable land (Daryanto, Wang, & Jacinthe, 2016). Recently, the crop modeling studies have predicted yield

reductions of 6%�13%, with a 1�C rise in temperatures. To tackle the concerns associated with climate change and to

develop abiotic/biotic stress-resilient cultivars, the genetic base of cultivated wheat needs to be urgently broadened

(Ceoloni et al., 2017). This could be achieved by identifying the resistant and tolerant genes or quantitative trait loci

(QTLs) using the advanced sequencing technologies and bioinformatics tools and transferring them to elite wheat culti-

vars using wheat prebreeding programs. The location of such genes or QTLs on wheat chromosomes are considered to

be hotspots for the respective trait. Most of the tools or pipelines used in analysis are objective oriented and take advan-

tage of model crop system for predicting genes using comparative genomics.

The comparative genomics is an approach to compare the complete genome sequences of different species using dif-

ferent alignment tools. Identifying “conserved” DNA sequences is an important step toward understanding the genome

itself. It pinpoints genes that are essential to life and highlights genomic signals that control gene function across many

species. Additionally, it helps us to further understand what genes relate to various biological systems, which in turn

may translate into novel mechanism of stress tolerance in plants (https://www.genome.gov/about-genomics/fact-sheets/

Comparative-Genomics-Fact-Sheet). The comparative genomics in wheat covers the study of evolution and isolation or

characterization of genes using the rice genome (Gupta, Pandey, Gopalareddy, Sharma, & Singh, 2019). Recent

advancements in experimental approaches, resources, and computational analysis tools have facilitated the identification

of new genes that can be utilized in wheat breeding. In this chapter, we focused on genomic comparisons, functional

comparative genomics, gene discovery, and marker developments in wheat using rice as model system. Furthermore,

we highlighted the genomic hotspots in wheat considering the adaptive and agronomic traits. Finally, we discussed how

genomic hotspots were identified, started from genomic sequences using different methods and tools. Identification of

genomic hotspots will significantly assist in wheat improvement programs.
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19.2 Genomic comparisons and gene discovery

The grass family includes cereals such as wheat, barley, maize, sorghum, millet, and rice that are the most important

crops for human and animal nutrition. Over the last decades, significant findings reported for cereal comparative geno-

mic and it pioneered the field of plant comparative genomics. First, the comparative studies were conducted at the

genetic map stage and shown a very strong collinearity of molecular markers and QTL along the chromosomes associ-

ated with agronomic characteristics, thus establishing evolutionary relationships between the cereal genomes. Rice

among cereals was the first to be selected for genome sequencing due to its small size and was used as a model crop

for such studies. The first comparative study of intragenomic relationships has shown several micro-colinearity disrupt-

ing rearrangements in the past 50�70 million years that is attributed to improvements in the development of large bac-

terial artificial chromosome (BAC) arrays and BAC sequences.

In the last few decades, mapping and defining clusters with identical gene orders in cereals has provided strong evidence

of gene order persistence across several megabases, referred to as macro-colinearity. The macro-colinearity across different

genomes is summarized and represented through the “Circle Diagram” and the analysis is termed synteny analysis (Gale &

Devos, 1998). The synteny map for wheat, rice, oats, maize, sorghum, sugarcane, foxtail millet, and finger millet was later

expanded to include 10 grass species using less than 30 rice linkage groups (Devos & Gale, 2000). The study of genomic

variations and evolutionary divergence across 60 million years are noteworthy and reflected as the variations in the size of

grass genomes such as wheat (17,000 Mb), rice (430 Mb), sorghum (770 Mb), and maize (2700 Mb) (Arumuganathan &

Earle, 1991; Gale & Devos, 1998; Keller & Feuillet, 2000). The initial work on colinearity of genetic markers was greatly

improved after the identification of colinearity pattern among multiple plant genomes for agronomically important trait-

linked genetic markers (Peng et al., 1990). Several recent cereal studies have reported incomplete micro-colinearity at the

sequence level (SanMiguel, Ramakrishna, Bennetzen, Busso, & Dubcovsky, 2002; Tikhonov, Bennetzen, & Avramova,

2000). Song, Llaca, and Messing (2002) described the comprehensive micro-colinearity as orthologous regions in maize, sor-

ghum, and the two rice subspecies. The study indicated that the gross macro-colinearity is preserved, but micro-colinearity is

incomplete among these cereals. Micro-rearrangement or small-scale genomic shifts, such as gene insertions, deletions, dupli-

cations, or inversions, are due to the deviations from gene colinearity (Bancroft, 2000). The synteny study revealed that 6

genes in rice, 15 genes in sorghum, and 13 genes in maize were present in the orthological region (Song et al., 2002). Gene

amplification triggered a local expansion of conserved genes in maize and sorghum but did not interrupt their order or orien-

tation. As predicted, the two shotgun-sequenced rice subspecies, japonica, and indica, which diverged over 1 million years

ago, have a high degree of gene conservation between them (Bennetzen, 2000). However, narrow regions of divergence can

be detected in these genomes upon careful examination (Song et al., 2002). These regions correspond to the areas of

increased differentiation among rice, sorghum, and maize, implying that it may be useful to align the two rice subspecies to

distinguish regions of cereal genomes vulnerable to rapid evolution. The discrepancies between the genes of sorghum and

maize emerged after the two species’ ancestral genomes diverged from each other 16.5 million years ago (Gaut & Doebley,

1997). The region where micro-colinearity is broken: a gene is “missing” from its orthologous position, however a matching

gene homolog may sometimes be found in a nonorthologous place (Xu, Lagudah, Moose, & Riechers, 2002). In wheat, two

copies of a gene are duplicated to give rise to two separate glutathione transferase genes. In the orthologous wheat site, the

best-conserved copy of the rice gene was not located. Alternatively, it was located on rice chromosome 10 at nonorthologous

location (Xu et al., 2002). Song et al. (2002) showed that gene amplification and gene translocation are associated function-

ally, and that these differential genome divergences were manifested during speciation. When orthologous areas of different

species are compared, a mosaic of conserved segments interspersed with nonconserved segments becomes evident (Song

et al., 2002). The information obtained through comparative genome studies in terms of the orthologous regions has been

used to select candidate genes associated with agronomic traits and to select molecular markers to increase the density of the

map at particular genetic locations, thus enabling map-based cloning.

19.2.1 Gene discovery and marker development

Comparative genomic studies have contributed to the development of genomic instruments that can be used to under-

stand genome structure and genetic architecture, tailoring the productive genetic studies and techniques for gene

isolation.

19.2.1.1 Colinearity-based gene cloning

In some cases, the retention of the gene sequence at orthologous locations reflects conservation of a common gene fea-

ture between the species. Early comparative genomics studies found a variety of genes at orthologous locations in cereal
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genomes responsible for developmental and domestication traits, such as shattering, plant height, vernalization, flowering

time, row number, and kernels per row (Bailey, West, & Black, 2015; Paterson et al., 1995). Researchers have isolated the

rice genes and their sequence information was used in positional cloning of the orthologous genes in other genomes

(Kilian, Chen, Han, Steffenson, & Kleinhofs, 1997). The isolation of the “green revolution” dwarfing genes Sd1 (Monna

et al., 2002), Rht-1 in wheat, D8 in maize is the example of application of colinearity in gene form and function using rice

sequence information for gene cloning in other cereals (Peng et al., 1990). The isolation of genes in barley, wheat, and

maize has also revealed examples of genes retained at orthologous locations in cereals. The examples are wheat vernaliza-

tion gene, Vrn1 (Yan et al., 2003), and the barley photoperiod PPD-H1 gene (Turner, Beales, Faure, Dunford, & Laurie,

2005) retained in orthologous region in rice. In addition, for similar phenotypes, gene conservation concept was proposed

based on the protection of genetic positions, for example, the mutation of maize bare stalk1 was mapped in a colinear

region with the rice lax panicle gene (Gallavotti et al., 2004). Candidate genes can be detected directly from the rice

sequence in regions where micro-colinearity is high, even if the target trait has not been mapped to the colinear location in

rice. This was successfully used to help the isolation of the Ror2 (Collins, Thordal-Christensen, Lipka, & Bau, 2003) gene

for powdery mildew resistance and the sw3 dwarfism gene in barley (Gottwald, Stein, Borner, Sasaki, & Graner, 2004).

Furthermore, similar roles did not appear to be linked with similar genes have shown in a study by Griffiths, Dunford,

Coupland, and Laurie (2003), comparing QTL for heading time in rice and barley. In rice, several flowering QTLs belong

to the CONSTANS gene family but none of the homologous CONSTANS genes are associated with any of the known QTL

for flowering time in barley. In general, the information of colinearity and conserved regions comprising characterized

genes and QTLs involved in developmental processes and selected during domestication in cereal genomes are good candi-

dates for direct gene isolation based on the comparative genomics. The genes of cereals do not show colinearity between

the genomes of cereals and evident from genes in grasses for disease resistance, where map-based cloning of rice genes has

not been benefited much from the grass genes knowledge. By comparative genetic analysis the nonsyntenic position of

these genes between cereals has already been established (Leister et al., 1998), and in several instances, attempts to use

colinearity with rice to isolate R genes have shown the limits of colinearity between cereal genomes. The first case that

questioned the use of rice colinearity for map-based cloning of R genes was working with the barley stem rust resistance

gene Rpg1. No orthologous genes were found throughout the rice genome; nonetheless, a certain degree of colinearity was

retained in the orthologous locus in rice (Kilian et al., 1997), and Rpg1 map-based cloning in barley has been achieved

(Brueggeman et al., 2002). In certain cases, the nonorthologous locations of homologous genes of wheat and rice suggest

major genome rearrangements, such as with the leaf rust Lr10 and the powdery mildew Pm3 fungal disease R genes

(Guyot, Yahiaoui, Feuillet, & Keller, 2004). Both these genes have been cloned using alternate methods. Chen et al. (2005)

have recently documented colinearity between a QTL that confers resistance to the blast fungus, Magnaporthe grisea, and

its homologous role on barley and rice. Regardless of whether rice possesses the gene at its orthologous position, it will be

necessary to saturate the gene’s target area with flanking regions in other cereal genomes. Rice expressed sequence tags

(ESTs), for example, were used to reduce the genetic interval around the R loci Rpg1 and Rph7 so that chromosome walk-

ing could proceed in barley (Brunner, Keller, & Feuillet, 2003). Using a map-based cloning technique, markers are used to

construct a genetic map for Bru1, which is then used to cross-pollinate with other grains to create resistance (Asnaghi

et al., 2004). There are some more examples of the use of EST rice-related markers to saturate genetic areas in other cer-

eals, and this approach is now widely used in laboratories engaged in the cloning of global cereal genes (Bortiri, Jackson,

& Hake, 2006; Collins et al., 2003; Yan et al., 2004). After rice, a new model species, Brachypodium, has recently been

proposed for temperate cereals such as wheat and barley (Draper et al., 2001; Vogel et al., 2006). Brachypodium has been

used successfully in conjunction with rice to isolate Ph1, one of the primary genes regulating pairing of chromosomes in

polyploid wheat (Griffiths et al., 2006). Different techniques, such as using closely related plants, or mapping particular

genes in species of interest, are applied under very low colinearity. Such an example is provided by the maize Ramosa1

gene that controls the architecture of the tassel. This gene is unique to the tribe of the Andropogoneae and lacks in rice

which was recently isolated using a transposon-tagging method (Vollbrecht, Springer, Goh, Buckler, & Martienssen, 2005).

The so-called subgenome map-based cloning in wheat (Stein, Feuillet, Wicker, Schlagenhauf, & Keller, 2000) was used to

isolate the Lr10 and Pm3 disease R genes, both of which are located in a noncolinear rice region on the short arm of chro-

mosome 1A (Guyot et al., 2004). Genetic mapping was conducted on hexaploid wheat using chromosome walking with

BACs from a diploid relative of wheat, Triticum monococcum (Yahiaoui, Srichumpa, Dudler, & Keller, 2004).

19.2.2 Gene annotation and marker development

Understanding gene structure and its role within an organism is dependent on the whole-genome sequencing. Since

genes are the most conserved features of genomes, reference-annotated genomes from other species can be used to
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predict the query genome. This is evident from comparison between distant genomes, such as rice and Arabidopsis

thaliana, whose ancestors diverged 200 million years ago, a significant number of genes have been retained (Salse,

Piegu, Cooke, & Delseny, 2002). These findings support the use of rice genome sequence as annotated reference for

characterization and annotation of cereal genomes. Further, aligning other cereal species ESTs with the rice genome

can better predict new rice genes. Generating a large collection of full-length cDNAs in rice can be used to confirm

intron/exon boundaries and can be used to train gene predictors. Creation of new markers for intron/exon boundaries is

also useful. Indeed, the polymerase chain reaction (PCR) frequency is higher in introns than in exons, and it is simpler

to design PCR primers that amplify intron sequences in organisms that chronically suffer from a lack of polymorphism.

This principle has recently been introduced in pearl millet by Bertin, Zhu, and Gale (2005) and reported association of

millet EST sequences with rice transcript sequences, to predict the position of introns which were then amplified fol-

lowed by the discovery of single-strand conformation polymorphism (SSCP). The technique of the SSCP-SNP marker

has considerable potential for the development of COS (Conserved Orthologous Set) markers for comparative cereal

mapping.

19.2.3 Functional comparative genomics in cereals

The development of genomic tools, in particular EST collections for several crops, has enabled the study of gene

expression based on the DNA chips. DNA chips are now available for major cereals such as rice, wheat, barley, and

maize. The comparisons of DNA chip experiments were initially difficult due to variations in sampling and conditions.

However, technical advancements in robotics and development of high-quality DNA, standardization, and normalization

process made the experimental comparisons possible (Brazma & Vilo, 2001), while some limitations remain, namely,

inadequate annotation, incomplete representation of the genome for most crops, different developmental kinetics and

phenotypic stages, variable experimental conditions. However, comparison of gene expression profile is possible in dif-

ferent cereals under similar physiological and biological circumstances. Several stress response transcriptomic experi-

ments using various types of DNA chips have been conducted in different cereals, but results were not compared

extensively. Comparative microarray experiments have led to the discovery of 65 candidate genes differentially

expressed in winter wheat under cold stress (Gulick et al., 2005). Expression profiling studies in cereals (http://barley-

base.org/; http://www.ricearray.org/; http://www.maizearray.org/) can accumulate and be processed in databases, allow-

ing the rapid creation of metaanalysis of expression trends throughout cereal organisms.

19.3 Genomic hotspots in wheat

19.3.1 Biofortification hotspots

After rice and maize, wheat is an essential crop utilized by people and dominates the cereal production globally. To

live a disease-free and productive life, a human being needs around 44 nutrients in sufficient quantity, which are

obtained from a well-balanced nutritious diet. In developing countries, people are majorly dependent on plant-driven

food, which is low in micronutrient content, resulting in around 2 billion population suffering from malnutrition glob-

ally (Sheikh, Vyas, & Dhaliwal, 2020). In this approximately 60% of world population suffers from iron while 30% suf-

fers from zinc deficiency (White & Broadley, 2009). Since these people cannot afford quality food rich in vitamins and

minerals, they suffer from micronutrient deficiencies, and make it the fifth major global challenge for human health as

listed in Copenhagen Consensus. Iron deficiency leads to anemia and disruption of proper functioning of immune and

endocrine system, with prime targets being children and pregnant women. Insufficient dietary zinc intake can be noticed

in the form of retarded growth, development, unexplainable weight loss, and depression. Since zinc does not have long-

term storage in body, its regular dietary intake is necessary. To counter these problems, global community has set

Sustainable Development Goals aiming to end the nutritional deficiencies in all of its form. Also, this zero hunger goal

aims to end the hunger with better food in terms of nutrition.

Biofortification refers to the strategies involved for increasing the levels of vitamins and minerals in edible parts of the

crops using various techniques of biotechnology, genomics and breeding. It is a long-term approach for removing micro-

nutrients deficiency. Since wheat is used as food by billions of people, increasing grain Fe and Zn would significantly

impact the health by easing such deficiencies (Ali & Borrill, 2020). Also, because iron and zinc are abundantly found

minerals in humans and are present in similar dietary sources, they are evaluated together. Biofortification has nonrecur-

rent expense with sustainable way to combat starvation-related issues. Augmentation of mineral concentration through the

use of foliar sprays is mostly done but this adds to the high expenditure of farmers. Utilization of breeding methods to
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achieve genetic variation is readily attainable through primary, secondary, and tertiary gene pool of the crop. However,

genetic transformation is better approach when genetic variation is absent or unattainable to exploit. Current achievements

in genomic biofortification gave an enormous potential to provide sustainable solutions for issues relating to hidden hun-

ger. These genomic strategies include genomic selections, marker-assisted selection, and QTL mapping.

Already available genetic variations among different species and landraces are used for the biofortification breeding

program for developing nutrient-enriched wheat germplasm along with higher yield potential and stress resistance.

Although grain such as Fe content (GFeC) and zinc content (GZnC) is an essential objective in breeding program, traits

like grain yield and grain protein content (GPC) should not be traded off because the farmer income is completely

dependent on the yield. In the view of major climatic changes prevailing and being predicted in the future, how the

yield and GPC would be influenced by these changes would be an utmost priority. In consideration to these changes,

improving yield potential and developing stress-tolerant wheat is a paramount task. Utilization of next-generation

sequencing, marker-assisted selection with advanced molecular techniques has been a promising approach to attain

nutrient-rich varieties.

In the year 1997, mapping of first QTL for iron and zinc in wheat was done, on chromosome 6BS in the popula-

tion produced from cross between durum wheat and wild emmer (Joppa, Du, Hart, & Hareland, 1997). This QTL,

Gpc-B1, imparted 18% and 12% increment in Fe and Zn, respectively. The gene underlying the QTL was found to

be nascent polypeptide-associated complex (NAC) transcription factor-B1 (Distelfeld et al., 2007; Uauy,

Distelfeld, Fahima, Blechl, & Dubcovsky, 2006). QTLs for resistance to abiotic and biotic stresses have been posi-

tively influenced by the development of powerful technologies for genome sequencing and genome-wide DNA

markers. Identifying necessary QTLs, with specific introgression into varieties is a faster approach for develop-

ment of abiotic or biotic stress-resistant versions of mostly used susceptible varieties. Till date, four zinc bioforti-

fied varieties are released, Zinc Shakti, which is developed through transfer of genes from Aegilops squarrosa into

PBW343, Zincol-2016, developed by transfer of Triticum spelta genes into NARC2011, and HPBW-010 and

WB020 developed through transfer of genes from A. squarrosa and Triticum dicoccon (Singh et al., 2017).

Identification of QTLs for Fe and Zn has been done in various works (Genc et al., 2009; Shi et al., 2008; Tiwari

et al., 2009, 2016; Yan et al., 2018). However, linkage drag of low yield and harvest index is the major challenge

in commercial use. Velu et al. (2018) recognized QTL on 2 and 7 group chromosomes for a population of 330

spring common wheat varieties. Alomari et al. (2018) identified markers related to higher zinc concentration

across majority of chromosomes but marker�trait associations (MTAs) were most significant on chromosomes 5A

and 3B. Genes involved in Zn transportation and for basic leucine zipper (bZIP) and mitogen-activated protein

kinase (MAPK) were also present in these genomic areas. Various studies have been conducted in wheat to iden-

tify QTL for micronutrients as well as macronutrients like Ca (Alomari, Eggert, Von Wirén, Pillen, & Röder,

2017; Crespo-Herrera, Velu, & Singh, 2016; Morgounov et al., 2007; Tiwari et al., 2009; Xu et al., 2012b).

Krishnappa et al. (2017) investigated genomic region each on 5A (Xgwm126-Xgwm595) and 7A (Xbarc49-

Xwmc525) containing QTL for both Fe and Zn. Peleg et al. (2009) identified 6 QTLs on 2A, 2B, 3A, 4B, 5A, 6A,

6B, 7A, and 7B chromosomes for micronutrients (zinc, iron, copper, and manganese) and macronutrients (calcium,

magnesium, potassium, phosphorous, and sulfur) in durum wheat x emmer wheat recombinant inbred lines popula-

tion. Genc et al. (2009) recognized four QTLs for GZnC on chromosomes 3D, 4B, 6B, and 7A in a doubled haploid

wheat population. Similar work has been done for Fe, Zn (Hao, Velu, Peña, Singh, & Singh, 2014; Srinivasa et al.,

2014; Xu et al., 2012b). However, low resolution of QTL obtained using biparental populations and dependent on

the genomic variation in two parents is used for deriving the mapping population. Sheikh et al. (2018) identified

the metal homeostasis genes located on chromosomes of the homologous groups 2 and 7 in wheat using intron-

targeted amplified polymorphism markers. These genes control root acquisition, accumulation, and movement of

micronutrients in the crops.

Uptake and translocation of zinc is affected by activity of transporter proteins which are present in plasma mem-

brane of root cells. These transporter families include zinc-regulated and iron-regulated transporter-like proteins (ZIP),

cation diffusion facilitator proteins, natural resistance-associated macrophage proteins, yellow stripe like, adenosine tri-

phosphate (ATP)-binding cassette transporters, and heavy-metal ATPases (Xia et al., 2020). Elevated expression of zinc

transporter TdZIP1 was found in wild emmer wheat under zinc deficiency (Durmaz et al., 2011). Evens, Buchner,

Williams, and Hawkesford (2017) revealed that T. aestivum consists of various group FbZIP transcription factors which

alter the expression of ZIPs through binding to Zn-deficiency response elements in their promoter. Exploring the

expression pattern of such genes would expand our knowledge about complex homeotic connections. Also, the concen-

trations of Fe and Zn are regulated through multiple genes, and their presence in the grain becomes a complex poly-

genic phenomenon (Kumar et al., 2018).
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GPC being an essential trait contributing to the nutritional value and quality of end products of wheat makes it

economically very important. Among all GPC QTLs studied, Gpc-B1 is the most significant, which after cloning

studies confirmed the improvement of protein, Fe, and Zn concentrations by 38%, 18%, and 12%, respectively

(Distelfeld et al., 2007; Uauy et al., 2006). Introgressing GPC-B1 allele in the background of elite lines has led to

various beneficial varieties in several countries (Tabbita, Pearce, & Barneix, 2017). Efforts for enhancement in

GPC through conventional breeding do not provide the desired results because of high impact of environmental

factors on GPC, negative correlation between grain yield and GPC, the quantitative genetic control of GPC, and

the low heritability (Balyan et al., 2013). The use of the effective genetic tools and statistical methods has led to

identification and mapping of QTLs involved in epistatic interaction (Conti et al., 2011; Kulwal et al., 2005; Xu

et al., 2012b; Zhao et al., 2010).

In cereals, phosphorus is stored in the form of phytic acid (PA) which accounts for nearly 70%�80% of total

phosphorus within grain. PAs have a characteristic to form insoluble complexes with multicharge metal ions and

consuming food with high PA causes problem in absorbing minerals present in the diet. Therefore breeding focus

is directed toward reducing the PA content, to boost bioavailability of minerals. The PA accounts for an antinutri-

tional property, thus breeders aimed at finding hotspots for lower PA and higher phytase levels. ICAR-IIWBR

Karnal evaluated 400 genotypes for phytase in wheat grains and reported Indian varieties with 3.4-fold variation,

while the synthetic hexaploid wheat with 5.9-fold variation in phytase level (Ram, Verma, & Sharma, 2010). In a

similar study, variability in PA levels was also found, which involved 257 wheat genotypes, including 168 syn-

thetic hexaploids and 89 wheat cultivars (Vashishth, Ram, & Beniwal, 2017). Similarly, biofortification of wheat

for anthocyanin is also a center of attention. The presence of anthocyanin greatly benefits the consumer because of

its antioxidant properties and role in prevention of cardiovascular problems, cancer, obesity, and diabetes. Garg

et al. (2016) developed such colored wheat lines, that is, black, purple, and blue, having high concentration of phe-

nolics with considerable yield potential.

All such traits are influenced by numerous genetic as well as environmental factors. The use of genome-wide associ-

ation (GWA) mapping helps in identifying associations between genotypoes and phenotypes by utilizing unrelated indi-

viduals which have been phenotyped and genotyped simultaneously (Hirschhorn & Daly, 2005). Also, genome-wide

association study (GWAS) led to improve QTL resolution by considering more representative and varied gene pool. In

fact, this study permits the identification of nonrandom associations between genotype and phenotype in group of indi-

viduals with detection of genetic variants associated with compound agricultural traits. Work involving GWAS for Fe,

Zn, carotenoid content, and GPC is also available in wheat (Gahlaut, Jaiswal, Singh, Balyan, & Gupta, 2019; Kumar

et al., 2018). Bhatta, Morgounov, Belamkar, Yorgancılar, and Baenziger (2018) conducted GWAS for 10 grain minerals

using synthetic hexaploid wheat, which consisted of 3 MTAs for Fe concentration on 1A and 3A while 13 MTAs for

GZn concentration on 8 different chromosomes, 1A, 2A, 3A, 3B, 4A, 4B, 5A, and 6B. During GWAS, epistasis is usu-

ally ignored; however, in some studies, epistasis is studied (Jaiswal et al., 2016; Sehgal et al., 2017). Recently, multilo-

cus and multitrait mixed model approaches are also being used to overcome this restrain. Also, when desired mutants

are unavailable, gene editing through clustered regularly interspaced short palindromic repeats (CRISPR)�CRISPR

associated protein 9 (Cas9) technology is efficiently used for the enhancement of yield with resistance toward abiotic

and biotic stresses. CRISPR�Cas9 has been utilized in wheat for gene editing of TaDEP1, TaGW2, and TaGARS7

(Liang et al., 2017; Wang et al., 2018; Zhang et al., 2018).

19.3.2 Genomic hotspots for biotic stress resistance

Among various wheat diseases, leaf rust, stem rust, powdery mildew, yellow rust, and spot blotch are the most harmful.

It is estimated that globally wheat rust pathogens cause economic loss of US$ 4.3�5.0 billion (Figueroa, Hammond-

Kosack, & Solomon, 2018). Rust pathogens severely affect the wheat yield and grain quality worldwide. The new races

of rust pathogen keep evolving and spreading across the wheat-growing regions; therefore identification and use of the

new sources of resistance genes are essential. Further, the genetic control is the most effective, economical, and

environmentally safe method to minimize yield losses and controlling the disease. It is requisite to identify novel genes

and pyramiding genes for different types of resistance to achieve high levels of durable resistance for sustainable con-

trol of the disease. There are three rust diseases of wheat, stem, leaf rust, and stripe rust all caused by members of the

Basidiomycete family, genus Puccinia, named P. graminis f. sp. tritici (Pgt), P. triticina (Pt), P. striiformis f. sp. tritici

(Pst), respectively (McIntosh, Wellings, & Park, 1995).
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Leaf rust caused by Puccinia triticina majorly infects the foliar tissues, with circular to oval reddish-brown urediniospores

or pustules produced on the infected leaves of wheat, favored by temperatures of 60�F�70�F. Genetic studies of leaf rust

(Lr) resistance in wheat have been done by wheat researchers throughout the world. Mains, Leighty, and Johnston (1926)

initially identified that the wheat cultivars Webster and Malakof had a gene which conditioned leaf rust resistance that was

later designated as Lr1 and Lr2, respectively. Sears (1956) used ionizing radiation to induce chromosome breakage and trans-

ferring a gene conditioning resistance to leaf rust from Aegilops umbellulata to wheat. Leaf rust (Lr) resistance genes named

Lr1 to Lr68 have been characterized in wheat species with Lr1, Lr3, Lr10, and Lr20 being most frequently used in wheat cul-

tivars globally (Dakouri, McCallum, Radovanovic, & Cloutier, 2013). So far, 78 Lr genes have been cataloged in wheat

(Gao et al., 2019). Some Lr resistance genes that have been cloned and sequenced include Lr1 (Cloutier et al., 2007), Lr10

(Feuillet et al., 2003), Lr21 (Huang et al., 2003), and Lr34 (Krattinger et al., 2009). The use of Lr34 gene is being done in

wheat breeding for more than a century. Due to its durable resistivity and broad-spectrum effectiveness, Lr34 is one of the

most common and frequently studied disease resistance genes in wheat breeding (Krattinger et al., 2019).

For breeding of disease-resistant wheat, two classes of genes are utilized. First class is referred to as R (resistance)

genes, which are pathogen race specific in their action and are effective at all the stages of plant growth, with mostly

encoding immune receptors of nucleotide-binding site leucine-rich repeat (NLR) class. These immune receptors recognize

pathogen effector proteins which are delivered into the host cell during infection. Another class of genes comprises

nonrace-specific or adult plant resistance (APR) genes, imparting resistivity only to the adult plant. In contrast to R genes,

since the resistance imparted by APR genes occurs at later stage of plant growth, this leads to substantial disease develop-

ment and as such resistance provided is partial. APR genes have the capability to provide resistance against all the isolates

of a pathogen species and sometimes even have functionality against multiple pathogens. Till date, wheat genes conferring

resistance to leaf (Lr1, Lr10, and Lr21), yellow (Yr10), and stem (Sr22, Sr33, Sr35, Sr45 and Sr50) rust have been cloned,

all of which encodes for NLR receptor proteins (Periyannan, Milne, Figueroa, Lagudah, & Dodds, 2017). However, in

contrast to R genes, some APR genes have shown high durability, like the best known APR gene in wheat is the Sr2,

which is functional against many races of stem rust pathogen for nearly 100 years (Ellis, Lagudah, Spielmeyer, & Dodds,

2014). Sr2 is the first APR gene for stem rust which is genetically defined in rust atlas (McIntosh et al., 1995).

Recently many APR genes have been cloned, which have given an insight into the mechanism involved in nonrace-

specific resistance. For example, stripe rust resistance gene Yr36, encoding chloroplast-localized protein is suggested to reduce

the detoxification of reactive oxygen species through phosphorylation of thylakoid-associated ascorbate peroxidase, which

results in the increased defense response against the pathogen (Gou et al., 2015). Some other genes which were identified for

conferring durable APR against multiple fungal diseases include very important genes, namely, Lr34 (Yr18/Sr57/Pm38), Lr46

(Yr29/Sr58/Pm39), and Lr67 (Yr46/Sr55/Pm46). Expression of these genes results in partial resistivity against all the races of

pathogens causing leaf, strip, stem rust, and powdery mildew. Lr34 was initially reported as the modifier of APR in the

cultivar Frontana. Lr34 and Sr2 have imparted partial resistance over many years in large areas with high and extended

disease pressure, hence proving their durability (Ellis et al., 2014). The Lr67 resistance allele encodes for a protein which

has lost its hexose transport functionality, leading to disturbances in the sugar balance of intracellular and extracellular

spaces of the leaf. This eventually reduces the accessibility of nutrients inside the host which is provided to the biotrophic

fungi (Moore et al., 2015). None of the APR genes alone provide sufficient level of protection under high pathogen

pressure and more often their expression can be too slow in the field for adequate yield protection.

Another wheat disease known as spot blotch (SB), caused by Cochliobolus sativus (anamorph: Bipolaris sorokini-

ana), is a devastating disease occurring in warm and humid regions like Africa, Latin America, Eastern India, China,

and Southeast Asia. However, it has also been infecting the wheat growing in the Northwestern Russia indicating the

occurrence of fungal virulence even in the European environment. The infection becomes intense during the grain fill-

ing stage, leading to remarkably high yield loss and deteriorated grain quality. The pathogen generates symptom on

leaves, sheath, and stem. However, under extreme cases, it infects the spikelets, which results in shriveled grains with

black coloration at the embryo end of kernel (Kumar, Joshi, Kumar, Chand, & Röder, 2010). This fungi forms thick-

walled conidia for surviving through harsh conditions and inoculum overwinters on soil, wheat seeds, weeds, and rice

stubbles. Healthy host tissues are punctured by the fungi, with conidiophores germinating within 4 h of infection and

hyphae from preinfected cells entering the nearby intact host cells in 24 h. The detection of SB becomes visible in the

form of dark brown lesions on the leaves (Jamil, Ali, Ali, & Mujeeb-Kazi, 2020). Mujeeb-Kazi et al. (2007) in their

study suggested A. tauschii as a resistant source against SB pathogen. They developed an intergeneric cross product

“Mayoor,” having germplasm which had two sources of resistance pyramided from A. tauschii and Thinopyrum curvifo-

lium, which imparted considerable resistance against C. sativus. Lillemo, Joshi, Prasad, Chand, and Singh (2013)
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mapped SB resistance gene Sb1, which was colocalized with leaf rust (LR) resistance locus Lr34 on chromosome 7DS.

Until now, three formally designated spot blotch (Sb) resistance genes (Sb1�Sb3) have been reported (Kumar et al.,

2015; Lillemo et al., 2013; Lu et al., 2016). Recently, Zhang et al. (2020) identified and mapped a Sb gene, assigned as

Sb4, against this pathogen in wheat.

A specific gene referred to as ToxA encoding for a host-selective toxin (HST) functions as a necrotrophic effector

with often being responsible for the virulence of the pathogen. While the other known as Tsn1 is a sensitivity gene pres-

ent in the host plant, the presence of which helps in causing ToxA-positive pathogenicity resulting in spot blotch of

wheat. Hence, wheat plants with the absence of Tsn1 are generally resistant to spot blotch. The ToxA gene was first iso-

lated from P. tritici-repentis (Balance, Lamari, Kowatsch, & Bernier, 1998; Ciuffetti, Tuori, & Gaventa, 1997) and was

later identified in B. sorokiniana (McDonald, Ahren, Simpfendorfer, Milgate, & Solomon, 2018). Recently, Navathe

et al. (2020) investigated the interaction of Tsn1-ToxA in wheat and indicated that the absence of Tsn1 facilitated the

resistance against SB of wheat. Hence, selection of wheat genotypes having the absence of Tsn1 allele would improve

the resistance to SB.

Stem rust (SR) disease caused by Puccinia graminis f. sp. tritici (Pgt) is one of the major diseases of wheat with

wide distribution around the world. Visible reddish-brown oblong pustules with frayed margins on stems and leaves are

observed on susceptible plants. Usually found in the regions having warm and moist conditions, this stem rust epidemic

has occurred throughout major wheat-producing areas. McFadden (1930) during the devastating 1919 US stem rust epi-

demic developed a wheat variety known as Hope. This was released in the year 1926 and was derived from a cross

between the SR susceptible North American cultivar Marquis and the highly SR-resistant tetraploid emmer wheat

Yaroslav. Hope was identified for its quality and high-level SR resistance in field conditions. He, however, did not

identify the Sr2 gene specifically but selected a small combination of genes for stem rust resistance. Out of many stem

rust (Sr) resistance genes, Sr31 is the most extensively employed race-specific gene against Pgt. But eventually the evo-

lution of pathogen to Sr31 has led to the considerable use of other genes such as Sr2, Sr25, Sr23, Sr33, Sr35, Sr45, and

Sr50 (Singh, Govindan, & Andersson, 2017). Alien genes such as Sr32 and Sr39, both derived from the short arm of

chromosome 2 from different accessions of Aegilops speltoides, also serve resistance against many tested strains of the

stem rust pathogen.

Stripe or yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) is a destructive disease of wheat which

has been reported in more than 60 countries (Chen, 2005). Presently, 88% of the wheat production in the world is sus-

ceptible to the stripe rust which leads to global loss of over 5 million tons of wheat which have an estimated market

value of USD 1 billion dollars annually (Schwessinger, 2017). Stripe rust produces yellow linear pustules which run

parallel with the leaf veins and the temperature of 50�F�60�F is favorable for the pathogen. To date, more than 70

stripe rust resistance genes, designated as Yr have been reported in wheat (Chen, 2005; Cheng & Chen, 2010). Initial

approach to transfer small, nonhomologous alien segments for resistance was achieved by Riley (Riley, Chapman, &

Johnson, 1968a,b). Riley and coworkers used a high pairing line of A. speltoides for induction of homoeologous recom-

bination to transfer Yr8, a gene responsible for YR resistance, from Aegilops comosa ssp. comosa to wheat. Singh,

Nelson, and Sorrells (2000) in their work identified and mapped a new gene from A. tauschii, designated as Yr28, which

was involved in the seedling and field resistance to the predominant race of YR in the Mexican highlands. Recently, Li,

Dundas, et al. (2020) observed a new yellow rust resistance gene Yr83 on the rye chromosome in 6R in wheat. This

gene showed a high level of seedling resistance to Australian pathotypes of the Pst pathogen and an even higher resis-

tance to the Chinese Pst pathotypes in the field.

The Powdery mildew (PM) disease caused by biotrophic fungi Erysiphe graminis f. sp. tritici is a pathogen infecting

many plant species, including important crops such as wheat, barley as well as the model plant A. thaliana. Since the

suitable habitat conditions of stripe rust and powdery mildew are similar, there is a high probability of both diseases

occurring in field simultaneously. Miller, Reader, Ainsworth, and Summers (1998) transferred gene Pm12, conferring

resistance to powdery mildew from A. speltoides to wheat chromosome 6A; however, it merely contributed to cultivar

improvement. Wild relatives of wheat constitute of huge pool of genes imparting desirable traits which can be exploited

for wheat improvement. For instance, many wild relatives, including Dasypyrum villosum, Thinopyrum intermedium,

rye, and various Aegilops species, have shown effective resistance or immunity against powdery mildew (Chen, Shi,

Shang, Leath, & Murphy, 1997; Friebe, Heun, Tuleen, Zeller, & Gill, 1994; Jia et al., 1996; Miranda, Murphy,

Marshall, & Leath, 2006; Shubing & Honggang, 2005). Various PM resistance genes, including Pm12, Pm13, Pm16,

Pm20, Pm4b and Pm21, have been utilized from A. speltoides, Aegilops longissima, Triticum dicoccoides, Secale,

Aegilops Ventricosa, and Heterotheca villosa, respectively (Zhou et al., 2005). Pm12, Pm21, and Pm37 impart high

resistance against powdery mildew, with Pm21 derived from the Triticeae grass D. villosum conferring high immunity

to various pathogen races (He et al., 2018).
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Till date, identifications of 88 formally designated Pm genes or alleles have been done at 66 loci (Pm1�Pm66)

(Li, Dong, et al., 2020; Zhu et al., 2020). Additionally, more than 30 temporarily designated Pm genes are

reported and assigned to their corresponding wheat chromosomes (Li, Shi, et al., 2020). There are two types of

PM resistance reported in wheat, the one mediated through the use of resistance genes while the other resistance

mediated through the mutation negative regulators of PM resistance, like Mildew Resistance Locus (MLO) and

ENHANCED DISEASE RESISTANCE 1 (EDR1) (Zou, Wang, Li, Kong, & Tang, 2018). Many PM resistance genes

identified and mapped in wheat and among them Pm2, Pm3, Pm8, and Pm21 had been cloned (Cao et al., 2011;

Hurni et al., 2013; Sánchez-Martı́n et al., 2016; Yahiaoui et al., 2004). The best known and most significantly uti-

lized gene is Pm8 which has played an important role for protecting the wheat yield loss from PM infection. This

gene was transferred from the “Petkus” rye chromosome into hexaploid wheat in the early 1930s. In addition to

powdery mildew resistance, the rye chromosome arm 1RS offers resistance to other diseases such as strip rust.

Recently, Tang, Hu, Zhong, and Luo (2018) investigated the potential role of Pm40 in Chinese wheat breeding

programs in the post�Pm21 era. Since, new pathogen isolates virulent to Pm21 have been identified in some

wheat fields, as such the use of Pm40 is believed to offer a durable and broad spectrum of resistance to the newly

evolved pathogenicity.

19.3.3 Genomic hotspots for drought stress tolerance

Balancing plant yield and growth in a drought-stressed area is the prime objective for wheat breeding programs.

Controlled by several genes, drought tolerance is a quantitative trait with low heritability. The abiotic stress triggers

expression of various genes, with effect on the metabolism of different major enzymes, hormones, carbohydrates, and

transcription factors. The remarkable ones comprise abscisic acid (ABA), tryptophan, raffinose, late embryogenesis

abundant (LEA) proteins, superoxide dismutase, and glycine betaine (Hameed, Bibi, Akhter, & Iqbal, 2011; Nio,

Cawthray, Wade, & Colmer, 2011; Sivamani et al., 2000). These play major role in the events for avoiding dehydration

like adjusting the osmotic balance, antioxidant effect, and functioning as scavengers for reactive oxygen species.

Implementation of information acquired on signaling and metabolic processes in which these biomolecules are involved

has led to improvement in drought-tolerant crop species through transgenic approach. Sivamani et al. (2000) introduced

the ABA-responsive barley gene HVA1, a member of group three LEA protein genes into spring wheat through the bio-

listic method. Results indicated improvement in growth characteristics in these wheat lines with enhanced water use

capacity, root weight, and biomass accumulation in response to deficit soil water. Vendruscolo et al. (2007) in their

work studied role of proline-inducing gene (P5CS) in boosting drought tolerance of wheat transgenic lines, which was

predominantly through protective mechanism against the oxidative stress. Accumulation of proline indicated positive

approach in maintaining the productivity of plants under such stress situations. In their investigation, used in another

study, mtlD gene from Escherichia coli was used for the biosynthesis of mannitol to improve wheat tolerance against

salinity and water stress. Results of the study concluded increased growth of calli-accumulating mannitol and mature

leaves because of stress-protective character of mannitol.

Around 1200 QTLs have already been reported for different drought-responsive traits in wheat (Gupta, Balyan,

Sharma, & Kumar, 2020; Gupta, Rico-Medina, & Caño-Delgado, 2020; Kumar et al., 2020). Root system architec-

ture (RSA) is an essential target for breeding wheat with drought tolerance (Lopes & Reynolds, 2010). Roots with

greater surface area impart the plant with potential to take up more water and nutrients. Process of soil�root inter-

action is also somewhat explained by the root angle trait (Chen et al., 2017; Chen, Li, He, & Ding, 2018). Nodal

and seminal roots having narrower root angles are likely to grow deeper in the soil in comparison to the wider

root angle (Manschadi, Hammer, Christopher, & Devoil, 2008; Richard et al., 2015; Wasson et al., 2012).

Moreover, denser lateral roots with narrow-angle are regarded well because these roots are more accessed to soil

moisture in deeper soil. Root angle is highly heritable and therefore it is a major trait for consideration during

wheat breeding (El Hassouni et al., 2018). Sharma et al. (2011) found major QTL linked to Pm8 in 1RS for

enhancing root biomass for better water use efficiency and uptake of nutrients, thus providing drought tolerance to

the growing crop.

Genomic regions related to various physiological traits have been studied like chromosome 2D and 2B for flag

leaf senescence (Verma et al., 2004); chromosome 6A for seedling vigor (Spielmeyer et al., 2007); 1B, 2B, 3B,

4A, and 5A for canopy temperature (Pinto et al., 2010); and 6A and 4B for coleoptile length (Rebetzke et al.,

2001). Merchuk-Ovnat et al. (2016) demonstrated enhanced drought tolerance by introgressing QTLs on 1B and

2B of Triticum turgidum into T. aestivum. Zandipour, Hervan, Azadi, Khosroshahli, and Etminan (2020) identified
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QTL on chromosome 1B for nine important traits under terminal drought stress conditions in wheat. Maulana,

Huang, Anderson, and Ma (2020) studied significant QTLs associated with seedling drought tolerance�related

traits on 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5A, 5B, 6B, and 7B. Out of these, 12 stable QTLs responding to

drought stress for various traits were identified. Tura et al. (2020) worked on analyzing and mapping of QTLs for

yield-related traits under drought conditions on chromosome 4A, 5B, and 7A. Later, Gautam et al. (2020) effi-

ciently introgressed a yield QTL (Qyld.csdh.7AL) into four elite Indian wheat cultivars for developing drought-

tolerant genotypes.

19.3.4 Genomic hotspots for heat tolerance in wheat

Heat stress reduces the yield of wheat by 33.6%, attributed to reduced chlorophyll content, respiration rate, photo-

synthesis, and dehydration lead seedling death (Cossani & Reynolds, 2012). The significant effect of heat on the

plant is reduced photosynthesis because of early leaf senescence and decrease in leaf area expansion which ulti-

mately leads to reduced grain production (Mathur, Agrawal, & Jajoo, 2014). In tissues involved in photosynthesis,

photosystem-II is largely responsible for heat stress where increased fluidity of thylakoid membrane and electron

transportation in response to heat stress is observed (Prasad, Pisipati, Ristic, Bukovnik, & Fritz, 2008). Stress

caused due to increased temperature at the grain filling stage leads to reduction in yield and quality of wheat

(Maulana et al., 2020). This increased temperature during the time of grain filling is known as terminal heat

stress.

Certain parameters for indicating heat tolerance include canopy temperature, normalized difference vegetation

index, and chlorophyll content (Hazratkulova et al., 2012). Moreover, stay green trait has been effectively used

for evaluating heat tolerance. This trait permits the plant in retaining the photosynthetic ability till advanced

stages of the plant under heat stress, enhancing the grain filling period and ensuring yield stability (Kumari,

Pudake, Singh, & Joshi, 2013). Ground cover is an indication of genotype efficiency in producing canopy area and

biomass which can be estimated through digital imaging and canopy reflectance indices (Mullan & Reynolds,

2010). Additionally, canopy temperature depression and cell membrane stability are useful traits in identifying

donors at an early stage (Reynolds, 1997).

Sarieva, Kenzhebaeva, and Lichtenthaler (2010) observed that leaf rolling is helpful in stabilizing the organization of

PSII and PSI under short-lived heat stress. The extent of leaf rolling helps in determining the sustenance of optimal pho-

tosynthetic activity in leaves. As such leaf rolling provides high adaptability facilitating water metabolism in flag leaves

efficiently. Using molecular markers with other physiological characteristics helps in identifying elite germplasms, new

alleles and making better improvements for heat tolerance. Sharma et al. (2014) found four highly heat-tolerant lines

among 24 synthetic wheat lines. In general, T. monococcum and T. dicoccoides are better options as germplasm to

increase heat tolerance in bread wheat. Moreover, it was also found in A. longissima, Aegilops searsii, and A. speltoides

(Choudhary, Yadav, & Saran, 2020). A. speltoides is a prime genetic resource for the improvement of this trait in wheat.

Awlachew, Singh, Kaur, Bains, and Chhuneja (2016) crossed A. speltoides PAU 3809 with Triticum durum cv.

PDW274 to develop backcross introgression lines. Genotyping using SSR markers and mapping the QTL controlling

the heat-tolerant trait was done for these lines. Also, phenotyping was done for acquired thermo-tolerance, chlorophyll

content, canopy temperature, stay green, and cell membrane thermo-stability. QTLs for different heat-tolerant traits

were identified on 2B, 3A, 3B, 5A, 5B, and 7A. Yang, Sears, Gill, and Paulsen (2002) identified two markers,

Xgwm293 and Xgwm11 related to grain filling for F2 population with findings demonstrating that heat tolerance of

common wheat is controlled by multiple genes. Furthermore, QTL for canopy temperature during heat stress has been

investigated to coincide with QTL for yield and heat susceptibility index (Mason, Mondal, Beecher, & Hays, 2011).

Using metaanalysis, important QTLs related to heat tolerance were found on 1B, 2B, 2D, 4A, 4D, 5A, and 7A

(Acuña-Galindo, Mason, Subramanian, & Hays, 2015). The Langdon chromosome substitution lines were initially used

for mapping genes involved in heat tolerance in the year 1991 and were found on chromosomes 3A, 3B, 4A, 4B, and

6A (Ni et al., 2018; Sun & Quick, 1991). Later, Ruqiang, Qixin, and Shuzhen (1996) in their study concluded that chro-

mosomes 3A, 3B, and 3D were related to heat tolerance in cultivar Hope. Also, heat-tolerant sources like NIAW 845,

WH 730, RAJ 4037, HD 2808, and NIAW 34 have been used in breeding wheat. Moreover, RAJ 3765, HW 2045, Lok

54, RAJ 4250, WH 1021, HD 3095, and GW 432 were identified for having least heat-sensitivity index under

Multilocation Heat Tolerance Trial. As such these genotypes have potential for improving wheat against heat stress

(Mishra et al., 2014).
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19.4 Genomic sequences to genomic hotspot

Wheat-genome sequences were collected, indexed, and organized in the International Wheat Genome Sequencing

Consortium (IWGSC) data repositories hosted by URGI (Unité de Recherche Génomique Info/research unit in genomics

and bioinformatics), INRA (Institut National de la Recherche Agronomique/French National Institute for Agricultural

Research) to ensure FAIR principle, that is, data should be Findable, Accessible, Interoperable, and Reusable. The basic

pipeline for genome sequence analysis involves primary, secondary, and tertiary analyses. The primary analysis

includes analysis of hardware-generated data and machine stats. This covers production of sequence reads and quality

scores. The secondary analysis includes quality analysis (QA) filtering on raw reads, alignment/assembly of reads, fol-

lowed by QA and variant calling on aligned reads. The tertiary analysis is mostly objective driven, includes multisam-

ple processing, QA/QC of variant calls, annotation and filtering of variants, data aggregation, association analysis,

population structure analysis, genome browser driven exploratory analysis (Malviya, Yadav, & Yadav, 2019).

Furthermore, to make sense out of the genome sequences, different analyses are performed such as sequence similarities

and homologies, identification of sequence features such as gene structure, distribution, introns�exons, and regulation

of gene expression. Additionally, sequence variations such as insertion, deletions, and single-nucleotide polymorphism

(SNP) are key for gene�trait association. The availability of wheat reference genome provides comprehensive informa-

tion about genes and genetic factors on different chromosomes. However, contribution of these factors to adaptive traits

(heat and drought tolerance, rusts/yellow-spot/powdery mildew resistance) and agronomic traits (grain quality and

yield) has been governed through different approaches. The genomic regions with genetic factors contributing to the

adaptive and agronomic traits are considered to be genomic hotspots where the small regions of genome controlling the

major adaptive traits. The exploration and inclusion of these genomic hotspots is the major objective of modern next-

generation breeding. The SNP array and diversity array technology (DArT) platforms are the potential tools with high

density, high-throughput, and low-cost marker system used for marking the genomic hotspots (Gupta, Langridge, &

Mir, 2010; Rasheed, Mujeeb-Kazi, Ogbonnaya, He, & Rajaram, 2018). The SNP offers locus specificity, codominance,

high-throughput, and comparatively low genotyping errors (Rafalski, 2002). However, limitation of lack of flexibility

and ascertainment bias are reported for SNP array-based genotyping (Albrechtsen, Nielsen, & Nielsen, 2010; Thomson,

2014). SNP markers are fixed on the array and used in a defined way; however, if additional SNPs are required, the

array need to be redesigned, which can be expensive.

The IWGSC reference wheat-genome sequenced data provide wheat breeders with the ultimate choice and precise

outcomes, which will continue to make a huge impact on all aspects of wheat improvement in years to come (IWGSC,

2018). However, the raw sequence information to hotspots in wheat required object-oriented customized tools. These

involved mainly sequence alignment and assembly tools (Table 19.1). The alignment-based tools such as BLAST,

FASTA, multiple sequence aligners (e.g., ClustalW, Muscle, MAFFT), sequences profile search programs (e.g., PSI-

BLAST, HMMER/Pfam), and whole-genome aligners (e.g., BLASTZ, TBA) are dependent on colinearity. They rely on

dynamic programming, requiring huge computational memory and time costing money and labor. Further, these

approaches are not effective under the genetic shuffling and recombination events. Also, these approaches are based on

assumptions about evolution of the sequences, including various parameters such as substitution matrices, gap penalties,

and threshold values (Misale, Ferrero, Torquati, & Aldinucci, 2014).

Alignment-free methods are developed to overcome these challenges. First, alignment-free method is based on the

frequencies of subsequences of a defined length, also known as word-based methods. Second, it evaluates the informa-

tional content between full-length sequences and known as information theory�based methods. Furthermore, methods

were developed based on the length of matching words (common, longest common, or the minimal absent words

between sequences), chaos game representation, iterated maps, as well as graphical representation of DNA sequences,

which capture the essence of the base composition and distribution of the sequences in a quantitative manner. All these

methods are well supported mathematically, statistically and calculate pairwise measures of dissimilarity or distance

between sequences. Further, these measures can be directly used in standard tree-building tools such as Phylip and

MEGA (Zielezinski et al., 2017).

In frequency-based methods, similar sequences share similar words/k-mers (subsequences of length k), and

mathematical operations with the words’ occurrences give a good relative measure of sequence dissimilarity. As a

rule of thumb, smaller k-mers should be used when sequences are not related whereas longer k-mers can be used

for very similar sequences. These methods are operated on vectors, thus allow the use of more than 40 functions

other than the Euclidean distance such as Pearson correlation coefficient and Manhattan distance (Vinga &

Almeida, 2013).
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TABLE 19.1 Common objective oriented tools used to predict genomic hotspots.

Common general sequence analysis tools

1 ALP (Ascending Ladder Program) to calculate the statistical parameters for BLAST.

2 Arioc is a set of tools to align short bisulfite-treated DNA sequences (BS-seq reads) to long reference DNA sequences.

3 BuddySuite is a collection of four related tools:

SeqBuddy is a tool to handle FASTA, GenBank, and NEXUS sequence file formats.

AlignBuddy: 30 separate tool modules to read, write, analyze, and manipulate PHYLIP, Stockholm, and NEXUS sequence
alignment files.

PhyloBuddy: Consists of 18 tool modules to manage and manipulate phylogenetic trees in NEXUS, Newick, and NeXML
formats.

DatabaseBuddy: Contains function to search NCBI, UniProt, and Ensembl databases.

4 CorGen is a web-based tool to measure long-range correlations in DNA sequences characterized by a power-law decay of the
autocorrelation function of the GC-content.

5 cpgplot is a tool for plotting and identification of CpG islands in nucleotide sequences.

6 DAMBE7 is a tool for genomic and phylogenetic sequence data analysis.

7 PyBamView is a tool to visualize sequence alignments from BAM files with an optiontional of FASTA-formated reference
genome.

8 SPARSE (Sparsified Prediction and Alignment of RNAs based on their structure Ensembles) is a tool to align RNA sequences based
on structural properties of RNA ensembles.

9 supermatcher is a tool to compute approximate alignments between search sequences and the target sequences.

10 WebSat is a web-based tool to predict molecular markers, visualization of microsatellites, and design primers for them.

Repeat analysis tools

1 CHOPCHOP is a web-based tool to select target sites for CRISPR/Cas9- or TALEN-directed mutagenesis.

2 CRISPRCasFinder is a tool to find CRISPR (clustered regularly interspaced short palindromic repeats) arrays and detect Cas
proteins.

3 CRISPRFinder is a web-based tool for the discovery of CRISPRs, the definition of direct repeats (Dr), extraction of spacers,
obtaining flanking sequences from the Genbank database.

4 detectIR is a tool to find perfect and imperfect repeats and inverted repeats in DNA sequences.

5 Dfam is a web-based database containing transposable element DNA sequence alignments (interspersed repeats), Hidden
Markov models (HMMs), consensus sequences, and genome annotations.

6 etandem is a tool to find tandem repeats in DNA sequences.

7 einverted is a tool for finding inverted repeats, or stem-loops, in nucleotide sequences.

8 HipSTR (Haplotype inference and phasing for Short Tandem Repeats) is a tool to genotype, phase short tandem repeats (STRs),
and to analyze and validate de novo STR mutations genome-wide.

9 Kmer-SSR is a tool to detect simple sequence repeats (SSRs) in genomic sequences.

10 lobSTR is a tool to align and genotype short tandem repeat profiles from high-throughput sequencing data.

Whole genome analysis tools

1 A5 is a tool for automating genome assembly pipeline and it consists of five steps: cleaning reads, assemble error-corrected reads,
scaffolding, scaffold validation, and final scaffold assembly.

2 ABySS is a tool for de novo genome assembly using short-read data. It implements a distributed representation of de Bruijn
graphs, which enable parallel computation of the assembly algorithm. ABySS stands for Assembly By Short Sequencing.

3 ALLPATHS is a tool for genome assembly that is applicable to all types of sequences and not limited to just short reads.

4 AutoSeqMan is a tool for assembling Sanger sequences into contigs for users working with the Seqman program.

5 BioNanoAnalyst is a tool for evaluating potential misassemblies in reference genomes using optical maps.

(Continued )
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TABLE 19.1 (Continued)

6 CANU is a tool to assemble long reads from either PacBio or Oxford Nanopore, which have higher error rates than short reads
from Illumina.

7 Celera is the first generation of assembler capable of assembling the genomes of multicellular organisms. It was used to assemble
the model organism, fruit fly, and subsequently used to assemble the first human genome.

8 Edena is a tool for de novo genome assembly that is based on overlap layout assembly framework and it is applicable to very
short reads from the Illumina platform (e.g., 35 bp).

9 ELOPER is a tool to preprocess paired-end short reads for a better performance during assembly. It implements an algorithm that
detects overlaps between both ends of the paired-end reads, which then merged those reads with significant overlaps.

10 FALCON is a tool for de novo assembly of long PacBio reads and it is an improved version of its predecessor HGAP. Unlike
HGAP, it is a diploid-aware assembler that is better suited to assemble larger genomes.

11 Hapler is a tool for assembling sequences into haplotypes from population-sampled data.

12 HapTree is a tool for haplotype reconstruction from sequencing data (e.g., Illumina) of a single individual genome that may be
diploid or has higher ploidy.

13 Kermit is a tool for using linkage maps to guide genome assembly.

14 laSV is a tool for detecting structural variants (SVs) from paired-end sequenced data at single base pair resolution.

15 LightAssembler is a lightweight program for genome assembly based on the use of a pair of cache-oblivious Bloom filters.

16 MaSuRCA is a tool for genome assembly based on a hybrid approach that combines de Bruijn graph and overlap-based assembly
strategies. It can be used for sequenced data with variable read lengths and hence it is suitable for assembling 454, Sanger and
Illumina data.

17 MindTheGap is a tool specifically designed to assemble insertion variants from resequencing data.

18 miniasm is a tool for de novo assembly of long reads from either the PacBio or Oxford Nanopore platforms.

19 misFinder is a tool for checking assembly errors by using a reference genome and alignments of paired-end reads.

20 misSEQuel is a tool for detecting and correcting errors in draft assemblies.

21 npScarf is a tool for assembly scaffolding and gap filling suitable for smaller genomes already assembled with short reads.

22 Orione is a Galaxy-based framework that grouped together workflows and tools to perform de novo genome assembly,
annotation, RNA-Seq, and metagenomics analysis.

23 PASHA is a tool for assembling genomes based on short reads using the de Bruijn graphs with the main improvement being its
code for distributed computing.

24 Ray Meta is a tool for de novo assembly of metagenomes using distributed computing to enable parallel assemblies of multiple
genomes.

25 SHORTY is a tool for de novo genome assembly of short reads, in particular reads generated from the SOLiD sequencing
platform.

26 SMRT is a tool for calling single-nucleotide polymorphisms (SNPs) and assembling haplotypes based on long PacBio reads. The
name for this tool is based on Single Molecule Real Time (SMRT) sequencing and the paper describing this tool used PacBio
reads.

27 SOAPdenovo is a tool for de novo genome assembly using entirely Illumina short reads. The algorithm implements error
correction, de Bruijn graph construction, tip removal, repeat resolution, bubbles merging, contig linkage graph, and scaffolding.

28 SQUAT is a tool for both preassembly and postassembly evalutation. The preassembly evaluation is based on read quality
whereas the postassembly steps take into account how well reads are mapped onto a reference genome.

29 Velvet is a tool for de novo assembly based on de Bruijn graphs and it is suitable for short-read data with high coverage.

30 WhatsHap is a tool for phasing long reads despite their higher sequencing error rates. It implements a fixed-parameter
tractable (FPT) approach to a weighted version of minimum error correction (wMEC) formulation. This tool is useful to users who
want to perform haplotype assembly.

Genome-wide association study (GWAS) tools

1 AlphaDrop beta is a tool to simulate genomic selection and GWAS data. It can simulate sequence data, SNP data, pedigrees,
QTL effects, and breeding values.

(Continued )
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TABLE 19.1 (Continued)

2 BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway) is a tool for GWASs to identify genes
controlling human diseases and agricultural traits. The algorithm uses Bayes and linkage disequilibrium information.

3 BioBin is a tool to investigate the rare variant burden in genetic trait studies and the natural distribution of rare variants in
ancestral populations aimed for analyzes and hypothesis testing. The BioBin algorithm generates bins based on various features,
such as regulatory and evolutionary conserved regions, genes, and pathways. BioBin uses information stored in the LOKI
database, the Library of Knowledge Integration.

4 EMMAX (Efficient Mixed-Model Association eXpedited) is a tool for testing association mapping considering the sample structure
in GWASs. The EMMAX algorithm uses a variance component approach that can analyze GWAS datasets within hours.

5 EPIQ is a tool to detect epistasis in quantitative GWAS. The EPIQ algorithm uses metric embedding and random projections to
eliminate the need to exhaustively test all SNP pairs.

6 G2P (A Genome-Wide-Association-Study Simulation Tool for Genotype Simulation, Phenotype Simulation, and Power
Evaluation) is a tool to simulate genotypes for the GWASs. The G2P can simulate genotype data, phenotype data and evaluate
the statistical power.

7 GAPIT (Genome Association and Prediction Integrated Tool) is a tool for GWAS and genome prediction or selection. The GAPIT
algorithm uses The Mixed Linear Model (MLM).

8 GEMMA (genome-wide efficient mixed-model association) is a tool for testing association in GWAS data. The GEMMA algorithm
computes exact Wald statistics and P-values.

9 GIGSEA (Genotype Imputed Gene Set Enrichment Analysis) is a tool to analyze imputed genotypes. The GIGSEA algorithm uses a
combination of GWAS summary statistics and eQTL to deduce differential gene expression and to examine enrichment for gene
sets.

10 GenoWAP is a tool to prioritize signals, integrate functional annotation, and GWAS test statistics in GWAS results.

11 GPA (Genetic analysis incorporating Pleiotropy and Annotation) is a tool for the prioritization of GWASs results using pleiotropy
information and annotation data. The GPA algorithm has functions for fitting models and hypothesis testing the associated SNPs.

12 GWAS catalog is a catalog of publicly available, manually curated, and published GWAS data, containing over 100k SNPs and
trait associations.

13 GWAS Pipeline is a pipeline tool for genome-wide association analysis (GWAS). The GWAS pipeline can filter, create a kinship
matrix, covariate files, run EMMAX, computes Manhattan and QQ plots. The GWAS has functions for computing a summary of
the most significant SNPs with calculated allele effects.

14 GWASTools is an R tool for quality control, analysis, and annotation of GWAS data. The package stores data in NetCDF format
to allow datasets that exceed the R memory limits.

15 HaploView is a tool to analyze and visualize LD haplotype maps. The HaploView includes functions for LD and haplotype block
analysis, population frequency estimation, single SNP and haplotype association tests, permutation testing, Paul de Bakker’s
Tagger tag SNP selection algorithm, download of phased genotype data from HapMap, visualization, and plotting.

16 TASSEL, A tool to evaluate trait associations, linkage disequilibrium, and evolutionary patterns.

Single-nucleotide polymorphism (SNP) analysis tools

1 ASSIsT is an automatic SNP scoring tool for in- and outbreeding species. Customized pipeline for calling and filtering of SNPs
from Illumina Infinium arrays. ASSIsT builds on GenomeStudio-derived data and identifies markers that follow a biallelic genetic
model and show reliable genotype calls, and re-edits SNP calls.

2 ALICE an integrated analysis of allele frequency, allelic imbalance, loss of heterozygosity, long contiguous stretch of
homozygosity, and copy number variation or alteration based on SNP probe hybridization intensities and genotypes.

3 ATLAS-SNP2 is a SNP discovery method to assess variant allele probability.

4 Chopsticks is an R tool containing classes and methods for large-scale single-nucleotide (SNP) association studies.

5 ChroMos, SNP classification, prioritization and prediction of their functional effect. The tool uses a large database of SNPs and
chromatin states, and allows a user to upload genetic information.

6 CircosVCF, a visualization tool of genome-wide variant data described in VCF files using circos plots. Gives a broad overview of
the genomic relationship between genomes, and can focuse on specific SNP regions.

7 CsSNP, detection of comparative SNP segments and display detailed information of them.

(Continued )
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TABLE 19.1 (Continued)

8 DnaSP, a software package for the analysis of DNA polymorphisms using data from a multiple sequence aligned data. Features:
Estimate various measures of DNA sequence variation within and between populations. Estimate linkage disequilibrium,
recombination, gene flow and gene conversion parameters.

9 Ebwt2snp, a tool to detect SNP usinh extended Burrows�Wheeler Transform (eBWT), and makes a reference-free evaluation of
its accuracy by calculating the coverage of each SNP.

10 SNP Effect Predictor, a web and command-line tool to analyze and predict functional consequences of your variants, SNPs,
indels, CNVs on genes, regulatory regions, transcripts, and protein sequences.

11 Fast-GBS, a pipeline to extract a high-quality SNP catalog. INPUT; FASTQ files obtained from sequencing genotyping-by-
sequencing (GBS) libraries.

12 FastSNP, a web-based tool for the identification of tumor-associated SNP.

13 Flapjack, a tool for analysis and visualization of large volumes of SNP. The real-time graphical rendering allows comparison
between lines, markers, and chromosomes.

14 FunctSNP, a R package to link SNP to function knowledge. dbAutoMaker generates a local database.

15 Heap, SNP calling in low coverage NGS data, aligned to the reference genome sequences. Heap determines genotypes and calls
SNPs.

16 InSNP, a tool for SNP and indel detection.

17 ISMU, a pipeline integrating several open source next-generation sequencing (NGS) tools along with a graphical user interface
called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays.

18 KASPspoon, a tool for high-throughput SNP genotyping.

19 kSNP, finds SNPs in whole-genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation.

20 Mapsnp, the tool uses the biomaRt and the rtracklayer packages to annotate queries to Ensembl and UCSC and translates this to,
for example, gene/transcript structures in viewports of the grid graphics package. mapsnp package inherits from the Gviz
package.

21 MapNext, an automated SNP detection from population sequences for spliced and unspliced alignments of short reads.

22 mrSNP, Software to detect SNP effects on microRNA binding.

23 MSQT, a common-line tool to extract SNP data from multiple sequence alignments, stores it in a database, and provides a web
interface to query the database.

24 NASP, a tool to identify SNP in wholle genome sequencing data

25 NovelSNPer, a web tool to classify sequence variants based on the gene structure information in Ensembl.

26 QQ-SNV, a tool to detect SNP in heterogeneous virus population from Illumina sequencing data. The QQ-SNV algorithm uses a
logistic regression classifier model based on quantiles of quality scores.

27 Seq-SNPing, a SNP discovery, ID identification, editing, and visualizating of sequence alignments.

28 SCcaller, a tool for detection of SNP and short insertions and deletions (indels) in data from single-cell sequencing.

29 SMuRF, R package for selection of regulatory elements, single-nucleotide variants (SNVs), SNPs, and is-regulatory elements
(CREs) using random forests.

30 SNIP-Seq, a tool to detect SNP in Illumina sequence data from population samples. The SNIP-Seq algorithm uses quality values
of the sequenced bases and iterative estimates of genotypes and error rates based on multiple individuals.

31 SNiPlay3, a web tool for pipelines to detect, manage, and analyze SNPs and indels.

32 SNiPloid, a tool to discover and validate predicted SNPs, optimized for allopolyploid species.

33 SNPchip, R package to plot SNP data.

34 SNPdetector, an automated identification of SNPs and mutations in fluorescence-based resequencing reads (Sanger sequencing
reads).

35 SNPHarvestor, a tool to search for significant SNP groups in large-scale association studies. It can select a set of significant SNP
groups from hundreds of thousands of SNPs efficiently.

36 SNPMeta, SNP annotation and SNP metadata collection of nonmodel species or species that lack a reference genome.

(Continued )
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TABLE 19.1 (Continued)

37 SNPs3D, a website with tools for assignng molecular functional effects of non-synonymous SNPs based on structures and
sequences.

38 SNPServer, a web tool for discovery of SNPs within DNA sequence data. The program uses BLAST, to identify related sequences,
and CAP3, to cluster and align these sequences. The alignments are parsed to autoSNP, a program that detects SNPs and
insertion/deletion polymorphisms.

39 SNPTools pipeline comprises tools for SNP analysis in next-generation sequencing data. It has an imputation engine refining raw
genotype likelihoods to output high-quality genotypes or haplotypes, designed for genotyping studies of large populations.

40 SparSNP, a fast and memory-efficient analysis of all SNPs for phenotype prediction. It also does cross-validation.

RNA-seq analysis tools

1 ABySS is a tool for de novo genome assembly using short-read data. It implements a distributed representation of de Bruijn
graphs, which enable parallel computation of the assembly algorithm. ABySS stands for Assembly By Short Sequencing.

2 Oases is a tool for assembling de novo transcriptomes using short RNA-seq reads. The Oases algorithm uses dynamic error
removal in the prediction of full-length transcripts, and it can handle a wide range of expression values and the absence of
alternative isoforms. Requires Velvet 1.2.08 or higher.

3 Trinity is a tool for de novo transcriptome assembly of RNA-seq data and consists of three modules: Inchworm, Chrysalis, and
Butterfly. The algorithm uses de Bruijn graphs, dynamic programming method, it can detect isoforms, handle paired-end reads,
multiple insert sizes, and strandedness.

4 SOAPdenovo-Trans is de novo RNA-seq full-length transcriptome assembler. The SOAPdenovo-Trans algorithm adapts the
SOAPdenovo framework, uses the Trinity error removal technique, the graph traversal model from Oases, and uses a transitive
reduction to simplify scaffolding graphs. It can handle paired-end reads and multiple insert sizes.

5 GSNAP (Genomic Short-read Nucleotide Alignment Program) is a tool to align single- and paired-end reads to a reference
genome. The GSNAP algorithm is based on the seed-and-extend method and works on reads down to 14 nucleotides of length,
and computes SNP-tolerant alignments of various combinations of major and minor alleles.

6 STAR, a tool to align RNA-seq data. The STAR algorithm uses suffix arrays, seed clustering, and stitching. It can detect
noncanonical splice sites, chimeric sequences, and can also map full-length RNA sequences.

7 TopHat is a tool for splice-aware mapping of RNA-seq reads. The TopHat uses the Bowtie short-read aligner tool (BWT-based
algorithm) for the mapping whereafter it identifies intron-exon (splice) junctions. TopHat can use paired-end sequencing reads
and parallel computation.

8 MapSplice is a tool to align RNA-seq read to a reference sequence. The MapSplice algorithm uses the Burrows—Wheeler
Transform (BWT) technique and can discover both canonical and noncanonical splice sites.

9 Rbowtie2 is an R tool that wraps the Bowtie 2 tool and includes adapter removal, read merging and identification.

10 Rbowtie package provides an R wrapper around the popular bowtie short-read aligner and around SpliceMap, a de novo splice
junction discovery and alignment tool. The package is used by the QuasR bioconductor package. We recommend to use QuasR
instead of using this package directly.

11 DeepBound is a tool to identify splicing junctions and boundaries of expressed transcript read alignments in RNA-seq data. The
DeepBound algorithm uses deep convolutional neural fields.

12 SpliceJumper is a tool to identify splice junctions in RNA-seq data. The SpliceJumper algorithm uses a classification-based
approach.

13 MapPER is a tool to align paired-end reads in RNA-seq datasets. The MapPER algorithm uses an expectation�maximization
method to assign likelihood values.

14 NanoPARE is a set of tools for the analysis of 50 RNA data from nanoPARE sequencing libraries.

15 GRIT (Generalized RNA Integration Tool) is a tool to assemble transcripts using RNA-seq data. The GRIT pipeline combines
RNA-seq and gene-boundary data, CAGE, RAMPAGE, and poly(A)-seq data.

16 RNA-SeQ, a tool for quality control of RNA-seq data. The RNA-SeQC package has functions for computing various quality
metrics, such as alignment quality, duplication rates, GC bias, rRNA content, coverage continuity, covered alignment regions,
transcript count, and 30/50 bias. It produces Read counts, coverage, correlation quality control metrics, and is also suitable for use
with scRNA-seq datasets.
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17 QualiMap and a later version, Qualimap 2, is a tool for quality control of sequence alignments and genomic features. The
QualiMap can use whole-genome and exome sequencing, RNA-seq, and ChIP-seq data. It also has functions for comparison of
multiple samples and clustering of epigenomic profiles.

18 Subread is a software tool package for the alignment of both DNA-seq and RNA-seq read data, quantification, and mutation
detection. The Subread package consists of five separate tools: (1) Subread, a read aligner for both RNA-seq and DNA-seq data,
(2) Subjunc, read aligner for RNA-seq data, detection of exon-exon junctions and gene fusion events, (3) featureCounts, read
counting, (4) Sublong, for aligning long reads using the seed-and-vote technique, and (5) exactSNP, a SNP discovery.

19 featureCounts is a tool to quantify RNA-seq and gDNA-seq data as counts. It is also suitable for single-cell RNA-seq (scRNA-seq)
data. It supports multithreading. The featureCounts is part of the Subread package

20 easyRNASeq is a tool to quantify RNA-seq expression data.

21 HTSeq is a tool for the analysis of high-throughput sequencing data. It processes reads aligned with HISTAT or STAR and assign
expression value counts. The HTSeq is also suitable for the quantification of single-cell RNA-seq data (scRNA-seq).

22 PennDiff is a tool to quantify RNA-seq data. The PennDiff algorithm uses both transcript-based and union-exon methods.

23 Salmon, a tool to quantify transcript expression in RNA-seq data. The Salmon algorithm can correct for GC bias, and it uses
“selective-alignment” and massively parallel stochastic collapsed variational inference to achieve high accuracy and speed. It
reports transcripts per million mapped reads (TPM).

24 Kallisto, a tool to quantify RNA-seq data. The kallisto algorithm uses a pseudo alignment approach to speed up the alignment
procedure. The “pseudo alignment” approach can quantify reads without making actual alignments. Kallisto can handle paired-
end and single-end reads. It reports transcripts per million mapped reads (TPM).

25 RSEM (RNA-Seq by Expectation�Maximization) is a tool for the quantification of RNA-seq data. The RSEM algorithm uses the
expectation�maximization technique, it can operate with and without a reference, and reports transcripts per million mapped
reads (TPM). RSEM scales linearly with the amount of alignment quantity and uses The Bowtie tool for the read alignments.

26 Cufflinks consist of a suite of tools for differential gene expression analysis of RNA-seq data. It assembles aligned reads in a set of
transcripts and estimates the relative abundances. The Cufflinks suite consists of the following tools: cufflinks, cuffcompare,
cuffmerge, cuffquant, cuffdiff, and cuffnorm.

27 eXpress is a tool to quantify RNA-seq data, but it is also applicaple to ChIP-seq, metagenomics, and large-scale sequencing data
in general. The eXpress streaming algorithm computes sequenced DNA or RNA in real-time

28 Solas is a tool to predict and quantify expressed isoforms within observed coding regions in RNA-seq data

29 Rcount is a tool to quantify the number of reads mapped to a specific gene (feature counts) in RNA-seq datasets. The Rcount
algorithm specifically addresses the issue arising from reads mapping to multiple locations.

30 MMSEQ is a tool to estimate isoform in RNA-seq data. The MMSEQ algorithm uses a new statistical method that deconvolves the
mapping of reads to haplotype-specific isoforms and works with paired-end reads.

31 DESeq is a tool for hypothesis testing and differential gene expression analysis of RNA-seq data. The DESeq algorithm applies the
negative binomial distribution and a Likelihood Ratio Test (LRT), it normalizes data by trimmed mean of M-values and
circumvents a small sample size by incorporating information from all genes in a set of samples.

32 edgeR is a tool for differential expression (DE) analysis of RNA-seq, ChIP-seq, CAGE, and SAGE data with biological replicates.
The edgeR algorithm uses information from all the genes, computes the dispersion using a weighted likelihood and F-test
techniques. For the normalization, it can use the trimmed mean of M-values, upper quartile (UQ) procedure, Relative Log
Expression (RLE), and DESeq. It can compare two groups, paired and unpaired, or use a Generalized Linear Model (GLM). The
upper quartile (UQ) procedure is also applicable to single-cell RNA-seq (scRNA-seq).

33 SARTools is an R tool package for differential expression analysis of RNA-seq data. SARTools uses DESeq2 and edgeR. The input
consists of raw count data, experimental description files. It will then normalize, estimate dispersion, and analyze differential
gene expression.

34 Cuffdiff 2 is a tool to estimate differential expression at gene and transcript levels. It uses a negative binomial model, normalizes
using the relative log expression method implemented in DESeq, Inter-sample normalization method Q, and reports Fragments
per kilobase million Reads per million mapped reads (FPKM). Cuffdiff 2 is a part of the Cufflinks suite of tools.

35 GOEAST (Gene Ontology Enrichment Analysis) is a Gene Ontology (GO) enrichment analysis tool. It can identify
overrepresented GO terms and uses several different data sources and species.
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The information theory-based methods recognize and compute the amount of information shared between two

analyzed biological sequences. The organization of nucleotide and amino acid sequences is digitally analyzed and

translated via information theory tools, such as complexity and entropy. In these methods, a low-complexity

sequence (e.g., AAAAAAAAA) will have smaller entropy than a more complex sequence (e.g., ACCTGATGT).

The methods applied in calculation of block entropies and coverage in global sequence analysis and predict tran-

scription factor binding sites, sequences as time series, and entropic profiles in local genome analyses.

Additionally, higher level correlations in gene mapping and protein�protein interaction networks are also

achieved using these methods (Vinga, 2014).

The evolution of sequencing technologies leads to design of new alignment tools based on different datasets such as

short, long, and high-quality reads or sequencing platform-specific datasets (Schadt-Metzker, 2010). Since genomic and

transcriptomic sequencing generate large volume of data, alignment required intensive parallel processing and multicore

platforms. Most of the tools are based on Smith�Waterman algorithm which is known to be computationally expensive

and uses multithreading. Till now, more than 200 assembler tools are designed (Table 19.1); however, none of the

assembly or alignment approach can alone reconstruct the genome completely from sequence read data (John &

Georrge, 2018). The first common wheat (variety Chinese Spring (CS)) genome sequence was obtained from genome

sequence assembling from different platform and related progenitors. In this, Roche 454 pyrosequencing (GS FLX

Titanium and GS FLX1 platforms) provides reads up to 500 bp covering 5X depth in 16 Gb genome size. Additionally,

the gaps and low coverage regions were tackled by additional sequences such as SOLiD CS short reads, Illumina reads

from T. monococcum, 454 sequences of A. tauschii (D genome donor), and cDNA sequences from A. speltoides (B

genome donor) using tools such as Newbler (Roche commercial software) and MetaSim. The resulted genome was

highly fragmented and predicted to contain 95,000 genes (Guan et al., 2020).

IWGSC wheat-genome sequencing project follows chromosome-based BAC by BAC sequencing on Roche 454 and

Illumina Hiseq 2000 platform and used different assembly tools. SOAPdenovo version 1.05 and de novo ABySS were

used to assemble the filtered short reads leading to contigs representing 61% of hexaploid wheat-genome containing

133,090 high-confidence genes and 890,576 low-confidence genes with ORF-like structures and referred to as the

IWGSC chromosome survey sequence (CSS) assembly (IWGSC, 2014). However, the development of the advanced

long-read Pacific Biosciences (PacBio) sequencing technology has played key role in achieving more refined wheat

genome using hybrid assembly techniques (Larsen, Heilman, & Yoder, 2014). MaSuRCA assembly pipeline accommo-

dates both PacBio long error-prone and Illumina accurate short reads of A. tauschii leading to Aet_Mr.1.0 assembly.

Also, the first near-complete 100x coverage hexaploid wheat (CS42) assembly independent of molecular-genetic map

was generated using MaSuRCA pipeline. This involved 7.06 billion Illumina 150 bp paired-end reads and 55.5 million

PacBio reads leading to 95.7 million superreads, which further used to generate 57 million mega-reads using the same

pipeline. Celera Assembler (v8.3) was used to assemble synthetic mate pairs with mega-reads resulting in Triticum 1.0

genome version containing 829,839 contigs and 17.05 Gb size. In another approach, FALCON assembler was used to

directly assemble the long reads resulting in FALCON Trit1.0 of 12.94 Gb. Further, these two genome versions were

merged using MuMmer, generating final assembly of 15.3 Gb covering nearly complete wheat genome (Guan et al.,

2020).

More direct methods were deployed for generating CS genome assembly using optimized data types and spe-

cially designed algorithms. This involved scaffolding using assembly program w2rap-contigger on libraries of

long mate-pair sequence reads and Tight, Amplification-free, Large insert pair-end Libraries sequences generating

almost 3 million contigs (. 500 bp). Further, SOAPdenovo was used to reduce the number of contiguous

sequences to 1.3 million and CSS-survey reads were used to anchor scaffolds to chromosomes leading to wheat

genome assembly referred to as TGACv1, 13.43-Gb long, representing 78% of the wheat genome. The assembly

of final reference wheat genome was significantly supported by genome sequencing of wild emmer wheat, durum

wheat, A. tauschii, T. urartu involving DeNovoMAGIC2 (NRGene), SOAPdenovo2, MaSuRCA, SSPACE tools.

The IWGSC RefSeq v1.0 was obtained using DeNovoMAGIC2 assembled whole-genome frame integrating physi-

cal maps, GBS data, radiation hybrid maps, BioNano optical maps, and Hi-C data (Avni et al., 2017; Clavijo

et al., 2017; Luo et al., 2012).

The information in IWGSC RefSeq v1.0 can be harnessed in different studies and breeding program to locate hot-

spots for adaptive traits [heat and drought tolerance, rusts/yellow-spot/powdery mildew resistance, and agronomic traits

(grain quality and yield)] (Acuña-Galindo et al., 2015; Pandey, Joshi, Bhardwaj, Agarwal, & Katiyar-Agarwal, 2014;

Singh et al., 2017; Tang, Xu, Zhao, Wang, & Kang, 2018). Different approaches are used to find genes and their locali-

zation on chromosomes for traits that we have already mentioned such as biofortification, biotic stress resistance, and

drought stress tolerance. Most recent structural and functional genomics approaches take advantage of bioinformatics
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resources and recent long-read sequencing technologies. The information generated has been deployed using genomic

repositories and platforms for functional annotation of the wheat genome (Table 19.2). These involved GWA studies,

genomic selection, bulk segregant analysis, QTL mapping, RNA-sequencing, exome-sequencing, CRISPR�CAS-medi-

ated gene editing (Bevan et al., 2017; Bhusal, Sarial, Sharma, & Sareen, 2017; Cavanagh et al., 2013). How these

approaches provide genes or hotspot region on chromosome summarized in Fig. 19.1. The integration of information

from DNA, RNA, protein, metabolite, and phenotype led to identification of genes. The sequencing technologies allow

discovery and genotyping of SNP markers which accelerate the exploration of germplasm allelic diversity based on

allele mining approach. The genome at DNA and RNA levels provides information about gene function, gene

sequences, and genetic factors that underlie complex traits. The genome-wide approaches such as RNA-seq, exome

sequencing generate huge volume of “omics” data that provide information about interaction of genes and proteins.

Furthermore, genome-editing tools also assist in gene identification and pathways modification. Moreover, the heritabil-

ity of generated omics data combined with phenotypic variation through genetic marker associations resulting in the

genomic regions that control the expression of single or multiple genes (eQTLs), metabolite (mQTLs), and proteins

(pQTLs). Molecular breeding and transgenic approaches are used to translate the omics information for crop improve-

ment. In molecular breeding, GWAS is often used to identify the significant relationships between the trait and underly-

ing genetic loci. The identified QTLs are the valuable hotspots of crop improvement and can be introgressed into the

elite genotypes to get the desirable output.

TABLE 19.2 A list of available genomic repositories and platforms for functional annotation of wheat genome.

S. no Resource URL

Genomic sequence resources

1. EnsemblPlants http://plants.ensembl.org/index.html

2. Gramene http://www.gramene.org/

3. GrainGenes https://wheat.pw.usda.gov/GG3/

4. CerealsDB http://www.cerealsdb.uk.net/cerealgenomics/Index_Home.html

5. URGI https://urgi.versailles.inra.fr/

Gene expression resources

1. PLEXdb http://www.plexdb.org/plex.php?database5Wheat

2. WheatExp http://wheat.pw.usda.gov/WheatExp/

3. expVIP http://www.wheat-expression.com

Variation resource

1. Wheat autoSNPsdb http://autosnpdb.appliedbioinformatics.com.au/index.jsp?species5wheat

2. T3 Wheat http://triticeaetoolbox.org/wheat/

3. KASP markers http://polymarker.tgac.ac.uk/Markdown?md5DesignedPrimers;http://www.cerealsdb.uk.
net/cerealgenomics/CerealsDB/select_using_ideogram.php

Transcription factors (TFs) resources

1. wDBTF http://wwwappli.nantes.inra.fr:8180/wDBFT/

2. WheatTFDB http://xms.sicau.edu.cn/wheatTFDB/

Genome consortium

1. IWGSC https://www.wheatgenome.org/

2. Sequencing the Aegilops
tauschii Genome

http://aegilops.wheat.ucdavis.edu/ATGSP/data.php

3. OWWC http://www.openwildwheat.org/
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19.5 Conclusion

The application of next generation sequencing (NGS) technology has dramatically expanded our knowledge of geno-

mics especially for wheat where structural and comparative functional genomics would not possible without the

advanced high-throughput sequencing technologies and customized bioinformatics pipelines/tools. The long-read

PacBio along with Roche 454 and Illumina sequencing has a major impact on accurate sequence assembly of wheat

genome. The sequence reads at multiple levels assembled using DeNovoMAGIC2, SOAPdenovo2, MaSuRCA assembly

tools resulting in the superior quality wheat reference genome IWGSC RefSeq v1.0. With the availability of genome

sequence information discovery and genotyping of the genome-wide markers become feasible. The availability of high-

quality genotyping platforms (GBS and DArT-seq) and rich genetic resources opened the new avenues in the molecular

breeding likes QTL metaanalysis, conditional QTL mapping, genomic selection, and GBS which has boosted the speed

of wheat breeding. The innovation in molecular techniques revealed new approach of CRISPR/cas9, having potential to

infer the gene function at precise location and interestingly has the potential to overcome the concern over the use of

genetically modified (GM) crops. The recent precise breeding technologies assured the rapid transfer of these hotspots

to desired elite wheat line. Finally, the identification and indexing of genomic hotspots for adaptive and agronomic

traits will uplift the wheat breeding program worldwide and prepare the wheat crops to take on global climate change.
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Chapter 20

Prospects of molecular markers for wheat
improvement in postgenomic era
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20.1 Introduction

Wheat (Triticum aestivum L.) is unusual among recently domesticated species in that it spread to every continent except

Antarctica after originating in the Fertile Crescent. High gene plasticity is responsible for the wide range of adaptation

from 67�N in Scandinavia to 45�S in Argentina, including elevated regions in the tropics and subtropics (Dubcovsky &

Dvorak, 2007). This rapid geographic distribution and exposure of wheat to a variety of environments resulted in dis-

tinct gene pools of cultivated wheat based on stature, vernalization requirement, photoperiod reaction, grain consis-

tency, and yield stability (Dubcovsky & Dvorak, 2007; Moose & Mumm, 2008; Worland et al., 1998). Wheat is

currently one of the three most important food crops, along with rice and maize (FAO, 2017). Wheat is grown on 200

million hectares around the world, supplying one quarter of the world’s overall calorie intake. According to FAO

(2017) estimates, the global population will reach 9�10 billion people by 2050, with the majority of people residing in

developing countries (Africa and South Asia), where wheat products are the most commonly consumed staple foods.

However, due to slow yield improvement of 0.8%�1.0% per year, meeting wheat production requirements at that time

would be unlikely. Other major challenges in wheat production include (1) the yield potential while maintaining stabil-

ity, (2) lowering the cost of increased productivity by reducing the need for water, fertilizers, and other inputs, (3)

increasing wheat’s ability to grow on marginal lands, (4) lowering greenhouse gas emissions, and (5) continuing to pro-

tect wheat from emerging climate change threats (Rasheed & Xia, 2019).

Wheat breeders have taken advantage of “transgressive segregation” in hybridization systems by choosing superior

traits that maximize yield in specific conditions. Cultural method of wheat improvement relied on trait selection without

understanding the molecular processes of inheritance. The “Green Revolution,” for example, demonstrated how it might

often result in massive increases in yield. This development was based on the integration of “slow but efficient” pre-

breeding efforts that produced new genetic diversity from Triticeae species to protect wheat from abiotic as well as

biotic stresses (Mujeeb-Kazi et al., 2013), along with increased yield and nutritional quality (Rasheed, Mujeeb-Kazi,

Ogbonnaya, He, & Rajaram, 2018a; Tabbita, Pearce, & Barneix, 2017).

Since the 1980s, a variety of researcher needs, constantly evolving technology, the relevance of crop organisms,

DNA sequence databases, genomic abundance of polymorphic traits, and other factors have all influenced the creation

of new molecular marker systems in plants, including wheat. Current developments in DNA-based molecular marker

technology, genotyping platforms, and reference genome sequence have piqued the interest of functional breeders by

making a growing amount of DNA sequence knowledge accessible. These advancements allow breeders to scale up the

breeding process and increase precision in the selection of plants carrying favorable genes and/or alleles, as well as their

favored combinations. In a single sprint, emerging DNA sequence�based molecular markers will classify a vast number

of germplasm for sequence polymorphisms across the entire genome. The key goal of this chapter is to summarize

recent advances and development in molecular marker technology, as well as their possible applications (e.g.,

genomics-assisted breeding) in wheat development. Fig. 20.1 depicts the expansion of wheat molecular marker systems.

From the discovery of polymerase chain reaction (PCR) to the reference sequence of the wheat genome, the timeline

depicts significant events.
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20.2 Overview of molecular marker systems in wheat

Single-nucleotide differences (transitions/transversions), insertions�deletions, and variations in the number and size of

tandem repeats at a specific locus are the three most common and special characteristics of the genome. The trick to

using such features as a molecular tag to distinguish allelic variation in a gene or detect polymorphism in a single frag-

ment of DNA between two or more individuals is to look at their genome-wide distributions. The positions of these fea-

tures/tags/molecular markers on the chromosomes can be determined using molecular mapping (Gupta, Varshney,

Sharma, & Ramesh, 1999; Landjeva, Korzun, & Borner, 2007). The positions of these features/tags/molecular markers

on the chromosomes can be determined using molecular mapping. DNA-based molecular markers are genetic tools that

enable plant breeders and geneticists to define and tag genomic regions (QTL (quantitative trait loci) or gene) for partic-

ular traits within the genome, and then monitor their inheritance from generation to generation. Since molecular mar-

kers have the potential to speed up breeding generations in the field and selection performance in the laboratory, as

well as minimize labor and phenotyping costs, these marker systems have been found more effective than traditional

plant breeding methods (Langridge & Chalmers, 2004). To fasten the wheat breeding programs, functional markers

(gene-specific) have been produced which can differentiate alleles of target genes (Table 20.1). Fingerprinting, trait

identification, genome sequencing, genome assembly, comparative mapping, gene cloning, alien gene transfer, and

marker-assisted selection (MAS), etc., have been useful in wheat breeding (Table 20.2). Genetic advancement of crop

plants would not be feasible without the production and application of molecular markers in agriculture. Furthermore,

the pioneering discovery of PCR technology in 1983 revolutionized DNA profiling research and continues to do so

today.

The best properties of molecular markers and their uses have been carefully analyzed and discussed (Amom &

Nongdam, 2017; Belete, 2018; Gupta et al., 1999; Jiang, 2013; Korzun & Ebmeyer, 2003; Langridge et al., 2001;

Prasad, Varshney, Roy, Balyan, & Gupta, 2000; Roder, Huang, & Ganal, 2004; Rustgi, Bandopadhyay, Balyan, &

Gupta, 2009; Varshney, Graner, & Sorrells, 2005). If a genetic marker is strongly polymorphic, codominantly heredi-

tary, neutral, evenly distributed across the genome, reproducible, suitable for a variety of applications, and user-

friendly, it is called ideal. But in exceptional situations, none of the molecular marker systems will have all of the

desired features; based on the scope of analysis, a marker system with all of the necessary features could be favored.

To make the distinction between various marker forms easier, genetic markers are classified into two categories:

classical markers and molecular markers. Morphological, physiological, protein/enzyme, and cytological markers are

examples of conventional markers. Molecular or DNA sequence�based markers are categorized as (1) hybridization-

based, (2) PCR-based, or (3) sequencing-based, depending on their characteristics, production techniques, throughput

size, and genotyping/detection procedures.

FIGURE 20.1 Growth of molecular marker systems in wheat.
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TABLE 20.1 List of functional markers linked with genes in wheat.

SN Functional marker Gene name References

1 Rht-B1a, Rht-B1b, Rht-D1a and Rht-D1b Rht-B1 and Rht-D1 Ellis, Spielmeyer, Gale, Rebetzke, and
Richards (2002)

2 vrn-D1, vrn-H1, vrn-B3 and vrn-A1 VRN-D1, VRN-H1, VRN-B3
and VRN-A1

Fu et al. (2005)

3 PPO18 PPO Sun et al. (2005)

4 SSR (Pm3a to Pmg) Pm3 Tommasini, Yahiaoui, Srichumpa, and
Keller (2006)

5 Ppd-D1a, Ppd-D1b Ppd-D1 Beales, Turner, Griffiths, Snape, and
Laurie (2007)

6 Ppo-A1a, Ppo-A1b Ppo-D1 He et al. (2007)

7 YP7B-1, YP7B-2, YP7B-3 and YP7B-4 Psy1 He, He, Ma, Appels, and Xia (2009)

8 Five In-Del and one SNP (cssfr1-cssfr6) Lr34/Yr18/Pm38 Lagudah et al. (2009)

9 SNP Dreb1 Wei et al. (2009)

10 gluA3a, gluA3b, gluA3d, gluA3e, gluA3f,
gluA3g and gluA3ac

Glu-A3 Wang, Li, Peña, Xia, and He (2010)

11 TaGW2-6A TaGW2-6A Su, Hao, Wang, Dong, and Zhang (2011)

12 Happa-H and Hap-L TaSus2-2B Jiang et al. (2011)

13 TaZds-D1a and TaZds-D1b TaZds-D1 Zhang et al. (2011)

14 SNP LOX16 and LOX8 TaLox-B1 Geng, Xia, Zhang, Qu, and He (2012)

15 TaZds-A1a and TaZds-A1b TaZds-A1 Dong, Xia, Zhang, and He (2012)

16 SNP TaMYB2 Garg, Lata, and Prasad (2012)

17 SNP TaAQP Pandey, Sharma, Pandey, Sharma, and
Chatrath (2013)

18 In-Del Sr45 Periyannan et al. (2014)

19 POD-3A1 and POD-3A2 TaPod-A1 Wei et al. (2015)

20 Two SNPs and one In-Del TaMAMF/
TaMAMR

TaMOC1-A Zhang et al. (2015)

21 SNP (TaGS5-3A-T and TaGS5-3A-G) TaGS5-3A Ma et al. (2016)

22 CAPS-SNP TaTGW6-A1 Hanif et al. (2016)

23 SNP and SSR Xbarc62 TaELF3-1DL Wang et al. (2016)

24 TaPARM1 and TaPARM2 TaPARG Li et al. (2016)

25 KASP-SNPs (S2269949 and S1077313) CBF-A14 under Fr-A2 locus Sieber, Longin, Leiser, and Würschum
(2016)

26 TaTPP6AL1-CAPS-F/R TaTPP-6AL1 Zhang et al. (2017a, b)

27 POD-7D1 and POD-7D6 TaPod-D1 Geng, Shi, Fuerst, Wei, and Morris
(2019)

28 KASP-SNP TaSnRK2.9-5A Rehman et al. (2019)

29 LCY-B1_3765_SNP TaLcy-B1 Dong et al. (2012)

30 PDS-B1_SNP Pds-B1 Dong et al. (2012)
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TABLE 20.2 List of wheat genes already cloned.

SN Gene Linked marker Method of

cloning

References

1. WX-7A, WX-4A
(translocated from
7B), WX-7D

Gene-specific primer design from
cDNA sequence AB019622, AB019623
and AB019624

Map-based
cloning (In-
Del)

Murai, Taira, and Ohta (1999)

2. Glu-1 Ax1, Ax1, Bx7, Bx17, Dx2, Dx5, By9,
Dy10 and Dy12

Map-based
cloning

De Bustos, Rubio, and Jouve (2001)

3. pinA Pina-D1a, b, c, d; Pinb-D1a, b, e, h, k,
I and j

Map-based
cloning

Massa, Morris, and Gill (2004) and
Guzmán, Caballero, Martı́n, and
Alvarez (2012)

4. Pinb Pinb-D1 Map-based
cloning

Gautier, Aleman, Guirao, Marion,
and Joudrier (1994) and Pan et al.
(2004)

5. B Xpsr680-7B and Xpsr160-7D RFLP marker Jefferies et al. (2000)

6. Cre3 Xglk605 and Xcdo588 RFLP marker Ogbonnaya et al. (2001)

7. Rlnn1 Xpsr121, Xpsr680, and Xcdo347 RFLP marker Williams et al. (2002)

8. Lr10 Map-based
cloning

Feuillet et al. (2003)

9. Pm, Pm3b WHS179 RFLP marker Map-based
cloning

Yahiaoui, Srichumpa, Dudler, and
Keller (2004)

10. Lr21 Map-based
cloning

Huang et al. (2003)

11. VRN1 WG644 Map-based
cloning

Yan et al. (2003)

12. Nax1 Xgwm312 and Xwmc170 Synteny-based
cloning

Lindsay, Lagudah, Hare, and Munns
(2004)

13. R genes Tamyb10-A1, B1, D1 (transcription
factors)

Expression
(transcription
factors)

Himi and Noda (2005)

14. TaNAM Xuhw106 and Xucw109 RNAi
expression
based

Uauy, Distelfeld, Fahima, Blechl,
and Dubcovsky (2006) and Distelfeld
et al. (2007)

15. Lr1 Xpsr567 Map-based
cloning

Cloutier et al. (2007)

16. Psy1 YP7A Synteny-based
cloning

He et al. (2007)

17. Ppd-D1 (2D) Beales et al. (2007)

18. TaVp1 TaVp-A1, TaVp-B1 and TaVp-D1 Synteny-based
cloning

Utsugi, Nakamura, Noda, and
Maekawa (2008)

19. TaABI5 TaABI5-F/R and qTaABFI5-F/R Map-based
cloning

Ohnishi, Himi, Yamasaki, and Noda
(2008)

20. Glu-A1, Glu-D1 UMN19, UMN25 and UMN26 Map-based
cloning

Liu, Chao, and Anderson (2008)

21. Lr34/Yr18/ Sr57/
Pm38

Xgwm1220 and SWM10 Map-based
cloning

Krattinger et al. (2009)

22. Yr36 Xucw129 and Xucw148 Map-based
cloning

Fu et al. (2009)

(Continued )
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TABLE 20.2 (Continued)

SN Gene Linked marker Method of

cloning

References

23. Utd1 Xgwm234 and Xgwm443 Map-based
cloning

Randhawa, Popovic, Menzies, Knox,
and Fox (2009)

24. Tsn1 Xfcp623 Map-based
cloning

Faris et al. (2010)

25. DOG-1 DOG1-like genes Synteny-based
cloning

Ashikawa, Abe, and Nakamura
(2010)

26. TaGW2 Xcfd80.2 Synteny-based
cloning

Su et al. (2011)

27. TmMla1 sbi369 and sbi314 Synteny-based
cloning

Jordan et al. (2011)

28. Sus2 Xgwm122 and Xgwm328 Map-based
cloning

Jiang et al. (2011)

29. TaMFT-3A CSZENSSR-F1 and CSZENSSR-R1 Map-based
cloning

Nakamura et al. (2011)

30. TaCwi-A1 cwi21 and cwi22 Synteny-based
cloning

Ma, Yan, He, Wu, and Xia (2012)

31. Pm8 sfr43(Pm8) Synteny-based
cloning

Hurni et al. (2013)

32. Sr33 BE405778 and BE499711 (EST markers) Map-based
cloning

Periyannan et al. (2013)

33. Sr35 AK331487 (0.02 cM) and AK332451
(0.98 cM)

Map-based
cloning

Saintenac et al. (2013a, 2013b)

34. Yr10 Xpsp3000 Map-based
cloning

Liu et al. (2014)

35. TaSdr-A1, TaSdr-B1,
and TaSdr-D1

Sdr-2, Sdr-3 and Sdr-4 Map-based
cloning

Zhang, Miao, Xia, and He (2014)

36. Sr50 Sr50-F1/R1 Map-based
cloning

Mago et al. (2015)

37. Lr67/Yr46/ Sr55/
Pm46

Xgwm165 Map-based
cloning

Moore et al. (2015)

38. Snn1 Xfcp618 and Xfcp624 Map-based
cloning

Shi et al. (2016)

39. Fhb1 STS3B-355 and STS3B-334 Map-based
cloning

Rawat et al. (2016)

40. Phs-A1 Xbarc170 and Xwmc420 Map-based
cloning

Shorinola et al. (2016)

41. TaTGW-7A Xbarc174 and Xbarc222 Map-based
cloning

Hu et al. (2016)

42. Sr13 EX24785 Map-based
cloning

Zhang et al. (2017a, 2017b)

43. Stb6 Xctg8311 and Xcfn80023 (cosegregated
with stb6), cfn80025 and cfn80030/
cfn80040

Map-based
cloning

Saintenac et al. (2018)

44. Yr15 uhw264 and uhw258 Map-based
cloning

Klymiuk et al. (2018)
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20.3 Genome-wide markers for gene mapping

Continuous advancement in the production of DNA-based markers and genotyping methods has provided useful assis-

tance in the efficient collection of economically important traits over the last three decades (Mir & Varshney, 2013).

Since DNA-based markers are plentiful, neutral, stable, simple to automate, and cost-effective, they are favored over

conventional markers. Restriction fragment length polymorphisms (RFLPs) were the first hybridization-based markers

to be developed and used in wheat for genetic diversity analysis, genetic map creation, and gene tagging (Chao et al.,

1989).

In the beginning, RFLP markers were used to establish genetic and physical maps in wheat. In wheat, these efforts

culminated in the mapping of over 2000 RFLP loci in genetic maps using segregating populations and over 1200 RFLP

loci in physical maps using nullisomic�tetrasomic and deletion lines of Chinese Spring (Gupta et al., 1999; Gupta, Mir,

Mohan, & Kumar, 2008a; Gupta, Rustgi, & Mir, 2008b; Hussain & Qamar, 2007). Since DNA probes from one species

may easily hybridize with probes from similar species, RFLP markers have proven useful in comparative mapping stud-

ies (Devos & Gale, 1993). RFLP markers have been discouraged from further use in wheat genetic studies due to their

low-to-medium degree of polymorphism, low-throughput nature of identification, high cost of genotyping, and other

factors. Following advancements in genotyping technologies and access to public genomic databases, PCR-based

molecular markers such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism

(AFLP), simple sequence repeat (SSR or microsatellite), diversity arrays technology (DArT), and single-nucleotide

polymorphism (SNP) were created.

RFLP and RAPD marker systems were difficult to use in gene mapping/discovery and marker-based selection in the

beginning. Following that, RFLP was translated to an AFLP marker method using the PCR technique (Vos et al.,

1995). Instead of southern hybridization, PCR amplification was used in AFLP fingerprinting, which allowed for the

fractionation of several fragments and the generation of a large number of bands, making polymorphism detection eas-

ier. Wheat genetic variation, phylogenetic analysis, and mapping have also been studied using AFLP markers (Bohn,

Utz, & Melchinger, 1999; Burkhamer, Lanning, Martens, Martin, & Talbert, 1998; Gupta et al., 1999; Parker,

Chalmers, Rathjen, & Langridge, 1999). Similarly, the genomic regions amplified by RAPD markers and linked to vari-

ance in targeted traits were cloned, sequenced, and translated into simple, robust, and user-friendly PCR-based markers

known as sequence-characterized amplified regions (SCARs).

SSR, DArT, and SNP marker systems for wheat have been established in the past and are now used for a variety of

purposes. SSRs can be used in both coding and noncoding areas of the genome and have a wide range of length varia-

tion (Bryan et al., 1997; Devos, Moore, & Gale, 1995; Gupta & Varshney, 2000; Roder, Plaschke, Konig, Borner, &

Sorrels, 1995; Zane, Bargelloni, & Patarnello, 2002). SSRs have been found to have much more polymorphism than

RAPD, RFLP, and AFLP markers (Bryan et al., 1997; Gupta et al., 2002; Korzun, Roder, Worland, & Borner, 1997;

Ma, Roder, & Sorrells, 1996; Plaschke, Ganal, & Roder, 1995; Roder et al., 1995).

There are approximately 3000 and 2000 SSR loci in the available wheat genetic and physical maps prepared using

SSR markers, respectively (Goyal et al., 2005; Gupta et al., 2008a, 2008b; Kumar, Goyal, Mohan, Balyan, & Gupta,

2013; Sourdille et al., 2004). Despite the fact that SSRs have become the most common markers for mapping and tag-

ging QTL/genes, their use in wheat genomics has been limited due to (1) the small number of SSR motifs in the

genome, (2) their irregular distribution, (3) low-throughput gel-based genotyping, and (4) their inability to multiplex.

To address these issues, LGC (https://www.lgcgroup.com/) recently launched a new service (https://www.biosearchtech.

com/services/sequencing/microsatellite-ssr-conversion-service) that uses cutting-edge techniques to transform SSR mar-

kers into stable, high-throughput, and cost-effective markers. When opposed to one another, different methods for the

production of molecular markers have advantages and drawbacks (Agarwal, Shrivastava, & Padh, 2008; Belete, 2018;

Kesawat & Das, 2009), but the reasons for choice vary depending on the needs of consumers.

20.4 Wheat genomics for development of marker and its utilization

Thanks to their abundance in the genomes, versatility for high-throughput genotyping/detection formats, and compara-

tively low cost, SNP markers have quickly risen to the top of the available molecular markers not only in wheat but

also in other crops. SNP markers are the most basic kind of molecular markers, allowing alleles of a gene to differ by a

single base pair (nucleotide; DNA building block). The smallest unit of inheritance is a single nucleotide (any of A, T,

G, or C) in a gene sequence, and the smallest unit of genetic difference is an SNP.

SNPs are biallelic molecular markers that have variations of four distinct nucleotides. SNPs may be categorized as

transformations (A/G or T/C) or transversions (A/T, A/C, G/T, or G/C) based on nucleotide substitution. In a DNA
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sequence an SNP could substitute one nucleotide guanine (G) with the nucleotide adenine (A). This SNP variant can be

seen in both the coding (exons) and noncoding (introns) parts of a genome, as well as intergenic regions between genes.

SNPs are normally discovered in silico using preexisting databases with expressed gene tags (ESTs) or sequences from

genome surveys (Picoult-Newberg et al., 1999).

SNP markers for the disease-resistant gene Lr34/Yr18/Pm38, which provides resistance to several fungal pathogens,

were identified and established by Lagudah, Krattinger, and Herrera-Foessel (2009) in wheat. The production of SNP

markers in close proximity to QTL/genes was supported by the genome-wide spread of SNP variants. Following exome

sequencing of eight wheat varieties, Allen et al. (2013) reported 10,251 codominant SNPs from 95,266 putative SNPs

(Alchemy, Avalon, Cadenza, Hereward, Rialto, Robigus, Savannah, and Xi19). These codominant SNP markers and

map can be used to characterize germplasm, conduct QTL experiments, and perform MAS. As a result of these

advancements in wheat genomics and breeding, various QTL and underlying genes regulating economically significant

traits have been identified, tagged, and cloned (Gale, 2005; Gupta & Varshney, 2000; Landjeva et al., 2007; Lorz &

Wenzel, 2004; Nadeem et al., 2018; Mir, Hiremath, Riera-Lizarazu, & Varshney, 2013).

20.5 Status of genotyping platform of bread wheat and its progenitors

The development of robust markers to detect introgressed segments of QTL/gene in the history of recipient wheat geno-

type is a major challenge for wheat geneticists and breeders. Thanks to their broad and standardized distribution in the

genome, SNP markers are currently dominating in genetic research, and their detection relies on the comparison of

homologous sequences between genotypes to identify allelic differences at the single-nucleotide stage (Ganal, Altmann,

& Roder, 2009; Paux, Sourdille, Mackay, & Feuillet, 2011; Przewieslik-Allen et al., 2019; Rimbert et al., 2018; Wang,

Wong, Forrest, & Allen, 2014). Next-generation DNA sequencing (NGS) technologies (such as Illumina’s HiSeq,

Roche Applied Science’s 454, Life Technologies’ SOLiD) have greatly increased the discovery of whole-genome SNPs

at ever-lower costs (Berkman et al., 2013; Mardis, 2008; for review see Gupta, Rustgi, & Mir, 2013 for review).

Because of their potential to uncover a vast number of SNPs from entire genomes, these NGS platforms have captivated

consumers (Allen et al., 2011; Bajgain, Rouse, Tsilo, Macharia, & Bhavani, 2016; Cavanagh et al., 2013; Elshire,

Glaubitz, & Sun, 2011; Lai et al., 2012; Poland et al., 2012b; Saintenac, Jiang, Wang, & Akhunov, 2013a; Saintenac

et al., 2013b; Wang et al., 2014; Winfield et al., 2016). Several technologies for SNP genotyping have been used con-

currently with SNP exploration, ranging from low-throughput to high- and ultrahigh-throughput in wheat (Cubizolles

et al., 2016; Edwards, Reid, Coghill, Berry, & Barker, 2009; Rimbert et al., 2018). Two relevant advanced technologies

[Microaaray-Based Genotyping and Genotyping-by-Sequencing (GBS)] for genome-wide SNP discovery and subse-

quent mapping that are currently being used in wheat are explored further in the chapter.

20.5.1 High-throughput SNP genotyping: microarray-based genotyping

The identification of SNPs from whole-genome and/or transcriptome sequencing using NGS technologies is needed for

the development of SNP arrays. This database of DNA/cDNA sequences (NGS reads) is a fantastic tool for detecting

SNPs. In addition to NGS-based SNP detection, genomic sequences or EST sequences from various libraries have

recently been used for SNP recognition. Clevenger, Chavarro, Pearl, Ozias-Akins, and Jackson (2015) presented an

overview of experimental approaches to SNP calling in polyploid organisms such as wheat. Microarrays based on fixed

sets of SNP assays have recently been developed by Illumina (Illumina, San Diego, the United States) and Affymetrix

(Affymetrix Inc., Santa Clara, CA) for large-scale SNP genotyping (Gupta et al., 2008a, 2008b).

The Infinium II assay system performs whole-genome amplification through a single-base extension step and distin-

guishes two alleles of a known SNP by incorporating two hapten-labeled dideoxynucleotides (ddNTPs), namely dinitro-

phenol (red fluorescence) for adenosine (A) and thymine (T) and biotin (blue fluorescence) for cytosine (C) and

guanine (G). Infinium II assay uses two fluorescence color assays, so signals have two intensity values per locus

depending on allele forms (Gunderson, 2009). The Illumina iScan device scans the fluorescence signals of the assay

matrix for more data visualization in the diploid and polyploid versions of the software GenomeStudio. The identifica-

tion of a significant number of SNPs necessitates high-throughput genotyping. Illumina currently provides a number of

custom genotyping array solutions, including the Illumina Infinium iSelect HD chip, which allows unrestricted access

to queried SNPs. Wheat has been successfully engineered and used with high-density Infinium arrays for whole-

genome SNP genotyping. The International Wheat SNP Working Group (IWSWG) developed the Infinium 9K and 90K

iSelect SNP genotyping arrays in partnership with Illumina (Cavanagh et al., 2013; Wang et al., 2014). 7504 SNPs

were detected using a 9K iSelect SNP array, and a consensus genetic map of wheat was generated with an average
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density of 1.9 1.0 SNP/cM (Cavanagh et al., 2013). A total of 46,977 SNP markers on wheat chromosomes were

mapped using the 90K iSelect SNP array (Liu et al., 2016; Wang et al., 2014). Following that, the 90K iSelect SNP

array was used for phylogenetic analysis (Turuspekov, Plieske, Ganal, Akhunov, & Abugalieva, 2015), QTL analysis

for preharvest sprouting tolerance (Cabral et al., 2014), loose smut resistance (Kumar et al., 2018), leaf rust resistance

(Gao et al., 2016a; Gao, Turner, Chao, Kolmer, & Anderson, 2016b; Kumar et al., 2019), physiological traits (Gao

et al., 2016a, 2016b) and agronomic traits (Zou et al., 2016); and genome-wide association analysis (GWAS) (Alomari

et al., 2019; Garcia et al., 2019; Li, Wen, & Liu, 2019; Liu et al., 2018; Liu, He, & Rasheed, 2017). Gao, Zhao, Huang,

and Jia (2017) recently discovered 7989 iSelect SNP loci involved in wheat domestication and improvement, as well as

a first-generation map of selection loci for evolutionary studies and breeding. In the genic, repeated, and nonrepetitive

intergenic fractions of 8 wheat lines, Rimbert et al. (2018) discovered 3.3 million SNPs a year later. TaBW280K is a

high-throughput SNP genotyping array that they created. A biparental population originating from a cross between

Chinese Spring and Renan was genotyped using the TaBW280K SNP array, resulting in an ultrahigh-density genetic

map of 83,721 SNP markers.

In addition, the Affymetrix Axiom framework has produced a significant number of high-density wheat genotyping

SNP arrays. Jordan et al. (2015) previously reported 1.57 million SNPs in 107 Mb sequences from nonredundant low-

copy genic regions in 62 wheat genotypes. Winfield et al. (2016) used exome sequencing (exome-seq) to collect 57 Mb

of coding sequences in 43 hexaploid wheat accessions and found 9,21,705 (921K) putative SNPs. Of these, 820K high-

quality SNPs were used in an array and used to genotype 475 wheat and related accessions. Following that, 35,143

strongly polymorphic and uniformly distributed SNP markers were selected from the 820K SNP sample, and a 35K

SNP genotyping array (also known as Wheat Breeder’s Array) was built on the Affymetrix GeneTitan platform (Allen

et al., 2017). This Wheat Breeder’s Array includes SNP markers that were used to identify 2713 wheat genotypes,

including landraces, elite lines, and five mapping populations (Allen et al., 2017).

Furthermore, the Wheat660K SNP array, engineered by the Chinese Academy of Agricultural Sciences (https://

wheat.pw.usda.gov/ggpages/topics/Wheat660 SNP array developed by CAAS.pdf) and synthesized by Affymetrix

Axiom, has been usable for a wide variety of possible wheat applications. Cui et al. (2017) used an Affymetrix

Wheat660K SNP array to genotype 188 recombinant inbred lines (RILs) derived from a cross between KN2904 and

J411 to create an ultrahigh-density genetic map of 1,19,566 SNP loci. Using a high-density SNP map and phenotypic

results, a big stable QTL (qKnps-4A) for kernel number per spike was discovered (Cui et al., 2017). Comparative geno-

mic research was performed on the genomic sequences of rice (Oryza sativa), thale cress (Brachypodium distachyon),

sorghum (Sorghum bicolor), and maize (Zea mays) using mapped SNP flanking sequences and corresponding contig

sequences of wheat. Furthermore, a new Affymetrix Wheat55K SNP array was created using 53,063 SNP sequence tags

carefully chosen from the Wheat660K SNP array. The Wheat55K collection featured SNP tags that were evenly distrib-

uted in all 21 wheat chromosomes (2600 SNPs per chromosome) with an average distance of 0.1 cM and a physical dis-

tance of approximately 300 kb (Ren et al., 2018).

Cui et al. (2017) and Rimbert et al. (2018) created and communicated two ultrahigh-density genetic maps of SNP

markers that can be used to map and dissect complex traits in hexaploid and tetraploid wheat. To date, no publicly

available wheat genetic maps have the same SNP density as Cui et al. (2017) and Rimbert et al. (2018). International

Wheat Genome Sequencing Consortium (IWGSC) has also used these two SNP maps to anchor and order the wheat

genome reference sequence. The studies cited previously show the importance and strength of array-based SNP geno-

typing in wheat. Due to a variety of advantages such as nucleotide-level variation detection, versatility, speed, and cost-

effectiveness, array-based SNP genotyping technologies have gained popularity among users (Thomson, 2014).

Researchers can conduct genetic and physical imaging, marker�trait comparisons, and evolutionary relationship

investigations by evaluating existing SNP genotyping platforms. However, owing to the usage of a small collection of

wheat germplasm for designing SNP arrays, the genotyping results obtained using the arrays could have determination

bias. GBS, a more modern alternative to genotyping technologies, may be used to address these drawbacks. The discov-

ery of a large number of SNPs, as well as the growth of Infinium and Axiom arrays, have provided the wheat commu-

nity with useful information and tools that could revolutionize wheat breeding.

20.5.2 High-throughput SNP genotyping: genotyping-by-sequencing

NGS for genetic analysis has evolved from a limited number of loci to hundreds of thousands of SNPs due to its grow-

ing adaptability and affordability. Prior to sequencing, the reduced-representation sequencing (RRS) method captures

only basic DNA regions flanked by restriction enzymes, eliminating genome complexity. There are at least 13 different

approaches in the RRS approach family (Scheben, Batley, & Edwards, 2017), 1 of which is GBS. Because of its
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simplicity, rapidity, and robustness, the GBS, which was first implemented in maize by Elshire et al. (2011) and later in

barley and wheat by Poland, Brown, Sorrells, and Jannink (2012a), is becoming a common genotyping process.

As an alternative to genotyping systems that target a single polymorphism, GBS samples entire DNA for sequencing

with certain average sequence depth (depending on the species being used) of genome. GBS primarily depends on

restriction endonucleases to catch only the portion of the genome flanked by restriction sites and uses one or two

restriction endonucleases to capture only the portion of the genome flanked by restriction sites (Elshire et al., 2011; He,

Holme, & Anthony, 2014). This method of genotyping necessitates the use of high-quality genomic DNA at the

required concentration for library planning (Davey & Blaxter, 2011). GBS has been shown to be effective in predicting

breeding values in wheat (Poland et al., 2012a) and other crop plants by genomic selection and genetic studies (Bhatia,

Wing, & Singh, 2013).GBS provides for the identification of polymorphisms due to the presence/absence of variants in

addition to SNPs (Deschamps, Llaca, & May, 2012). For high-density genetic maps, marker�trait interaction, and geno-

mic selection for days to heading, thousand grain weight, and yield, the GBS for high-throughput genotyping has been

commonly used in wheat (Bhatta, Morgounov, Belamkar, & Baenziger, 2018a; Gao et al., 2017; He et al., 2014; Jamil

et al., 2019; Poland & Rife, 2012; Poland et al., 2012a, 2012b). This method has also been used in wheat to map genes/

QTLs for disease and insect resistance, as well as preharvest sprouting tolerance (Bhatta, Morgounov, Belamkar,

Yorgancılar, & Baenziger, 2018b; Forrest et al., 2014; Gao et al., 2015; Li et al., 2015a, 2015b; Lin et al., 2015; Zhao

et al., 2019). Despite the fact that GBS has the capacity to recognize millions of SNPs, higher levels of missed data

(incomplete SNP data) caused by inadequate sequencing coverage often reduce the number of SNPs that can be used

for downstream study (Elshire et al., 2011). In large datasets like GBS, missing data occur when certain experimental

lines lack a genotype value at a specific locus, but it is correctly identified and labeled in the remaining lines. The vol-

ume of missing data can be reduced by using high-quality genomic DNA, streamlined sequence depth, effective GBS

library planning, and sequencing precision.

In wheat and other cereals an improved version of the GBS protocol was developed and used to raise insightful

SNPs at a low cost (Poland et al., 2012a, 2012b; Huang, Poland, Wight, Jackson, & Tinker, 2014). The use of imputa-

tion approaches to deal with incomplete data has piqued interest. Genotype imputation is a method of estimating miss-

ing genotypes using statistical algorithms such as IMPUTE and fastPHASE; as a result, any value for missing data may

be calculated using logical values based on the available reference genome sequence (Torkamaneh & Belzile, 2015);

however, the precision of predicted missing data can be dependent on the reference genome’s completeness. Alipour

et al. (2019) recently demonstrated how to impute missing genotype data provided by GBS in wheat and barley using

the reference genome. The authors found that among the four reference genomes tested (the CSSS, W7984, and

IWGSC RefSeq v1.0 wheat reference genomes, and the barley reference genome), IWGSC RefSeq v1.0 imputed the

most incomplete SNP data points with sufficient imputation precision. GBS provides a quick, easy, and effective tech-

nology of choice for simultaneous detection and genotyping SNPs for genomic-assisted breeding in wheat improvement

when combined with data imputation.

20.6 Utility and achievement of high-throughput genotyping approaches in wheat

In a polyploid species like common wheat, which has a massive and complex genome, it has been important for identi-

fying genome-wide SNPs using NGS technologies. It is now possible to search the whole genome for SNP discovery

and variation using current rapid sequencing technologies (NGS) and appropriate computer software. The availability of

a high-quality reference genome for Chinese Spring wheat has accelerated the resequencing of germplasm accessions

and population lines to reliably diagnose SNP variations even within breeding lines that are quite close.

SNP markers are currently showing potential in wheat breeding and genomic science, and they are helping to ana-

lyze diverse traits in all modern breeding programs. These markers, for example, have given researchers a better under-

standing of genetically nuanced traits, including drought and heat resistance. Drought resistance in wheat is governed

by a large number of QTLs (or polygenes) with a limited influence. Water-use efficiency, root system architecture,

coleoptile length, stomatal conductance, canopy temperature, carbon isotope discrimination, plant phenology, grain

yield, and related traits are among the drought-responsive traits (Ahmad, Ali, & Ahmad, 2017; Gupta, Balyan, &

Gahlaut, 2017). Despite the fact that a variety of QTL for the above traits have been detected and mapped, low-density

genetic maps have resulted in these QTLs being located at significant intervals between flanking markers. The huge dif-

ference between QTLs and flanking markers has made it difficult to use QTLs in wheat breeding by MAS. As a result,

high-throughput SNP genotyping approaches (array-based and GBS) have been used to generate a significant number of

useful SNP markers that are closely correlated with targeted trait QTL/genes.
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A GWAS for yield and related traits under rain-fed conditions was recently conducted on a panel of 123 wheat culti-

vars from Pakistan (1947�2015) using the Infinium 90K SNP genotyping assay (Ain et al., 2015). This resulted in the

discovery of 14,960 polymorphic SNPs, as well as 44 marker�trait associations (MTAs) for 9 yield-related traits. On

seven distinct wheat chromosomes, nine multitrait MTAs were identified. Gene annotation of the 44 MTAs, as well as

their syntenic relationships to genes in rice, brachypodium, and sorghum, allowed the discovery of 14 MTAs that

encode proteins that are expressed in response to stress conditions (Ain et al., 2015). The Seeds of Discovery (SeeD)

software at CIMMYT used GBS to investigate 1423 spring wheat accessions for a variety of essential traits, including

drought and heat resistance (Sehgal et al., 2015). They found 1273 GBS-SNPs in drought-adapted landraces and 4473

SNPs in landraces adapted to heat stress conditions. To make the most of the marker data, more than 200 landraces and

synthetic wheat were chosen for their potential use in prebreeding and allele mining of drought and heat stress tolerance

candidate genes. Synthetic wheat accessions were found to be more varied than landraces and elite cultivars, according

to the mean diversity index. According to the findings, unexplored genetic diversity in landraces and synthetic hexa-

ploid wheat accessions can be characterized and mobilized into well-adapted common cultivars (Sehgal et al., 2015).

Although several experiments have been done, only a few have compared genotypic datasets from array- and GBS-

based approaches (Elbasyoni et al., 2018; Torkamaneh & Belzile, 2015).

While the SNPs obtained from array-based genotyping are of high quality, the cost per sample is significantly high-

er. SNP data collected from the GBS network, on the other hand, are greater in volume but have a high proportion of

missed calls. The discovery of new SNPs is not possible with array-based genotyping, which is not the case with GBS.

Nonetheless, both genotyping technologies are complementary for detecting and mapping essential QTL/genes, based

on available SNP genotyping results (Negro, Millet, & Madur, 2019). Elbasyoni et al. (2018) recently compared SNP

genotyping data from a 90K SNP array and GBS in winter wheat to estimate population structure and genomic kinship.

GBS-scored SNPs are equal to or higher than 90K SNP array-scored SNPs for genomic prediction, according to the

authors. The various genotyping technology choices should be carefully analyzed in light of the intended purposes and

objectives.

20.7 Conversion of trait-linked SNPs to user-friendly markers

As previously said, the most favored technologies for multiplexing and high-throughput SNP analysis in trait explora-

tion are array-based genotyping and GBS. If a limited number of chosen SNPs are to be genotyped on a huge set of

germplasm and breeding lines, they are inflexible and costly. It is critical to find an SNP assay that’s modular, cost-

effective, user-friendly, and time-saving, as well as generates high-quality results. LGC Genomics (http://www.

lgcgroup.com/) solved this research challenge by developing a uniplex SNP genotyping tool called KASP

(KBiosciences Competitive Allele-Specific PCR also known as Kompetitive Allele-Specific PCR) (Mir et al., 2013;

Neelam, Brown-Guedira, & Huang, 2013; Semagn, Babu, & Hearne, 2014). The KASP genotyping device is a homoge-

neous fluorescent endpoint genotyping technology that was developed by KBiosciences and later acquired by LGC

Genomics in 2011. KASP is a simpler, cheaper, and more compact way to evaluate both SNP and insertion�deletion

genotypes among the available uniplex systems (Semagn et al., 2014). GBS or array-based systems may be used to

build KASP assays using trait-associated SNP flanking sequences (50-bp upstream and 50-bp downstream around the

SNP variant position) (Dereeper, Homa, & Andres, 2015). Here you can find a detailed procedure/protocol for KASP

genotyping chemistry, as well as the required tools, software, and reagents, as well as information on designing KASP

primers, data production, and data scoring. Allen et al. (2011) used an Avalon/Cadenza doubled haploid mapping popu-

lation to create a 548 locus genetic linkage map in hexaploid wheat for the first time. SNP genotyping services are

available from LGC Genomics directly as well as through the Generation Challenge Program and the Integrated

Breeding Platform for a variety of crops, including wheat. The following websites/databases provide information on

KASP assays and their mapping to wheat chromosomes:

1. LGC Genomics wheat panel (http://www.lgcgroup.com/wheat/#.VfMk3q10y70)

2. CerealsDB KASP SNPs database (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php; https://

www.cerealsdb.uk.net/cerealgenomics/CerealsDB/kasp_mapped_snps.php)

3. Integrated Breeding Platform (https://www.integratedbreeding.net/482/communities/genomics-crop-info/crop-infor-

mation/gcp-kasparsnp-marker)

4. LGC’s online wheat genotyping (https://biosearch-cdn.azureedge.net/assetsv6/Wheat-poster-Key-trait screening.pdf;

https://www.researchgate.net/institution/LGC_Biosearch_Technologies2/post/

58458fbfdc332d599f0c2991_KASPR_Genotyping_Markers_for_Key_Wheat_Traits)
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Rasheed et al. (2016) used a panel of 300 cultivars and four RIL populations to validate 70 KASP-based assays of

functional markers for agronomic, disease resistance, drought tolerance, preharvest sprouting tolerance, and end-use

efficiency traits in wheat. The validated KASP assays related to (1) agronomic traits, including Ppd-B1, Ppd-D1, VRN-

A1, VRN-B1, VRN-D1, Rht-B1, Rht-D1, TaCwi-5D, TaGS-D1, TaTGW6-3A, TaGASR-A1, TaSus2-2B, TaCKX-D1, and

TaMoc1-7A; (2) disease resistance, including Lr34TCCIND and Lr34jagger for Lr34; (3) drought tolerance, including

TaDreb-B1, 1-feh w3, and TaCwi-4A; (4) preharvest sprouting tolerance, including TaPHS1, TaSdr-B1, TaVp-1B, and

TaMFT-A1; and (5) end-use quality comprising Glu-A1, Glu-B1, Glu-D1, Pina-D1, Pinb-D1, Pinb-B2, Ppo-A1, Ppo-

D1, Psy-A1, Psy-B1, Psy-D1, and Zds-A1 were used for function polymorphism (Rasheed et al., 2016).

Following MAS in wheat genetic improvement, KASP-based SNP markers can be used to pyramid favorable genes/

alleles after confirmation. In addition, for genetic research, the KASP marker method has been used in pigeon pea

(Saxena et al., 2012), chickpea (Hiremath et al., 2012), Indica rice (Pariasca-Tanaka et al., 2015; Steele et al., 2018),

and Japonica rice (Cheon, Baek, Cho, Jeong, & Lee, 2018). The KASP framework allows users to configure a selection

of trait-linked SNPs for genotyping and further validation on a panel of wheat germplasm. In addition to the KASP gen-

otyping system, the TaqMan assay (Woodward, 2014), semithermal asymmetric reverse PCR (Long, Chao, Ma, Xu, &

Qi, 2016), Amplifluor SNP genotyping system (Jatayev et al., 2017), and RNase H2 enzyme-based amplification

(rhAmp) (https://eu.idtdna.com/pages/products/qpcr-and-pcr/genotyping/rhamp-snp-genotyping). All five strategies

include allele-specific uniplex genotyping platforms with superior chemistry and scalability without sacrificing cost or

data throughput (Ayalew et al., 2019; Broccanello et al., 2018; Rasheed et al., 2017).

20.8 Conclusions and future directions

DNA sequencing and genotyping methods have clearly progressed and are now one of the most successful breeding

techniques for identifying beneficial alleles that contribute to phenotype variation. Wheat genome sequencing data are

being generated at a faster and cheaper pace thanks to the continued help of new technology. The discovery of a larger

number of genome-wide SNPs is likely to have the greatest effect on the production of secret variation, particularly

near chromosome centromeric regions. The current problems will most likely shift away from wheat genome research

and toward the correlation of sequence variance with economically significant traits. High-resolution mapping and clon-

ing of major QTLs will be accelerated by the introduction of ultrahigh-density SNP maps (over 100K markers).

Furthermore, combining related QTLs from different experiments and predicting a meta-QTL will further improve the

role of QTLs and their associated genes. As a result, user-friendly practical assays based on candidate genes can be

used to target alleles in wheat marker-assisted breeding programs. Future study is expected to emerge as molecular

marker technology advances, making them a more useful and efficient breeding tool.
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21.1 Introduction

Potato (Solanum tuberosum L.) is one of the world’s most important food crops, ranking third in terms of global pro-

duction just behind rice and wheat (Birch et al., 2012). Limited genetic variation makes the crop vulnerable to disease

and insect epidemics. Genetic vulnerability could have devastating effects on mankind, as occurred in Ireland in 1845,

when the late blight disease caused by Phytophthora infestans destroyed the potato crop. The famine that occurred

resulted in death of million Irish people due to starvations and the exodus to other countries of another million people.

Some biotic or abiotic stresses on potato cannot be managed by chemical sprays. Major abiotic stresses (high tempera-

ture, drought, soil salinity, and nutrient) and biotic stresses (late blight, bacterial wilt, root-knot nematode and viruses)

adversely affect plant development, tuberization, tuber bulking, thus influencing both tuber yield and quality (Minhas,

2012; Wang-Pruski & Schofield, 2012). These factors, along with rapid global population are a major challenge to

attain global food security. Moreover, food demand is expected to increase by 59%�98% between 2005 and 2050

(Valin et al., 2014). The growing concerns regarding food security demand crop improvement using diverse approaches

for sustainable agriculture.

In recent decades, significant advances in nucleic acid sequencing and information technology have created several

omics branches dealing specifically with the molecular components of cellular biology. Genome sequencing provides

an unprecedented molecular blueprint for an organism, yielding evolutionarily linked information about their potential

metabolic and physiological behavior. Parallel descriptive methods that expand along the canonical flow of biological

information (DNA/RNA/proteins/metabolites) by extension from genomics are desired to extend this research beyond

the “blueprint” to high-throughput analysis of the molecular changes underlying macroscopic behavior. In the order

of this information flow, high-throughput analytical disciplines have emerged, including genomics, transcriptomics,

proteomics, metabolomics, ionomics, and phenomics, which together constitute what is known as the “omics cascade”

(Fig. 21.1) (Dettmer, Aronov, & Hammock, 2007) which provides a comprehensive view of molecules at the cellular,

tissues, or organism level.

A combination of one or more of the “omics platforms” is required to deliver reliable information. Such multiple

“omics data sets tend to be very large, as they represent a series of time point and/or treatment samplings and their anal-

ysis can only be addressed computationally” (Bieda, 2012; Kohl et al., 2014; Schumacher, Rujan, & Hoefkens, 2014).

The prior acquisition of a full genome sequence aids to interpret such data substantially. Combined with phenotyping

techniques, the genome sequence of potatoes offers a powerful and rapid tool for determining the genetic basis of agri-

culturally important traits. The advantage of omics-assisted technology is that genotypic data obtained from a seed or

seedling can be used to predict the phenotypic performance of mature individuals without the need of extensive pheno-

typic evaluation over years and environments. Integrations of various omics methods, techniques, and approaches to

advance potato research are discussed in this chapter.
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21.2 Potato genomics

21.2.1 Whole-genome sequencing and resequencing

The genomic understanding of potato has been impeded by a strongly heterozygous and complex genome. The culti-

vated potatoes are autotetraploid with a basic chromosome number of 12 and an estimated genome size of 840 million

base pairs. The availability of the first potato genome sequence and several transcriptomes from a diverse set of potato

genotypes, organs, and developmental conditions, have produced genomic tools useful for studying genetic diversity

and gene networks that underlie significant characteristics such as disease resistance, tolerance to stress and quality

(Kikuchi, Huynh, Endo, & Kazuo, 2015; Ramakrishnan, Ritland, & Blas Sevillano, 2015; Spooner, Ghislain, Reinhard,

Jansky, & Gavrilenko, 2014). The publicly accessible potato reference genomes are currently from the doubled mono-

ploid S. tuberosum Group Phureja DM1-3 (Potato Genome Sequencing Consortium, 2011), the wild diploid Solanum

commersonii (Aversano et al., 2015), and the diploid, inbred clone of Solanum chacoense M6 (Leisner, Hamilton,

Crisovan, Manrique-Carpintero, & Marand, 2018).

Whole-genome resequencing can reveal important differences between cultivated potato varieties and related wild

species, especially at a large scale. Traditionally, the cost of resequencing entire populations of samples has been pro-

hibitive, and thus there has been a need for novel solutions to genotype large collections of potato germplasm. Twelve

(Kyriakidou, Achakkagari et al., 2020) and six (Kyriakidou, Anglin, Ellis, Tai, & StrÃmvik, 2020) potatoes with differ-

ent levels of ploidy genomes have recently been sequenced. The two publicly available reference genomes S. tuberosum

Group Phureja (DM1-3) and S. chacoense M6 clone were compared to these genomes for copy number variation

(CNV) and single nucleotide polymorphism (SNP) analyses. The study showed the great diversity of potato genomes

across this panel and identified a number of CNVs in genes implicated in disease resistance and stress, among other

processes.

21.2.2 Molecular markers

Genomic research has a great capability in speeding up breeding processes thus helping in crop improvement like

marker-assisted selection and gene pyramiding. In case of potato, several molecular markers have been developed using

simple sequence repeat, amplified fragment length polymorphism, nucleotide binding site, or expressed sequence tag

(EST) with the aim to genetically localize favorable traits. For example, several studies have identified loci associated

with resistance to late blight (Tiwari, Siddappa, & Singh, 2013), potato virus Y (Fulladolsa et al., 2015; Gebhardt,

Bellin, & Henselewski, 2006; Nie, Sutherland, & Dickison, 2016; Song, Hepting, & Schweizer, 2005), potato virus X

(Gebhardt et al., 2006; Ritter, Debener, & Barone, 1991), and Verticillium wilt (Simko, Haynes, & Ewing, 2004; Uribe,

Jansky, & Halterman, 2014). There are considerably fewer studies, on the other hand, focusing on polygenic (i.e., quan-

titative) characteristics such as tuber quality (Li, Tacke, & Hofferbert, 2013) and tuber starch and yield (Schönhals,
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Ortega, & Barandalla, 2016). Regardless of trait, many of these low-throughput, gel-based, markers in their current

form are not suitable for large-scale screening of progenies, which would be required for application in a breeding pro-

gram. Recent advancements and tremendous cost reductions associated with high-throughput sequencing have made it

possible for different species, including potato the development of genetic markers with a single-nucleotide resolution

that can be rapidly assayed on hundreds to thousands of individuals. These molecular markers can be used in applica-

tions such as marker-assisted breeding, quantitative trait loci (QTL) determination, genome-wide association studies

(GWAS), evolutionary and diversity studies (Uitdewilligen, Wolters, & D’hoop, 2013).

The most popular method in the last decade for high-throughput SNP genotyping has been genotyping arrays.

Several SNP arrays for potato have been developed. The Infinium 8303 Potato Array (Felcher, Coombs, & Massa,

2012), which was developed using SNPs identified in two previous studies, is currently one of the most popular: one

that mined markers from potato EST databases (Anithakumari, Tang, & van Eck, 2010) and a second that analyzed

cDNA sequences from six accessions of elite potato germplasm (Hamilton, Hansey, & Whitty, 2011). The SolSTW

array is another recently developed SNP platform. It includes a total of 14,530 SNP markers, most of which were

selected from a previous sequence-based genotyping experiment (Vos, Uitdewilligen, & Voorrips, 2015). The design of

this array was focused on expanding the genetic sources of the markers, reducing biases and making it more useful for

applications such as marker-assisted breeding. Both techniques have become popular in the agricultural genomics and

ecological genetics communities, respectively. Among the several SNP-based genotyping methods, the genotyping by

sequencing (GBS) approach is a highly multiplexed system for constructing RRL (reduced representation libraries),

molecular marker discovery, and genotyping for crop improvement (Elbasyoni et al., 2018; Eltaher et al., 2018). GBS

has been applied to many crop species due to low cost and advanced technologies (Kim et al., 2016; Poland & Rife,

2012). In potato, there has been limited application of GBS for molecular marker development perhaps due to the

highly heterozygous, tetraploid genome. In one instance, however, a modified GBS approach has been successfully

used in marker discovery as part of a study that genotyped a panel of 83 tetraploid potato varieties chosen to represent

the most important commercial cultivars and landraces worldwide (Ritter et al., 1991).

21.2.3 Quantitative trait loci mapping, bulked segregant analysis, and GWAS

Marker-based approaches that include genetic fingerprinting, linkage maps, and QTL mapping require extensive geno-

type data. Linkage mapping and association mapping have led to the detection of QTL by identifying marker�trait

associations (Cockram & Mackay, 2018). Much attention has been given to mapping QTLs for many abiotic stresses

such as salinity, drought, and low temperatures in potato; however, it is still important to explore other stresses such

as elevated temperatures, minimal nutritional regimes, and environmental pollutants (heavy metals, ozone). QTL map-

ping was performed using a linkage map for drought tolerance in potato, a total of 23 QTLs were identified from con-

trol, polyethylene glycol (PEG) stress, and recovery treatments under in vitro conditions. Among these, 10 QTLs were

located on chromosome 2, and on linkage groups 2, 3, and 8, 3 QTLs involved in root-to-shoot ratio characteristics

were found. In another study by the same group, a total of 47 QTLs were identified in a diploid potato mapping popula-

tion under well-watered, drought, and recovery conditions (Anithakumari et al., 2010). Among them, 28 QTLs were

drought-specific, 17 were specific to the recovery treatment, and 2 were unique to the well-watered condition. A total

of 31 significant QTLs were located on chromosomes 5 and 4 for different traits in drought, recovery, and well-watered

conditions. Four QTLs for δ13C, three for chlorophyll content, and one for chlorophyll fluorescence (Fv/Fm) were

detected to colocalize with yield and other growth trait QTLs identified on other chromosomes. In addition, many

QTLs governing stress tolerance, and quality traits have been identified in potato (Table 21.1).

In contrast, a GWAS approach has an advantage over linkage mapping as it explores the genetic diversity and

recombination events present in germplasm collections and provides higher mapping resolution (Fukushima, Kusano,

Redestig, Arita, & Saito, 2009). Recently, GWAS has been used in potato germplasm collection to detect SNPs for pro-

tein content (Klaassen et al., 2019). For instance, GWAS was performed using the SolSTW 20K Infinium SNP marker

array where four QTLs have been identified enabling breeding for protein content in potato.

Bulked segregant analysis (BSA) is emerging as a method for genetic mapping that has a particularly good compati-

bility with genome resequencing. BSA is an approach for gene mapping where pooled DNA from individuals is geno-

typed as a single bulked sample. The method was originally applied in lettuce using individuals from a single biparental

cross that segregated for a downy mildew resistance (Michelmore, Reyes Chin-Wo, & Kozik, 2016), but it can also be

used for three-way, four-way, and multiparental crosses, including those developed with special designs such as diallel

design, North Carolina design, multiparent advanced generation intercross, and nested association mapping (Zou,

Wang, & Xu, 2016). BSA has been used successfully in potato to map steroidal glycoalkaloid content in tetraploids
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(Kaminski, Kørup, & Andersen, 2016). The use of whole-genome sequencing for genotyping will become more com-

mon as sequencing costs decrease.

21.3 Potato transcriptomic

Transcriptomics is the field of molecular biology that studies the transcriptome: the complete set of transcripts in a cell,

tissue, or organism, which includes the messenger RNA (mRNA) and noncoding RNA (ncRNA) molecules (Morozova,

Hirst, & Marra, 2009). To date, several transcriptomic studies have been documented in potato governing response to

TABLE 21.1 Significant quantitative trait loci (QTL) mapping studies performed to identify loci governing biotic,

abiotic stress tolerance and quality in potato.

Trait QTL Chromosome Position

(cM)

LOD

score

R% References

Late blight qrAUDPC-3
qrAUDPC-8
qrAUDPC-5
qrAUDPC-4
qrAUDPC-3.1
qrAUDPC-1

3
8
5
4
3.1
1

68
58
7
67
40
98

2.9
3.5
2.9
2.5
3.1
3.4

3.9
5.2
4.2
5.4
5.6
7.2

Santa et al. (2018)

Common Scab qCS-11 11 41.2 4 18.2 Braun, Endelman, Haynes, and
Jansky (2017)

Bacterial wilt qBWR-1
qBWR-2
qBWR-3
qBWR-4
qBWR-53

1
3
7
10
11

79.1
15.0
25.3
8.8
35.0

4.09
5.56
5.33
5.54
3.26

11
15.6
18.4
15.5
9.3

Habe, Miyatake, Nunome,
Yamasaki, and Hayashi (2019)

Nematode qGpaM1
qGpaM2
qGpaM3

5
6
12

4.3
31
48

20.9
3.7
3.5

56
19
15

Caromel et al. (2013)

Osmotic
tolerant

qOS-12 12 - 2.4 26.8 Gorji et al. (2012)

Salt tolerant qNA-7 (Leaf)
qMg-3 (Stem)
qK/Na-3�(Leaf)
qCl-7(leaf)
qK/Na-1(root)

7
3
3
7
1

4.5
7.1
4.8
4.3
4.2

20.6
29.4
22.4
19.6
19.7

Losifidis (2011)

Starch content qSC-5 5 62.5 - 26.6 Li et al. (2019)

Tuber shape qTS-1 1 51.5 4.16 12.1 Hara-Skrzypiec, Śliwka, Jakuczun,
and Zimnoch-Guzowska (2018)

Eye depth qED-1 1 69.0 3.74 10.9

Tuber weight qTW-1 1 68.9 6.97 19.4

Tuber flesh
color

qTC-2 2 76.8 3.64 10.6

Cold-induced
sweetening

qCIS-4-6 4 and 6 22 and
18

5.4
and
6.0

17.1
and
19.4

Braun et al. (2017)

Starch-corrected
chip color

qSCAH-3 3 111.6 3.23 10 Sołtys-Kalina et al. (2020)

amylose qAmyl-2 2 � 5.4 25.1 Acharjee et al. (2018)

Starch gravity qSG-1 1 4.4 19.3
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abiotic/biotic stress and quality traits (Table 21.2) (Bachem et al., 2000; Barry et al., 2005; Evers et al., 2010;

Kloosterman et al., 2008; Massa et al., 2011; Tai et al., 2020). In one of the earliest transcriptomic studies of potato in

response to abiotic stresses, 20,756 ESTs from a complementary DNA (cDNA) library were constructed by pooling

messenger ribonucleic acid (mRNA) from heat-, cold-, salt-, and drought-stressed potato leaves and roots (Rensink

et al., 2005a). Later, to intensify potato transcriptomic analysis, the Potato Oligo Consortium (POCI) array was formed

with 44,000 probes representing 42,034 potato unigenes (Kloosterman et al., 2008). The array was integrated into the

functional genomics program of a Canadian consortium to improve disease resistance and tuber quality traits of potato

(Regan et al., 2006). Recent developments in high-throughput sequencing technologies of the whole transcriptome,

known as RNA-Seq, permit the analysis of all transcripts in a sample for mRNA (Fig. 21.2; Table 21.2) and miRNA

abundance (Table 21.3) in potato.

TABLE 21.2 Major transcriptomic analysis for biotic, abiotic stress tolerance and quality in potato.

Stress/condition Platform DEG Outcome References

Late blight Illumina
HiSeqX10

3354 genes Identified late blight resistance genes Yang et al.
(2018)

Potato virus Y Illumina
HiSeq2000
lanes

407 genes Identified different Potato virus Y resistance genes Goyer et al.
(2015)

Bacterial wilt Illumina-Solexa
Genome
Analyzer II

2978 genes Identified different bacterial wilt responsible genes
in Solanum Commersonii

Zuluaga et al.
(2015)

Late blight,
bacterial wilt, and
necrotic ringspot

Illumina
HiSeqTM2500

6945 genes Insights into the relationship between transcriptome
changes infected with the three pathogens

Cao et al.
(2020)

Salt stress Ilumina NextSeq 5508 Establish a basis for breeding salt-tolerant cultivars. Li, Qin, & Hu
(2020)

Drought stress Ilumina NextSeq 5118 Transcriptome profiling and characterization of
drought-tolerant potato plant

Moon et al.
(2018)

RNA-Seq 1849 Identified different drought responsible genes Sprenger
et al. (2016)

Heat stress Ilumina
HiSeq2000

1420 Identified heat stress-tolerant proteins StHsp26-CP
and StHsp70

Tang et al.
(2020)

Ilumina
HiSeq2000

2190 (leaves),
2886 (tubers)

Identified genes associated with ABA, ethylene,
auxin, and brassinosteroid, heat-shock proteins,
and transcription factors

Hancock
et al. (2014)

Microarray 2500 Identified genes associated with photosynthesis,
hormonal activity, sugar transporters, and
transcription factors

Hancock
et al. (2014)

Low temperature Microarray 53 groups of
putative
orthologous
genes

Identified key genes responsible for cold tolerant Carvallo
et al. (2012)

Cold, heat, and
salt stress

Ilumina NextSeq 2584 (cold)
1149 (salt)
998 (heat)

Identified several transcription factors, DNA-
binding proteins, transporter proteins,
phosphatases, and HSPs response to abiotic stresses

Rensink et al.
(2005b)

Nitrogen stress Ilumina NextSeq Shoots (1041)
Stolon’s (918)
Roots (864)

Identified different nitrogen-use efficiency genes Tiwari et al.
(2020a)

DEG, Differentially expressed genes; ABA, abscisic acid; HSP, heat shock protein.
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21.3.1 Biotic stress

Unlike microarray, the RNA-Seq approach is not only confined to compare the transcripts levels, but it is also useful in

novel gene discovery and spliced forms, especially in nonmodel plants. During the early stages of potato virus Y infec-

tion, RNA-Seq analysis revealed 407 differential upregulated genes in Premier Russet potato variety which is resistant

to the PVY strain O (PVYO) but susceptible to the potato virus Y strain PVYNTN. The genes identified were predicted

Spacio-Temporal (95)

Functional genomics (244)

Nitrogen Use Efficiency (96)

Drought (181)

Heat and Oxidative 
stress (46)

Disease and Pest (931)

Storage and dormancy 
(127)

Wild traits (9) 

Inbreds and Diploid breeding (878) 

Photoperiods and light intensity (63)

Potato RNA-Seq
transcriptome

Profiling
(2808)

Quality Traits (66) Cold (72) 

FIGURE 21.2 Transcriptomic resources generated through RNA-Seq approaches in potato being used for different studies. The values provided in

the parenthesis indicate approximate number of RNA-Seq libraries publicly available at SRA database (http://www.ncbi.nlm.nih.gov/sra).

TABLE 21.3 Potato miRNAs and their biological functions.

miRNAs Target genes Biological functions References

miR8788 StLL1 Late blight resistance Hu et al. (2020)

miR48, miR397 PR genes Potato virus A Li et al. (2017)

miR100 Cytochrome P450 Colorado potato beetles Mathieu, Morin, Lyons, Sébastien,
and Pier (2017)

miR165/166 and 159 Transcription factor gene Potato virus X Zhao et al. (2016)

miR162, 168A, and 482 DCL1, AGO1-2 and Cc-
nbs-lrr

Potato virus Y Szajko, Yin, and Marczewski (2019)

miR811, miR814, miR835,
miR4398

MYB transcription factors Drought stress Zhang et al. (2014)

miR166, miR159 Transcription factors Salinity stress Kitazumi, Kawahara, Onda, De
Koeyer, and de los Reyes (2015)

miR156, miR169 Transcription factors Low temperatures stress Esposito et al. (2020)

miR828 Transcription factors Purple tuber skin and flesh
color

Bonar et al. (2018)

miR397, miR398 � Nitrogen-use efficiency Tiwari et al. (2020a)
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to encode for a putative the ATP-binding cassette (ABC) transporters, an MYC2 transcription factor, a VQ

motif�containing protein, a nonspecific lipid-transfer protein, and a xyloglucan endotransglucosylase�hydroxylase

(Goyer, Hamlin, Crosslin, Buchanan, & Chang, 2015). In another literature, 265 differential expressed genes that are

virus-specific and typical potato responses were revealed for potato viruses such as potato virus A (PVA), potato virus

Y (PVY), potato leaf roll virus (PLRV) (Osmani et al., 2019).

In a recent study, in potato genotype SD20, 3354 differentially expressed genes (DEGs) were identified, which

mainly encoded transcription factors and protein kinases, and also included four NBS-LRR genes. A total of 43 DEGs

have been involved in immune response, 19 of which have been enriched by hypersensitive response reactions, which

may play an important role in P. infestans infection broad-spectrum resistance (Yang et al., 2018). Bali et al. (2019)

reported transcriptional changes among Meloidogyne chitwoodi resistant and susceptible potato genotypes after

nematode inoculation. Differential gene expression analysis reveals that at 48 h, 7 days, 14 days, and 21 days after inoc-

ulation, 1268, 1261, 1102, and 2753 genes were upregulated in PA99N82-4, respectively, of which 61 genes were com-

mon across all the time points.

21.3.2 Abiotic stress

The impact of drought stress on gene expression has been analyzed with high-throughput transcriptomics in various

plants such as rice, maize, and poplar. In a study of potato under drought stress, the transcripts that are differentially

expressed under water with holding and rewatering were identified to deepen the understanding of the molecular mech-

anism of potato stolon responding to water stimulus (Barra et al., 2019; Gong et al., 2015). By analyzing the RNA-Seq

data generated from stolon tips of potato plants in each of the three groups, the researchers identified 3189 and 1797

differentially expressed transcripts under only drought treatment and treatment of drought followed by rewatering,

respectively. Several of these genes are homologs of known drought-responsive genes in Arabidopsis, including a dehy-

drin, protein phosphatase, auxin-responsive protein, gibberellic acid�stimulated gene, calmodulin-like protein, abscisic

acid 80-hydroxylases, and calcium-transporting ATPase.

In one of the studies on the heat response of potato at the molecular level, 2190 genes were found to be differen-

tially expressed in potato leaves when the plants were exposed to moderately elevated temperatures (30�C/20�C, day/
night) for up to 5 weeks (Hancock et al., 2014). Heat-responsive genes involved in photosynthesis, lipid metabolism,

and amino acid biosynthesis were highly overrepresented at all-time points of stress treatment. In tubers a total of

2886 genes exhibited major changes in their transcript levels associated with the different temperature conditions in

the course of stress treatment. DEGs in potato tubers were underrepresented in functional categories related to cell wall

processes, lipid metabolism, aspects of secondary metabolism, hormone metabolism, biotic stress, DNA metabolism,

and development, whereas genes involved in RNA metabolism were overrepresented following moderately high-

temperature treatment. In k-means clustering of heat-responsive transcripts of potato, genes associated with ABA, ethyl-

ene, auxin, and brassinosteroid responses; heat-shock proteins and transcription factors; and genes previously associated

with abiotic stress responses were identified. These data indicate that the potato plants respond differently than other

crops to moderately elevated temperatures in such a way that they show a combination of different biochemical and

molecular pathways during tuber growth rather than known symptoms of abiotic stress.

To classify abiotic stress-responsive genes in potatoes, Rensink et al. (2005b) subjected potato seedlings to cold

(4�C), heat (35�C), or salt (100 mM NaCl) stress for up to 27 h. In at least one stress condition, a total of 3314 cDNA

clones exhibited a significant differential expression. A number of 1149 and 998 clones were up- or downregulated

under salt and heat stresses, respectively, while 2584 cDNA clones were differentially expressed under cold stress. The

functional annotation analysis of differentially expressed clones showed several transcription factors, DNA-binding pro-

teins, transporter proteins, phosphatases, and HSPs (heat shock protein) in response to abiotic stresses.

21.3.3 Quality traits

Cold-responded transcriptome of genotypes between cold-induced sweetening resistant (CIS-R) and cold-induced

sweetening sensitive (CIS-S) in tubers was reported by Liu et al. (2020). Comparative transcriptome revealed that in

both genotypes, activating the pathways of starch degradation, sucrose synthesis, and hydrolysis could be common strat-

egies in response to cold. Moreover, the variation in sugar accumulation between genotypes may be due to genetic dif-

ferences in cold response, which could be mainly explained: CIS-R genotype was active in starch synthesis and

attenuated in sucrose hydrolysis by promoting the coordinate expression of a series of genes involved in the regulation

of the CIS resistance. Liu et al. (2015) explained the molecular mechanism of white and purple potato development, by
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identifying differential responses of biosynthetic gene family members together with the variation in structural genes

[anthocyanidin 3-O-glucosyltransferase (UFGT)] and transcription factors (MYB AN1 and bHLH1) in this highly het-

erozygous crop.

21.3.4 miRNAs in potato

MicroRNAs (miRNAs) are small (21�24 nt), endogenous, nonprotein-coding RNAs that play important gene regulatory

roles in animals and plants by pairing to the mRNAs of protein-coding genes to mediate posttranscriptional repression

(Challam, Nandhakumar, & Kardile, 2018). Several microRNAs have been known to regulate abiotic and biotic stres-

ses, yield, and nutritional components in crops. As of March 2018, there were 48,885 plant mature miRNAs from 271

plant species registered in the miRBase database (Challam et al., 2018). In silico analyses have predicted the targets of

several miRNAs, and some of them were validated in the laboratory experimentally. The first attempt to identify the

miRNAs that function in development and their targets in potato was done in 2009 (Zhang, Luo, Gong, Zeng, & Li,

2009). In this study, 48 potential miRNAs were identified in S. tuberosum by in silico comparisons of known miRNAs

from other plants against potato EST, and nucleotide databases. Several other researches (Lakhotia, Joshi, & Bhardwaj,

2014; Zhang et al., 2013, 2014) followed this first analysis to identify potato miRNAs, in which the number of pre-

dicted miRNAs and their possible potato targets increased significantly, indicating that the prediction algorithms used

to identify new miRNAs and their targets have improved in recent years.

High-throughput DNA sequencing allowed researchers to identify various miRNA families affected under biotic,

abiotic stresses and quality. A total of 458 known and 674 new miRNAs in control samples were identified in a recent

comprehensive deep-sequencing miRNA analysis, while 471 known and 566 novel miRNAs were predicted in drought

samples (Zhang et al., 2014). The researchers proved that 100 of the known miRNAs were repressed while 99 of them

were induced under 20 days of drought stress in entire potato leaves. Moreover, 151 of the novel miRNAs were

repressed while 119 of them were induced in drought-treated potato leaves compared to the controls. In addition, based

on target prediction, a total of 246 target genes of known miRNAs and 214 target genes of novel miRNAs were identi-

fied. Following the transcript abundance, analyses of selected differentially expressed miRNAs and their target

mRNAs, miR811, miR814, miR835, and miR4398 were found to play roles in posttranscriptional regulation of drought-

related genes in potato. These miRNAs target an MYB transcription factor, a hydroxyproline-rich glycoprotein, an

aquaporin, and a WRKY transcription factor, respectively.

21.4 Potato proteomics

Proteomic approach is used to investigate the responses of plants to stresses as well as complexity of biochemical pro-

cesses (Aghaei & Komatsu, 2013; Ghosh & Xu, 2014; Gong, Hu, & Wang, 2015). Proteomics has the ability of identi-

fying possible candidate genes that can be used for the genetic enhancement of plants against stresses and quality

improvement (Barkla, Vera-Estrella, & Raymond, 2016; Cushman & Bohnert, 2000; Rodziewicz, Swarcewicz,

Chmielewska, Wojakowska, & Stobiecki, 2014). Different signaling pathways are reported to be activated in response

to stresses resulting in a complex regulatory network involving transcription factors, ion homeostasis, antioxidants, hor-

mones, kinase cascades, reactive oxygen species (ROS), and osmolyte synthesis (Suzuki, Rivero, Shulaev, Blumwald,

& Mittler, 2014; Yin et al., 2015). Advances in proteomic technologies have widened our genetic and molecular under-

standing of plant responses under different stresses and quality traits. Several proteomic studies in potato have been

described in Table 21.4.

21.4.1 Biotic stress

Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses com-

prise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least

two potyviral proteins localize to nucleus but reasons remain partly unknown. The nuclear proteome of leaf cells from

the diploid potato line after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) was analyzed by

Rajamaki, Sikorskaite-Gudziuniene, Sarmah, Varjosalo, and Valkonen (2020) and compared the data with that obtained

for healthy leaves. Gel-free liquid chromatography coupled to tandem mass spectrometry was used to identify 807

nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves.

Sixteen proteins were predominantly found in samples of leaves contaminated with PVA, while 16 other proteins were

specific to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, while the nuclei of PVA-infected
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leaves were overrepresented by different ribosomal proteins, ribosome biogenesis proteins, and RNA splicing-related

proteins. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. The data indicate that

potyvirus infection particularly affects ribosomes and splicing-related proteins in the nucleus.

The proteome dynamics of potato cv. Sarpo Mira was studied by Xiao et al. (2019) after foliar application of zoo-

spore suspension from P. infestans isolate, at three key time points: zero hours post inoculation (hpi) (control), 48 hpi

(EI), and 120 hpi (LI); divided into early and late disease stages by the tandem mass tagging method. A total of 1229

differentially expressed proteins (DEPs) were identified in cv. Sarpo Mira in a pairwise comparison of the two disease

stages, including commonly shared DEPs, specific DEPs in early and late disease stages, respectively. In the early

stages of infection, over 80% of the protein abundance changes were upregulated, while more DEPs (61%) were down-

regulated in the later stage of the disease. Expression patterns, functional category, and enrichment tests highlighted

significant coordination and enrichment of cell wall-associated defense response proteins during the early stage of

TABLE 21.4 Major proteomic analysis for quality, biotic and abiotic stress tolerance in potato.

Particular Technique Number of

proteins

identified

and

quantified

Potential for translational research References

Potato virus A LC-Ms/MS 807 nuclear
proteins

Identified PVA infection alters
ribosomes and splicing-related proteins
in the nucleus of potato leaves

Rajamaki et al.
(2020)

Late blight Quantitative proteomics 8 proteins
obtained from
leaves

Indicated that CurdOs exhibit activation
effect on the early- and late-defense
responses in potato leaves

Li et al. (2014)

Quantitative proteomics 4000 unique
proteins

Detect and quantify between 3248 and
3529 unique proteins from each
cultivar, and up to 758 Phytophthora
infestans�derived proteins

Larsen, Guldstrand,
Malene, Bennike,
and Stensballe
(2016)

Bacterial wilt 2-DE MS 8 proteins
obtained from
roots

Identified key proteins for bacterial wilt Ghosh et al. (2016)

Drought stress
Drought stress

2-DE-IEF/SDS-PAGE-
MALDI-TOF-Ms/MS

100 proteins
from shoot tip

Identified drought stress tolerant
proteins

Bündig,
Jozefowicz, Mock,
and Winkelmann
(2016)

2-DE/MALDI-TOF-TOF/MS 12 proteins
from leaves
(Ninglang
182) of potato

Zhang et al. (2013)

Cold stress 2-DE/MALDI-TOF-TOF-
MS

94 proteins
from shoots of
Solanum
commersonii

Identified cold stress-tolerant proteins Folgado et al.
(2013)

2-DE/MALDI-TOF-MS 199 proteins Folgado et al.
(2014)

Cold-induced
sweetening
tuber

High pH reverse-phase LC
(off-gel electrophoresis)1
nanoLC�Ms/MS
(Quantitation: iTRAQ)

46 proteins
from tubers

Identification cold-induced sweetening
proteins

Yang et al. (2011)

Tuberization
process

Shotgun proteomic
approach

251 proteins Whole tuberization proteome profiling Lehesranta et al.
(2006), Yu et al.
(2012)
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infection. The late stage was characterized by a cellular protein modification process, membrane protein complex for-

mation, and cell death induction.

21.4.2 Abiotic stress

Two-dimensional (2D) gel electrophoresis was used to analyze potato treated with salt stress by applying 90-mM NaCl.

A total of 322 and 305 differentially expressed proteins were detected in shoots of Kennebec and Concord, respectively.

These proteins differentially expressed under NaCl treatment were involved in protein synthesis, metabolism/energy,

and photosynthesis. Markedly upregulated were osmotin-like proteins, TSI-1 protein, heat-shock proteins, protein inhi-

bitors, calreticulin proteins (Aghaei, Ehsanpour, & Komatsu, 2008). The osmotin-like proteins, TSI-1 protein, heat-

shock proteins, protein inhibitors, calreticulin proteins were markedly upregulated (Aghaei et al., 2008). In another

study, potato responses to salt (150-mM NaCl) stress were investigated using proteomic approach by Evers et al.

(2012). A substantial amount of protein abundances was found significantly changed under salt treatment. A strong

decrease in the abundance of photosynthesis-related proteins was caused by salt exposure. The proteins involved in

primary metabolism such as glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase were strongly

repressed. Nitrogen and amino acid metabolisms related proteins were also decreased after salt treatment, especially

polyamine synthesis�related proteins, such as arginine decarboxylase, S-adenosylmethionine decarboxylase, agmatine

deiminase (Evers et al., 2012). Protein analysis detected by proteomics in salt-stressed vegetable crops may help further

elucidate salt stress resistance and protection mechanisms in higher plants.

A comparative study with differences in the protein group analysis of the potato drought resistance variety in

Ninglang 182 leaves was investigated by Zhang et al. (2013), using 2D gel electrophoresis during drought and normal

processing conditions. There were 12 differentially expressed protein spots identified by electrophoresis and MALDI-

TOF-TOF/Ms analysis were drought resistance proteins of potato variety Ninglang 182.

21.4.3 Quality traits

Blue-native PAGE and 2-DE were used to identify and characterize mitochondrial protein complexes from various

plants, including potato tubers (Eubel, Heinemeyer, & Braun, 2004). A total of 18 proteins were identified from several

supercomplexes and respiratory complexes using Arabidopsis and bean as model systems (Eubel et al., 2004). Based on

their findings, authors concluded that supercomplex formation between complexes I and III reduces the access of alter-

native oxidase to its substrate and probably regulates alternative respiration (Eubel, Heinemeyer, & Braun, 2003). In

another study, using shotgun proteomics approach containing 1060 nonredundant proteins, potato tuber mitochondrial

proteome was established. The components of electron transport chain, tricarboxylic acid cycle, and protein import

apparatus were the most abundant mitochondrial proteins. Some of the other identified proteins included 71 pentatrico-

peptide repeat proteins, 29 membrane carriers/transporters, proteins involved in coenzyme biosynthesis and iron metab-

olism, pyruvate dehydrogenase kinase, and a type 2C protein phosphatase. In addition, the presence of PTM sites was

demonstrated by N50% of the identified proteins, suggesting a vast regulation of mitochondrial proteins at posttransla-

tional level (Salvato et al., 2014). By colocalization on the genetic map and a direct correlation study of protein abun-

dances and phenotypic traits, a relationship between proteins and 26 potato tuber quality traits (e.g., flesh color,

enzymatic discoloration) was established (Acharjee et al., 2018). Over 1643 unique protein spots were detected in total

over the two harvests. For over 300 different protein spots, they were able to map pQTLs, some of which were colo-

cated with characteristics such as starch content and cold sweetening.

21.5 Potato metabolomics

Metabolomics refers to the quantification and identification of metabolites present in the biological organization such

as cells, tissues, organs, biofluids, or whole organisms at a certain period of time (Daviss, 2005). Metabolites are

the end products of metabolism; more precisely any molecule, the size of which is less than 1 kDa, comes under this

category (Samuelsson & Larsson, 2008). Metabolomics is downstream of transcriptomics and proteomics. Unlike two

others, the size of metabolome of a species cannot be hypothesized by tools that use existing genomic information on

central dogma principle. Analysis of intricate metabolite interactions for key players of pathways leads to significant

understanding of individual genomic information and metabolic outputs (Toubiana, Fernie, Nikoloski, & Fait, 2013).
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21.5.1 Biotic traits

Plants defend themselves from pathogens by producing bioactive defense chemicals. Biochemical pathways related to

the quantitative resistance of potato to Spongospora subterranea f. sp. subterranea (Sss) are, however, not understood

and are not efficiently utilized in potato breeding programs. Untargeted metabolomics using ultraperformance liquid

chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/Ms) was used to elucidate the

biochemical mechanisms of susceptibility to Sss root infection. To identify tolerance-related metabolites, potato roots

and root exudate metabolic profiles of five tolerant cultivars were compared with those of five susceptible cultivars fol-

lowing Sss inoculation. Contrasting responses to Sss infection were exposed when comparing the relative metabolite

abundance of resistant versus susceptible cultivars. Metabolites belonging to amino acids, organic acids, fatty acids, phe-

nolics, and sugars, as well as well-known cell wall thickening compounds were putatively identified and were especially

abundant in the tolerant cultivars relative to the susceptible cultivars. Compared to susceptible cultivars following Sss

inoculation, metabolites known to activate plant secondary defense metabolism were significantly increased in the toler-

ant cultivars. Root-exuded compounds belonging to the chemical class of phenolics were also found in abundance in the

tolerant cultivars compared to susceptible cultivars (Lekota, Modisane, Apostolides, & van der Waals, 2020).

21.5.2 Abiotic traits

The most promising method to decipher abiotic stress tolerance in plant species has emerged from metabolomics.

Recently, metabolomics has been applied to probe for unique metabolites during the life cycle of plants. Biotic/abiotic

stresses have a significant role in the reduction of the crop yield (Hein, Sherrard, Manfredi, & Abebe, 2016). The

importance of potato is difficult to overestimate; it is a valuable source of carbohydrates, antioxidants, and vitamins. A

large number of investigations are focused on the study of metabolic processes occurring in the potato plant to elucidate

the mechanisms responsible for productivity, accumulation of the compounds that determine taste and nutritional qual-

ity, maintaining the quality of tubers in storage, plant resistance to pathogens, etc. The sum of the metabolites generated

as a consequence of the activity of the metabolic network is known as the metabolome. Complex studies of metabolic

diversity with the use of modern state-of-the-art chromatography approaches and the highly precise detection of individ-

ual compounds revealed the specificity of metabolic spectra from the subcellular to the organismal levels and its amaz-

ing plasticity under the influence of a variety of internal and external stimuli. Metabolomic approaches are already in

use for phenotyping the available species, lines, and varieties, as well as for assessing the tolerance of potato plants to

environmental challenges and for detecting changes in tubers during storage (Puzanskiy, Yemelyanov, Gavrilenko, &

Shishova, 2017). The use of metabolomics to research biotic/abiotic stress will help us to elucidate underlying molecu-

lar mechanisms associated with stress and would surely lead to developing tolerant potato plants with enhanced yield.

21.5.3 Quality traits

Potato contains phytochemicals with demonstrated effects on human health was reported by Chaparro, Holm,

Broeckling, Prenni, and Heuberger (2018). A comprehensive metabolomics (UPLC- and GC�Ms) and ionomics (ICP-

Ms) analysis of raw and cooked potato tuber was performed on 60 unique potato genotypes that span 5 market classes,

including russet, red, yellow, chip, and specialty potatoes. A total of 2656 compounds comprising known bioactives (43

compounds), nutrients (42), lipids (76), and 23 metals were identified in the study. Most nutrients and bioactives were

partially degraded during cooking (44 out of 85; 52%); however, genotypes with high quantities of bioactives remained

highest in the cooked tuber. Chemical variation was influenced by genotype and market class. In particular, B53% of

all detected compounds from cooked potato varied among market class and 40% varied by genotype. The most promi-

nent metabolite profiles were observed in yellow-flesh potato which had higher levels of carotenoids and specialty pota-

toes which had higher levels of chlorogenic acid as compared to the other market classes. In addition, more metabolite

variance was found within the market class (e.g., α-tocopherol, Bonefold variation among market class vs Bthreefold

variation within market class). Taken together, the study characterized significant metabolite and mineral variation in

raw and cooked potato tuber and supports the potential to breed new cultivars for improved health traits.

The assessment of unintended impacts on plant-insect interactions is an important aspect of ecological protection for

genetically modified (GM) plants. The chemical composition of plants is determined to a large degree by these interac-

tions. This study uses nuclear magnetic resonance (NMR)-based metabolomics to establish a baseline of chemical varia-

tion to which differences between a GM potato line and its parent cultivar are compared. The effects of leafage, virus

infection, and aphid herbivory on plant metabolomes were studied. Only in young leaves of noninfected plants did the
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metabolome of the GM line differ from its parent. This effect was small when compared to the baseline. Consistently,

aphid performance on excised leaves was influenced by leafage, while no difference in performance was found between

GM and non-GM plants. The metabolomic baseline approach is concluded to be a useful tool in ecological safety

assessment explained by Plischke, Choi, Brakefield, Klinkhamer, and Bruinsma (2012).

21.6 Potato ionomics

With the blending of concepts from both metabolomics and plant mineral nutrition, the inception of ionomics occurred.

Lahner and colleagues first described the ionome to include all the metals, metalloids, and nonmetals present in an

organism (Lahner, Gong, Mahmoudian, Smith, & Abid, 2003), expanding the term metallome to include biologically

significant nonmetals such as nitrogen, phosphorus, sulfur, selenium, chlorine, and iodine (Outten & O’Halloran, 2001;

Williams, 2001). It is important to note here that there are blurred borders between the ionome, the metabolome, and

the proteome. For example, phosphorus, sulfur, or nitrogen compounds containing nonmetals would fall within both the

ionome and the metabolome, and metals such as zinc, copper, manganese, and iron would fall within the proteome or

metalloproteome as defined (Szpunar, 2004). Ionomics has the advantage in revealing network among various mineral

elements in organism (Baxter et al., 2008). For example, ionomic analyses have been performed to isolate the genes

that are responsible for mineral transport and homeostasis in plants (Chao et al., 2011). To examine phylogenetic and

environmental effects on plant mineral accumulation, ionomics may also be used (Sha et al., 2012). A wide range of

studies have been done in the field of ionomics mainly on silicon. Most of the dicots and particularly the Solanaceae

family take up small quantities of silicon and accumulate less than 0.5% in their tissue. Silicon has been found to

enhance drought tolerance and delay in wilting and benefit certain plants when they are under stress.

21.7 Phenomics

The major aim of genetics is to understand phenotypic characteristics and their variation developed through a complex

network of interactions between genetic and environmental factors. As a result of their contact with their environment

in the ecosystem, the phenotype is the manifestation of a genotype. The characterization of phenotype in multiple levels

considering various environmental and external factors affecting the phenotype collectively results in phenomics

(Araus, Kefauver, Zaman-Allah, Olsen, & Cairns, 2018; Dhondt, Wuyts, & Inze, 2013). Phenomics is the translation of

genes or the whole genome into the phenotype of plants through recent advances in genomics, and analysis of large

datasets relating to the traits under consideration. To understand a genotype and to plan breeding and genetic studies for

crop enhancement, integration of this knowledge is important. However, characterization of phenomes lags much

behind the developments in the area to characterize genomes.

With the rapid development of novel sensors, imaging technology, and analysis methods, numerous infrastructure

platforms have been developed for phenotyping. Over the last two decades the rapid development of nondestructive

sensing and imaging techniques has dramatically advanced the measurement of crop phenotypic traits in controlled

environments as well as in the field (Milella, Marani, Petitti, & Reina, 2019). The imaging techniques include visible,

thermal infrared, fluorescence, 3D, and multi- or hyperspectral imaging and tomographic imaging by magnetic reso-

nance imaging or X-ray computed tomography (Jin et al., 2021). Integration of sensing technologies, automatic control

technology, computers, robotics, and aeronautics has led to the development of an increasing number of high-

throughput phenotyping platforms for investigating crop phenotypic traits. Scientists have developed multiple phenotyp-

ing platforms for crop traits at multiple application scales; however, their application in potato has so far been very few

or limited. In potato, computer vision and machine learning techniques have been used for the recognition of different

diseases on different scales from the tissue to the canopy level. Atherton and Watson (Atherton & Watson, 2015;

Atherton, Choudhary, & Watson, 2017) used hyperspectral remote sensing for detection of early blight (Alternaria sola-

ni) in potato plants prior to visual disease symptoms. For late blight (P. infestans) detection, Ray, Jain, Arora, Chavan,

and Panigrahy (2011) also used a point spectrum approach without using spatial information. Hu, Ping, Xu, Shan, and

He (2016) used hyperspectral imaging to detect late blight disease on potato leaves successfully, with a discrimination

of 95% between healthy and diseased leaves. Mohanty, Hughes, and Salathé (2016) suggested using deep learning con-

volutional neural network methods for disease identification in plants. They used a large set of 54,306 images of 38

classes of different plants and diseases, including potatoes, and reported an accuracy between 85% and 99% on the dif-

ferent classes. Similarly, Oppenheim, Shani, Erlich, and Tsror (2019) applied deep convolutional neural network to con-

struct database of images for the detection of four potato diseases, black scurf, silver scurf, common scab, and black

dot. In another study, Griffel, Delparte, and Edwards (2018) adapted a fully convolutional neural network using
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hyperspectral imaging and deep learning for the detection of PVY-infected potato plants. Although virus diseases have

a different mechanism by which they change the plant physiology, virus symptoms can also be measured using optical

techniques. Spectral signatures of potato plants infected with PVY acquired with a handheld device were classified with

an accuracy of 89.8% between infected and noninfected plants. In this the precision and recovery exceeded 0.78 and

0.88, respectively, compared with conventional disease assessment.

Because the phenotype is the product of the genotype and its interaction with the environment, replicating the envi-

ronmental conditions for screening and cataloging any phenotypic variation that occurs in the genotype is very impor-

tant for precise phenotypic variations to be obtained. In potato, aeroponic culture technique is an optional device of

soil-less culture in growth-controlled environments such as greenhouses. Recently, aeroponics-based precision pheno-

typing enables identification of nitrogen-use efficient (Tiwari, Devi, et al., 2020) and iron-deficient tolerant (Clarissa

et al., 2021) genotypes based on key traits and genes involved. Multidimensional, high-resolution data on agronomical,

physiological, and morphological traits describing the phenotype in optimal, biotic, and abiotic stress conditions would

enable mapping of genetic elements to biological function at the desired level of accuracy. There is a great need for

a combination of technology and proper study to reliably estimate phenomes. Because of their high throughput, phe-

nomics studies are resource intensive and will support many studies due to the generation of large-scale data, and the

quality of the data depends on the existing genetic diversity, growth conditions used, phenotypic assays, and further

data collection, storage, and interpretation.

21.8 Potato omics resources and integration of technologies

A great deal of data has been produced in recent progress in omics (genomics, transcriptomes, proteomics, metabolo-

mics, ionomics, and phenomics), which can be used to identify novel genetic and chemical elements that regulate vari-

ous physiological processes (Cohen, Aharoni, Szymanski, & Dominguez, 2017). But the complexity of a trait in plants

needs convergence of different approaches to understand complex stress response (Fig. 21.1). In addition, the analysis

of high-throughput data from various omics approaches is one of the biggest challenges to interpreting the response

mechanism(s). As pointed out by Scholz, Gatzek, Sterling, Fiehn, and Selbig (2014), the development of software tools

to enable in-depth analysis of any list of interrelated biological data (pathway analysis tools) is evolving.

Although there are several potentially useful applications for gene expression arrays, it is not simply mRNA levels

that need to be considered, but also the amount and modification of proteins expressed that determine true gene activity.

TABLE 21.5 Online databases/tools for integrated omics in potato.

Databases/tools Context in which the database is important for potato and integrative

biology

Accessed by

Spud DB Datasets and data mining tools to view and analyze the potato genome,
including tools to facilitate breeding improved cultivars

http://solanaceae.
plantbiology.msu.edu

PlantGDB Sequence download, BLAST analysis, and multiple sequence alignment http://www.plantgdb.org

Sol Genomics
Network

Potato maps and markers, BAC/EST sequences https://solgenomics.net

PoMaMO Retrieval of sequence, SNP, mapping data https://www.gabipd.org/
projects/Pomamo/

PotatoCyc Metabolic pathway prediction https://plantcyc.org/
databases/potatocyc/4.0

PATHWAY Information on metabolites and genes, as well as graphical representations of
metabolic pathways and complexes

https://www.genome.jp/
kegg/pathway.html

Mapman4 Enrichment analysis and visualization of data expression https://mapman.gabipd.org

MixOmic Data integration and similarity relationship http://www.mixOmics.org

Paintomics3 Pathway analysis and interaction http://www.paintomics.org

Pathview Data integration and visualization https://pathview.uncc.edu/

PathVisio 3 Pathway editor and data visualization https://pathvisio.github.io/
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Therefore an important goal is to couple transcriptomic data with other omics tools, proteomics, and metabolomics to

establish an integrated understanding of biological processes that, for example, regulate the crop plant composition.

These “omics” tools in turn must be linked to DNA sequences and sequence variation to better understand the processes

which contribute to biological variation. The goal of “omic” approaches is, therefore, to acquire a comprehensive, inte-

grated understanding of biology by studying all biological processes to identify the various players (e.g., genes, RNA,

proteins, and metabolites) rather than each of those individually.

Several metabolic pathway databases are available to facilitate our understanding of transcriptome and metabolome

data. For example, the Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.ad.jp/kegg/) has a

pathway database (PATHWAY) that contains information on metabolites and genes, as well as graphical representations

of metabolic pathways and complexes derived from various biological processes. Successful combination of various

methods, techniques, and approaches is a promising strategy to develop new climate-smart crop varieties (Tiwari,

Challam, Chakrabarti, & Feingold, 2020) under various stresses like nitrogen deficiency (Tiwari, Buckseth, Singh,

Kumar, & Kant, 2020; Tiwari et al., 2020b; Tiwari, Buckseth, Devi et al., 2020; Tiwari, Plett, Garnett, Chakrabarti, &

Singh, 2018). Efficient adaptation of computational techniques by the plant breeder largely depends on features such

as user-friendly interface, easy access, online tutorials and manuals, and interactive options. In this regard, a few user-

friendly databases that could be useful to integrate omics scale data from different approaches in potato are described in

Table 21.5.

21.9 Conclusions

Various omics tools and techniques have been developed to understand the molecular mechanisms underlying plant

response. Under all kind of stress conditions, plants modulate themselves to adopt the existing stresses by controlling

gene regulation, proteins, and metabolites. It is essential to elucidate the functions of newly identified genes/proteins/

metabolites to understand the stress responses of plants. To identify changes various tools and techniques like genomics,

transcriptomics, metabolomics, ionmics, and phenomics have been devised to allow the understanding of genetic

makeup in depth, their signaling cascade, and their adaptability under stress conditions. Genomics, transcriptomics, pro-

teomics, and metabolics have been established in potato, but the other branches are still lingering behind, such as

ionomics and phenomics. A diverse analysis of omics tools and data integration is needed to make sense and relate the

data back to the objective of the research to effectively handle biotic/abiotic stresses and quality traits.
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Hara-Skrzypiec, A., Śliwka, J., Jakuczun, H., & Zimnoch-Guzowska, E. (2018). QTL for tuber morphology traits in diploid potato. Journal of Applied

Genetics, 59(2), 123�132.

Hein, J. A., Sherrard, M. E., Manfredi, K. P., & Abebe, T. (2016). The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different

physiological and metabolic responses to drought stress. BMC Plant Biology, 16, 248. Available from https://doi.org/10.1186/s12870-016-0922-1.
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Mathieu, D., Morin, P. J., Lyons, N. C., Sébastien, B., & Pier, J. M. (2017). Identication of differentially expressed miRNAs in Colorado potato bee-

tles (Leptinotarsa decemlineata (Say)) exposed to imidacloprid. International Journal of Molecular Sciences, 18, 2728. Available from https://doi.

org/10.3390/ijms18122728.

Michelmore, R., Reyes Chin-Wo, S., & Kozik, A. (2016). Improvement of the genome assembly of lettuce (Lactuca sativa) using dovetail/in vitro

proximity ligation. In Plant and animal genome XXIV conference.

Milella, A., Marani, R., Petitti, A., & Reina, G. (2019). In-field high throughput grapevine phenotyping with a consumer-grade depth camera.

Computers and Electronics in Agriculture, 156, 293�306.

Minhas, J. S. (2012). Potato: Production strategies under abiotic stress in improving crop resistance to abiotic stress (1st ed.). Weinheim: Wiley,

[Chapter 45].
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chip color after harvest, cold storage and after reconditioning mapped in diploid potato. Molecular Genetics and Genomics: MGG, 295(1),

209�219.

Song, Y. S., Hepting, L., & Schweizer, G. (2005). Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived

primary dihaploid potato lines. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 111, 879�887.

Spooner, D. M., Ghislain, M., Reinhard, S., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, diversity, genetics, and evolution of wild and culti-

vated potatoes. The Botanical Review, 80(4), 283�383.

Sprenger, H., Kurowsky, C., Horn, R., Erban, A., Seddig, S., Rudack, K., . . . Kopka, J. (2016). The drought response of potato reference cultivars

with contrasting tolerance. Plant, Cell & Environment, 39(11), 2370�2389.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. The New Phytologist, 203, 32�43.

Szajko, K., Yin, Z., & Marczewski, W. (2019). Accumulation of miRNA and mRNA targets in potato leaves displaying temperature-dependent

responses to potato virus Y. Potato Research, 62, 379�392.

Szpunar, J. (2004). Metallomics: A new frontier in analytical chemistry. Analytical and Bioanalytical Chemistry, 378, 54�56.
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22.1 Introduction

The tea plant is an important woody cash crop with three races, Camellia sinensis, Camellia assamica, and

Cambodiensis. Tea is the most popular consumed beverage due to its medicinal, refreshing, and mild stimulant effects

and is believed to originate in China and Southeast Asia. The tea manufacturing process has categorized tea into four

types of basic types, “unfermented green tea,” “fully fermented black tea,” “partially fermented oolong tea” (all three

are made from apical shoots, i.e., two leaves and a bud), and “white tea from tea leaf buds only” (Fig. 22.1). Tea is

manufactured through a sequential manufacturing process in five stages, withering, rolling, fermenting, drying, and sort-

ing as taken out from the plant’s green leaves. The worldwide production of tea is about 6150 million kg in 2019 and

India is the second-largest tea producer of tea after China. Tea occupies an important place among cash crops due to its

major contribution to the country’s economy and it further provides livelihood to a large number of people. In 1823

Robert Bruce discovered wild tea plants in the upper Brahmaputra Valley, India. More than 120 varieties of tea are cul-

tivated in India, such as Assam, West Bengal, Sikkim, Kerala, Tamil Nadu, Himachal Pradesh, and Tripura (Board,

2019). Three primary secondary metabolites (flavonoids, theanine, and caffeine) are responsible for astringent, umami,

and bitter taste of tea and the overall tea quality. The abundant modern therapeutic research in this respect and the evi-

dences supporting tea drinking’s health benefits forms the scientific basis for this belief and claim. Among the flavo-

noids, catechin is major derivative, which is mixture of catechins, gallocatechins, epicatechins, and epigallocatechins

(Higdon & Frei, 2003). Both the catechins and theaflavins, two significant tea ingredients, are antioxidants. Recent

research suggested the health benefits of these polyphenols include protection against viruses, cardiovascular ailments,

and decreased risk of several types of cancers, skin damage, long-term diabetes management, weight management, in

addition to other benefits (Chacko et al., 2010).

Although tea is an important cash crop, it has attained genomic saturation through repeated conventional breed-

ing. High heterozygosity, genetic erosion, long gestation period, lack of mutants, and nonavailability of the struc-

tured population are primary bottlenecks in tea breeding (Mukhopadhyay, Mondal, & Chand, 2016). In this

context, genomics-assisted breeding (GAB) is the most appropriate breeding choice for enhancing the tea produc-

tion. The availability of genomic resources, genetic linkage maps, and mapped and cloned gene information are

essential to perform GAB in any crop (Fig. 22.2). Over the last decade, next-generation sequencing has become an

indispensable tool to generate large-scale genomic resources for crop improvement. Rapid progress in sequencing

techniques, bioinformatics pipelines, software, and strategies has allowed sequencing the whole genome and tran-

scriptome at a very cheaper cost.

Since 2010, more than 2700 Short Read Archive (SRA) files from 177 bioprojects have been generated from

tea plants’ tissues (Fig. 22.3). Due to the explosion of tea genomic resources during the last 5 years, few novel

specialized databases have been developed in China and India. More databases are likely to operational shortly.

Tea Plant Information Archive (TPIA; http://tpia.teaplant.org) is the first integrative and specially designed web-

accessible database on tea plant. TPIA hosts annotated tea plant genome, well-organized transcriptomes, gene
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expressions pattern, orthologs and characteristic metabolites of tea quality, massive transcription factors (TF),

polymorphic simple sequence repeats, single-nucleotide polymorphism (SNP), etc. Anhui Agricultural University,

China, developed this knowledgebase and served as a central gateway for tea research community (Xia, E.H.

et al., 2019). Besides that, TeaMiD, a specialized database for Simple Sequence Repeat (SSR) markers for tea is

developed by the ICAR-National Institute of Plant Biotechnology, New Delhi. They identified 935,547 SSRs

from C. sinensis var sinensis (CSS) genome and other publicly available genomic resources (Dubey et al., 2020).

A gene coexpression network for tea plant-based database, TeaCoN is recently developed by Zhang, R. et al.

(2020). It will help in understanding the functional role of candidate genes in tea plants. This chapter is focused

on the different applications of next-generation sequencing technology in tea research and crop improvement pro-

gram. A comparative account of available tea genomes is discussed with their merits and demerits as a reference

genome.

FIGURE 22.1 Two leaves and buds from tea plants used in manufacturing of

quality tea.

FIGURE 22.2 Schematic diagram for tea

improvement program with recent advance-

ments of genomic data.
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22.2 Whole-genome sequencing of tea plant

In recent years the whole-genome sequencing of two tea plant varieties, CSS and C. sinensis var assamica (CSA), has

been attempted by various research groups with different purposes and strategies. The whole-genome sequencing of an

organism is more accessible and less time-consuming with the advancement of the next-generation of sequencing

(NGS) technologies. However, the genome assembly of C. sinensis (n5 15) is a complicated and tedious process due to

large-size genome (B3 GB), highly repetitive DNA content, and high level of heterozygosity. Sequencing the whole

genome of tea plant was achieved using different platforms, library preparation, and assembly techniques (Table 22.1).

Short sequence read assembly; long sequence read assembly, hybrid assembly, Hi-C, etc. are applied to decipher the 15

pseudomolecules or chromosome-scale genome (Fig. 22.4). Xia et al. (2017) first decoded the draft genome of C. sinen-

sis var assamica (Xia et al., 2017). By the end of 2020 a total of eight whole genomes of tea were available in the pub-

lic domain (Table 22.1). Some of these projects have described a well-annotated genome and chromosome-scale tea

genome necessary for breeding, evolution, and adaptation of tea plant. All the genome assemblies have about B3 Gb

with an average B2003 depth and scaffold N50 sizes between 449 kb and 218 mb. There are 32,311�53,512 pre-

dicted protein-coding genes in the tea plant genomes.

A high-quality reference genome or chromosome-scale genome assembly is a challenging and essential require-

ment for identifying quantitative trait loci (QTLs) useful in breeding programs. Hi-C technology is a powerful tech-

nique that has been developed to guide genome assembly. Chen, J.D. et al. (2020) has recently published a

chromosome-scale genome of tea plant to identify the useful genes or QTLs involved in secondary metabolites and

understand the evolutionary role of duplicated genes in diversifying tea plants. They also resequenced 139 tea acces-

sions worldwide among tea-growing countries except for India to understand the origin and evolution of tea plants

(Chen, J.D. et al., 2020). Besides, Xia et al. (2020) and Wang, X. et al. (2020) have resequenced 81 and 139 acces-

sions of tea plants with a focus on the high-resolution genomic variations (62,52,201 and 21,88,70,000 SNPs, respec-

tively) that might play a vital role in the tea breeding research, especially in the marker-assisted breeding program

and overall genetic improvement of the crop (Wang, X. et al., 2020; Xia et al., 2020). Moreover, Zhang, W. et al.

(2020) reported a chromosome-scale genome from an ancient tea species known as DASZ, focusing on evolution of

this ancient species (Zhang, W. et al., 2020).

FIGURE 22.3 Number of bioprojects and short read archive submitted

during the last 10 years (since 2010�20).
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TABLE 22.1 Comparative account of available tea genomes (assembled up to September, 2020).

Xia et al.

(2017)

Wei et al.

(2018)

Xia, E. et al. (2019) Mondal et al. (2019) Xia et al. (2020) Zhang, Q.J. et al. (2020) Chen, J.D.

et al. (2020)

Tea cultivar name CSA (Yunkang

10)

CSS (Shuchazao) CSS (Shuchazao) C assamica (TV1) CSS (Shuchazao) CSS (Biyun) CSS

(Shuchazao)

Level of

heterozygosity

� Low (2.7%)

RAD-Seq

Low (2.7%) RAD-Seq � � Low (B1.22%) �

Platform used HiSeq 2000

(Illumina)

HiSeq 2500

PacBio RSII

HiSeq 2500 PacBio

RSII

HiSeq 2500 PacBio

RSII

PacBio sequel

and Hiseq X 10

PacBio RSII and Hiseq X 10 Hiseq 4000

Library used Paired-end

metapair

Paired-end

metapair, 10,

20 kb

Paired-end metapair,

10, 20 kb

Paired-end metapair,

10, 20 kb

Paired-end,

20 kb, Hi-C

Paired, Hi-C Hi-C

Estimated genome

size (Gb)

3 3.14 3.08 3 3 3.25 3.2

Name of genome

assemblers

Platanus,

SSPACE

SOAPdenovo SOAPdenove,

Platanus, hybrid

approach

Platanus, GapCloser,

Sealer, LACHESIS

FALCON, Pilon,

LACHESIS

FALCON, Purge Haplotigs,

SSPACE, LACHESIS, JUICERBOX

Juicer pipline,

3D-DNA

Amount of raw data

(Gb)

B 707.88 1450.4 2249.16 � � 417.95 337.8

Depth (X) 159.43 436 464.21 149.29 87.2 127.66 113

No scaffolds 37,618 14,051 14,051 14,824 ? 4153 14,412

Xia et al.

(2017)

Wei et al. (2018) Xia, E. et al. (2019) Mondal et al. (2019) Xia et al. (2020) Zhang, Q.J. et al. (2020) Chen, J.D.

et al. (2020)

N50 of scaffolds (bp) 4,49,457 13,97,810 13,97,810 5,38,958 � 19,56,80,000 21,81,15,851

Assembled genome

size (Gb)

B3.02 B3.1 2.98 2.93 2.94 B2.92 2.98

Coverage of

assembled genome

(%)

B 98% 93% 95.07% 97.66% 98% 89.85 94.07

GC % 42.31 � 37.84 39.57 � 38.24 �
No. of predicted

protein-coding gene

� 33,932 53,512 � 50525 40,812 32,311

Repeat sequences

(%)

80.89 64 64.42 71.87 86.87 74.13 �

References Xia et al.

(2017)

Wei et al. (2018) Xia, E. et al. (2019) Mondal et al. (2019) Xia et al. (2020) Zhang, Q.J. et al. (2020) Chen, J.D.

et al. (2020)

Data repository Bioproject:

PRJNA381277

pcsb.ahau.edu.

cn.8080

TPIA Bioproject:

PRJNA597714

Bioproject:

PRJCA002071

Bioproject: PRJNA596054 Bioproject:

PRJNA646044

CSA, Camellia sinensis var assamica; CSS, Camellia sinensis var sinensis; TPIA, Tea Plant Information Archive.



22.3 Identification and characterization of gene families

The first whole-genome sequence of tea plant was published in 2017 and the resulted post�tea genome era has allowed

an excellent opportunity for researchers to systematically analyze and characterize the gene families in the tea genome.

Recent studies reported important gene families in the tea genome and have significantly improved our understanding

of their biological functions. For example, amino acid permeases (AAPs) play a crucial role in the uptake, transport,

and distribution of amino acids and are well-known amino acid transporters. A total of 9 AAP genes are identified from

the tea plant’s genome and classified into three distinct groups based on their structures and conserved motifs. The

expression pattern of CsAAPs is specific to different plant tissues, with five genes showing higher expression levels in

the stem, six genes exhibiting higher expression in leaves, and the remaining genes showed higher expression in the

root. Interestingly, the CsAAP-19 gene is exclusively expressed in the root (Duan et al., 2020). Genome-wide character-

istics of different gene families and their descriptions are given in Table 22.2.

22.4 Tea transcriptome sequencing

RNA-Seq is a next-generation sequencing tool to understand the transcriptome of an organism and to decipher genomic

functions, differential gene expressions, and posttranslational molecular mechanisms (Fig. 22.5) (Garg & Jain, 2013;

Wang, Gerstein, & Snyder, 2009). The RNA-Seq methodology includes RNA extraction, preparation of sequencing

library by cDNA synthesis followed by platform-specific adapter ligation. The libraries are usually sequenced as per the

required read depth. Short read sequencing usually generates 200�500 bp long and an average of 20�30 million reads

per sample. Iso-Seq technology from PacBio has the ability to generate full-length transcripts, though are also more

error-prone. The overall bioinformatics analysis includes sequence quality check, trimming, aligning, and assembly of

transcripts, quantifying the reads and studying the changes in the expression of genes across samples. Shi et al. (2011)

first reported major metabolic pathways in tea plants by analyzing the high-throughput Illumina RNA-Seq (Shi et al.,

2011). About 150 bioprojects have been submitted in the NCBI-SRA database allowing transcriptome analysis of tea

for gene discovery and posttranscriptional molecular mechanisms in the tea genome.

Most of the transcriptome studies focused on discovering the functional genes and their involvement in the regula-

tory pathways responding to biotic and abiotic stresses affecting tea quality. The overall growth of tea plants and the

quality of leaves are adversely affected due to biotic stress factors and other abiotic factors such as low temperature,

heat, and drought. The secondary metabolites like flavonoids, caffeine, and theanine are important components deter-

mining tea quality. Guo et al. (2017) identified key genes involved in catechins biosynthesis using transcriptome analy-

sis. The comparative transcriptional and metabolite profiles revealed that PAL, C4H, F3H, LAR, and ANS are critical

genes for catechin biosynthesis during different leaf development stages (Guo et al., 2017).

FIGURE 22.4 Various steps in the genome assembly process.

Tea plant genome sequencing: prospect for crop improvement using genomics tools Chapter | 22 365



Further, a coexpression analysis revealed 30 TF involved in the regulation of catechin biosynthesis. Li et al. (2015)

studied the gene regulation involved in the secondary metabolite biosynthetic pathways using RNA-Seq. Tissue-specific

expressed genes are identified from 13 different tissues, including leaves and buds at various developmental stages and

tissue samples of stems, roots, flowers, and seeds. The study characterized the expression patterns of 206 unigenes

involved in the flavonoid, caffeine, and theanine pathway. A total of 67 TFs are related to flavonoid, caffeine biosynthe-

sis pathway and 22 TFs associated with the flavonoid, caffeine biosynthesis pathway. Moreover, one TF (c113397.0.1)

from NAC TF is related to all three pathways.

Several studies provided a deep understanding of molecular mechanism involved in cold adaptation using transcrip-

tion profile. C. sinensis var sinensis (CSS) showed high cold resistance after acclimation than the CSA. However, the

winter dormancy and banji dormancy in tea plants are manifestations of suspension of development under unfavorable

conditions. The tea plant undergoes a dormancy period when apical bud growth almost ceases, eventually leading to

very low commercial yield. Low temperatures usually prevail during the winter dormancy of tea plants. The tea plants

are expected to be under a complete dormancy period when the winter day is shorter than a critical day-length of about

11 hours 15 minutes continuing for at least 6 weeks. The dormancy period is directly proportional to the length of short

days. These studies have provided a global transcriptome profile of winter dormancy and related regulatory mechanisms

in the tea plant (Hao et al., 2017).

TABLE 22.2 List of important gene families identified in tea genome.

Gene family No. of

genes

Function References

Amino acid permease 19 Transportation of amino acids Duan et al.
(2020)

Serine carboxypeptidase-like
acyltransferase (SCPL)

47 Encoded galloylated catechins Ahmad et al.
(2020)

C-repeat binding factor 6 Encoded transcriptional activators and role on cold tolerance Hu et al. (2020)

Polyamine oxidase 7 Growth and development under environmental stress. Li, M. et al.
(2020)

WRKY 56 Diverse regulation and multiple stress responses Shen et al., 2020;
Wang et al.
(2019)

Heat stress factors (Hsf) 25 In signal transduction pathways operating in response to
environmental stresses

Zhang et al.
(2020a)

SBP-box transcription factors 25 Transcription factor plays important role in the process of resisting
abiotic stress.

Zhang, D. et al.
(2020)

Metal-tolerance proteins
(MTP)

13 MTPs are mainly involved in transporting Mn, Zn, and Fe Zhang et al.
(2020b)

DNA-binding one zinc finger
(Dof)

16 Transcription factors are important for seed development,
hormone regulation, and defense against abiotic stress

Yu et al. (2020)

Voltage-gated chloride
channel

8 Transporting NO3-, Cl, and other monovalent anions Xing et al. (2020)

Mitogen-activated protein
kinase

21 Fundamental pathway in organisms for signal transduction Chatterjee et al.
(2020)

SABATH methyltransferases 32 Convent plant small-molecule metabolites into volatile
methylester’s tea plant defense responses

Guo et al. (2020)

PYL-PP2C-SnRK2s 106 PYL-PP2C-SnRK2s were associated with changes of leaf color and
the response of Camellia sinensis to drought and salt stressors

Xu et al. (2020)

Cytosine-5 DNA
methyltransferase and DNA
demethylase

814 Abiotic stress and the potential functions of these two gene
families in affecting tea flavor during tea withering processing

Wang, Y. et al.
(2020)
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FIGURE 22.5 Basic steps of RNA-Seq analysis to achieve research goals.

TABLE 22.3 Selected transcriptome profile studies on tea and major pathways involve in stress management of tea.

Area of research Major pathways/genes involved References

Defense role of the uninfested

adjacent leaf by tea geometrids

JA (jasmonic acid), SA (salicylic acid), and ET (ethylene) synthesis pathway Zhou et al.

(2020)

Cold adaptation Photosynthesis, plant hormonal signal transduction, and transcriptional regulation of

plant�pathogen interaction

Li et al. (2019)

Sucrose treatment Glutathione S-transferase, ATP-binding cassette transporters (ABC transporter), and MATE

transporter

Qiao et al.

(2019)

Selenium accumulation Ribosome and protein processing in endoplasmic reticulum, sulfur metabolism, glutathione

metabolism, selenocompound metabolism, and plant hormone signal transduction

Cao et al.

(2018)

Bud dormancy Epigenetic mechanism, phytohormone signaling, callose-related cellular communication

regulation

Hao et al.

(2017)

Drought and salinity stress Starch and sucrose metabolism, plant hormonal signal transduction, photosynthesis,

photosynthesis-antenna proteins, galactose metabolism, etc.

Zhang et al.

(2017)

Nitrogen utilization AMT, NRT, and AQP genes are involved in N uptake.
GOGAT and GS genes are involved in N assimilation

Li, W. et al.,

(2017)

Aluminum tolerance Transporters, transcription factors, cytochrome P450, ubiquitin ligase, organic acid

biosynthesis, heat shock proteins

Li, Y. et al.

(2017)

Seasonal variations Catechin biosynthesis, caffeine biosynthesis/catabolism, phytohormones, histone, and DNA

modification

Kumar et al.

(2016)

Self-incompatibility Plant hormone signal transduction, plant�pathogen interaction, flavonoid biosynthesis,

calcium signaling pathway, and ubiquitin-mediated proteolysis

Zhang et al.

(2016)

Blister blight defenses R genes, defense-related enzymes, retrotransposons, transcription factors, and other defense-

associated molecules

Jayaswall et al.

(2016)

Methyl jasmonate-treated α-Lenolenic acid degradation, MEP/DOXP, JA biosynthesis Shi et al. (2015)

Adventitious root formation Plant hormonal signal transduction, secondary metabolism, cell wall organization,

glutathione metabolism

Wei et al.

(2019)

Cold stress Carbohydrate metabolism and calcium signaling pathway Wang, Zhao,

and Ma (2013)

AMT, ammonium transporter gene; NRT, nitrate transporter gene; AQP, aquaporin protein gene; GOGAT, glutamine (Gln) synthetase gene; MEP/DOXP, non-mevalonate (2C-methyl-
D-erythritol-4-phosphate) pathway.
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Similarly, seasonal variation also plays vital role in the tea quality and the overall yield. Kumar et al. (2016) studied

the molecular basis of seasonal variation and identified the role of catechins and caffeine pathways in tea plants.

Phytohormone metabolism, transcriptional regulation, and epigenetic control have been critical regulators of develop-

ment and seasonal dormancy in tea plants. ABA biosynthesis-related genes are upregulated in phytohormone metabo-

lism, and ABA catalyzes are downregulated during the dormant period (Kumar et al., 2016). There is a significant

decrease of GA expression in tea during dormancy. Both GA20ox and GA2ox play a significant role in modulating the

GA level in tea plants. The DELLA protein usually expresses highly during the dormancy, a potential indicator for

quality leaf plucking intervals. During dormancy the responses of ABA and GA metabolism are known to be opposite.

Pathways and genes involved in different stress management of tea plants are given in Table 22.3.

Alternative splicing (AS) is the posttranscriptional regulatory phenomenon that plays a significant role in generating

multiple isoforms of the pre-mRNA transcripts and creates a diversity of the transcripts and proteomes (Mahadani &

Hazra, 2021). An increasing number of studies have reported the role of alternative splicing events under different stres-

ses and development stages in tea. AS events are mainly categorized into four common types, intron retention, exon

skipping (ES), alternative 30 splice site (A3SS), and alternative 50 splice site (A5SS). Intron retention is the most com-

mon form of alternative splicing, followed by A3SS, A5SS, and ES. In tea an alternative splicing event is not only

tissue-specific but also influences the flavonoid pathways. Major steps in the identification of alternative splicing events

are mentioned in Table 22.4.

22.5 Discovery of single-nucleotide polymorphism

Single-nucleotide polymorphisms (SNPs) are widely used as an important molecular marker in plant genetic research and

breeding. Due to advancements in sequencing technology, large numbers of genome-wide SNPs have been discovered by

whole-genome sequencing or resequencing in nonmodel crops for linkage mapping, population structure and association

studies, marker-assisted plant breeding, and functional genomics. SNP discovery in tea plants is challenging due to the com-

plexity of the genome and lower levels of heterozygosity. However, the advancement of NGS-based software, pipeline, and

the availability of standard reference genome, more SNPs discovery studies are reported from tea in recent years. The SNPs

and indels of variant sites are identified by aligning the sequenced fragments with the latest reference genome. Large-scale

SNPs and indels discoveries in tea plant are given in Table 22.5. These variant sites, especially tightly linked to the pheno-

typic expression or trait, are essential for the functional research and genomic-assisted breeding of tea trees. Validation of

large numbers of SNPs is a major challenge for their successful implementation in tea breeding. Genome-wide indels are

considered the third-generation molecular markers in plants due to their high polymorphism and reproducibility. It is

expected that indels would emerge as a potential molecular marker in tea plants in the recent future.

TABLE 22.4 List of major studies of alternative splicing event identification from tea.

Bioprojects Study area Effect of alternative splicing event in tea References Platform

SRA:
PRJNA524419

Anthocyanin
biosynthesis
pathway

� 98 key genes undergone AS in anthocyanin biosynthesis
pathways.

� PAL2, C4H1, FLS1, CCR2, UDP75L122 and MYB113�1
are major AS transcripts for regulating anthocyanin
biosynthesis.

Chen, L.
et al. (2020)

PacBio RSII

SRA:
PRJNA545401

Drought and
heat stress

� AS extensively triggered during drought and heat stress.
� B48% of the genes in tea genome were differential

spliced.

Ding et al.
(2020)

HiSeq 2500

SRA:
PRJNA387105

Cold
acclimation

� AS event increase rapidly during cold and significantly
decrease after deacclimation.

� AS genes mainly relate to the oxidoreductase activity
and sugar metabolism pathways during cold
acclimation.

Li, Y. et al.
(2020)

HiSeq X Ten

SRA:
PRJNA274203

Different tissues � Intron retentions .Alternative 50 splice site .Exon
skipping . Alternative 30 splice site.

� Regulate flavonoid pathways.

Zhu et al.
(2018)

HiSeq 2000
and PacBio
RSII
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22.6 Conclusion

In the last decade the availability of tea genomic resources has increased considerably and opened many opportunities

to decode this genomic information. This has resulted in the generation of big genomic data, which needs to be stored

appropriately and categorized for further use. Few specialized databases on tea plants have been developed to help the

tea research community. To date, more than eight whole-genome sequences of tea plants from different cultivars are

publicly available. The selection of reference genome is vital for conducting any fruitful experiment in tea plants;

although all the published genome has its own limitations and advantages. Huge SNP information has also been gener-

ated from tea plants, but reports of genomic-assisted breeding programs are very scarce compared to other vital crops.

We hope that there will be more emphasis on genomics-assisted breeding of tea plants in the near future.
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Chapter 23

Next-generation sequencing and viroid
research

Sunny Dhir, Asha Rani and Narayan Rishi
Amity Institute of Virology & Immunology, Amity University, Noida, Uttar Pradesh, India

23.1 Introduction

Viroids are single-stranded circular RNAs, highly structured and compact due to presence of self-complementarity

among their nucleotides. They have small-size RNA in the range of 246�401 nucleotides and have ability to cause dis-

ease that can have mild-to-severe symptoms on respective host plants. They are around 10 times smaller than smallest

known RNA virus. Viroids do not have any protein coding capacity and are entirely dependent upon host factors for

their infectivity and life cycle (Flores, Hernández, Alba, Daròs, & Serio, 2005). It is fascinating that in viroid biology

the RNA sequence that is not translated can cause disease. Viroids were first discovered in spindle tuber disease of

potato (Allison, Simon, & Maliga, 1996) and since then more than 32 species of viroids are known. This could be possi-

ble due to advancements in gene sequencing technologies such as next-generation sequencing (NGS) (Adkar-

Purushothama & Perreault, 2020). Viroids infect higher plants and cause diseases that result in huge economic losses

every year. Yield losses up to 100% have been reported due to viroid infection (Jones, Baizan-Edge, MacFarlane, &

Torrance, 2017). They affect wide variety of crops such as potato, cucumber, hop, coconut, tomato and grapevine, sub-

tropical and temperate fruit trees such as avocado, apple, peach, pear, citrus, and plum. Ornamental plants such as

coleus and chrysanthemum are known to be infected with viroids. The mode of transmission can be mechanical,

through seeds or pollens. Transmission through aphids has also been reported in case of Tomato planta macho viroid

(TPMVd) but within specific ecological conditions (Matsuura, Matsushita, Kozuka, Shimizu, & Tsuda, 2010). Active

transmission of Apple scar skin viroid (ASSVd) by the whitefly Trialeurodes vaporariorum is also reported.

Electrophoretic mobility shift assay and northwestern hybridization assays were used for the determination of phloem

proteins with ASSVd for its efficient transmission (Walia, Dhir, Zaidi, & Hallan, 2015). The most efficient mode for

transmission is through vegetative propagation using infected material. This might be the reason for the presence of

mixture of viroids in grapevine and citrus plants which are propagated in the same way, that is, using vegetative parts

of infected plants.

Viroids are divided into two families based upon the structure of the RNA and region of their replication, the

Avsunviroidae and the Pospiviroidae (Wang, 2021). The latter have rod-shaped secondary RNA structure and replicate

in the nucleus, while the former has hammerhead-like structure and replicate in chloroplasts (Allison et al., 1996).

Members of the family Pospiviroidae replicate via asymmetric rolling-circle amplification, while those of

Avsunviroidae by symmetric rolling-circle amplification. Viroid families, genus, along with species are described in

Table 23.1.

Viroid replication biology depicts the existence of (�) polarity RNA sequences along with that of (1) as intermedi-

ates in the replication process. The preferential accumulation of these strands was observed in chloroplast, apart from

nucleus, which suggests the role of chloroplast in replication (Moreno et al., 2019). Viroids are known to have several

sequence variants and may lead to attenuation of disease symptoms. For instance, Apple scar skin viroid causes fruit

scarring and its variant, dapple apple, causes dappling of apple fruits (Allison et al., 1996). There are only few reports

on the biology of the characterized viroids and their variants (Walia, Dhir, Bhadoria, Hallan, & Zaidi, 2012). Viroids

do not encode for any proteins, still they are able to evade host’s defense mechanism, replicate, and propagate in the

plant. Due to their highly base paired structures and RNA�RNA mode of replication, viroids are inducers as well as
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targets of RNA silencing, a defense mechanism of the host. RNA silencing leads to the generation of small RNAs that

are taken up by Argonaut proteins to inactivate messenger RNAs, leading to disease. However, the mechanism by

which members of the Pospiviroidae-derived small RNAs causing disease is still elusive (Flores, Navarro, Delgado,

Serra, & Di Serio, 2020).

Viroids cause plethora of symptoms on infected plants. Some viroids destroy whole cultivar, while some show chlo-

rosis, chlorotic spots sometime covering the whole blade, epinasty, rugosity, pitting, internode shortening and stem

dwarfing, scaling, cracking, canker on bark, stunting, broken lines on petals (flowers) discolorations and skin deforma-

tions, suture cracking on fruits, enlarged stones (seeds), delays in foliation, flowering, ripening, and growing pattern of

mature trees (Flores et al., 2005). The symptoms can be organ specific or can be present all over. Few viroids may

show mild-to-no symptoms as in case of infection in wild plants. High light intensity and high temperature in contrast

to that of viruses helps in the expression of symptoms. Thus thermotherapy is not successful in eradication of viroids.

However, cross protection is observed in viroid infection in which the plant infected with a mild strain of a viroid and

protects the host against infection with the severe strain of the same viroid. The characteristic symptoms are suppressed

for some time (Flores et al., 2005).

With increased viroid disease incidence and heavy crop losses, viroids have become important pathogens.

Identification of the viroid associated with a disease was like finding a needle in a haystack because of the small-sized

genomic RNA. With recent developments in sequencing technologies, viroid research areas have exponentially pro-

gressed. NGS provides highly efficient, robust amplification, and sequencing platform corroborated with bioinformatics

with which viroid discovery and its association with disease has become easier. For more than a decade, the utilization

of NGS has led to increased discovery of viroids as well as proven potential in deciphering other mechanisms in viroid

research. Here, in this book chapter, we have tried to put together the role of NGS in viroid discovery as well as its role

in understanding the viroid RNA biology, including mutation analyses and pathogenicity. The use of various bioinfor-

matic tools in NGS is also discussed.

23.2 Next-generation sequencing technology

NGS has been used since decades for various biotechnological applications related to genomics, transcriptomics, and

proteomics. Its use in diagnostics was reported earlier in year 2007 in clinical virology and since then the number of

studies appeared as viral diagnostics as well as in understanding the infection processes (Grada & Weinbrecht, 2013).

With the development in sequencing techniques and NGS, there has been increase in discovery of new viroids as well

as new hosts. Without any prior information regarding any target, NGS can produce results specific to the target strain

(Adams & Fox, 2016). “Next generation” is the term given to the development in sequencing technology to the next

TABLE 23.1 Viroid genera, families, and species.

Family Genus Viroids

Avsunviroidae 1. Avsunviroid
2. Pelamoviroid
3. Elaviroid

1. Avocado sunblotch viroid
2. Chrysanthemum chlorotic mottle viroid, Peach latent mosaic viroid
3. Eggplant latent viroid, Grapevine hammerhead viroid-like RNA, Apple hammerhead viroid-

like RNA

Pospiviroidae 1. Pospiviroid
2. Hostuviroid
3. Cocadviroid
4. Apscaviroid
5. Coleviroid

1. Potato spindle tuber viroid, Tomato apical stunt viroid, Tomato chlorotic dwarf viroid,
Tomato planta macho viroid, Columnea latent viroid, Citrus exocortis viroid, Chrysanthemum
stunt viroid, Pepper chat fruit viroid, Iresine viroid I, Portulaca latent viroid

2. Hop stunt viroid, Dahlia latent viroid
3. Coconut cadang-cadang viroid, Coconut tinangaja viroid, Citrus bark cracking viroid, Hop

latent viroid
4. Apple scar skin viroid, Apple dimple fruit viroid, Pear blister canker viroid, Citrus bent leaf

viroid, Citrus dwarfing viroid, Citrus viroid V, Citrus viroid VI, Citrus viroid OS, Australian
grapevine viroid, Grapevine yellow speckle viroid 1, Grapevine yellow speckle viroid 2,
Apple fruit crinkle viroid, Grapevine yellow speckle viroid 3, Grapevine latent viroid,
Persimmon latent viroid, Persimmon viroid 2

5. Coleus blumei viroid 1, Coleus blumei viroid 2, Coleus blumei viroid 3, Coleus blumei viroid
4, Coleus blumei viroid 5, Coleus blumei viroid 6
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level (Slatko, Gardner, & Ausubel, 2018). The development in sequencing technology differs in the method of sequenc-

ing as here glass slides are used on which millions of template DNA strands are bind at a discrete position. There

becomes single modified base that extends the template. These modified bases are labeled with fluorescent dye and

microscope captures the image reflecting both the position as well as the intensity of the fluorescent color. The unique

step involves the conversion of modified bases to regular one and the imaging continues with extension of each nucleo-

tide base on template strand. After several cycles, the colored map is obtained in the form of bases A, T, G, or C. The

single template tells about the sequence of a particular length that is known as “read.” However, the initial steps are

similar as used in initial sequencing methods such as Sanger’s sequencing method. But the restoration step makes a dif-

ference along with its high speed (Muzzey, Evans, & Lieber, 2015).

23.3 Impact of next-generation sequencing on viroid discovery

The first DNA sequencing approaches involved chemical methods, including 2D chromatography, Maxam�Gilbert, and

Sanger sequencing. Further with the development of polymerase chain reaction (PCR), using good-quality enzymes and

fluorescent automated DNA sequencing techniques provided more facts regarding viroids. Later in 2006 high-throughput

sequencing methods led to the study of billions of DNA and RNA sequences and since then, NGS continuously has helped

the researchers to explore various principles of viroid biology. Advancements made overtime in understanding viroid

RNA biology along with sequencing techniques used are shown in Table 23.2 (Adkar-Purushothama & Perreault, 2020).

NGS can detect multiple (RNA and DNA) viruses infecting a single plant at a given time that can also help in unra-

veling disease antagonism or synergism mechanisms through transcriptomic approach that was earlier not possible.

Being a sequence-independent technique, NGS can detect viruses and viroids which earlier remained undetectable using

primitive molecular and serological methods (Jones et al., 2017). For instance, transcriptome data obtained using NGS

of an infected grapevine cultivar from different tissues, namely, grain, skin, and seeds was compared against reference

sequences of virus genomes. Sequence analyses yielded multiple infection with viroids and virus, namely, Grapevine

yellow speckle viroid 1, Grapevine pinot gris virus, Hop stunt viroid, and Grapevine leafroll-associated virus 2 as most

prevalent. The outline for the complete process followed for the identification of mixed infection is shown in Fig. 23.1

TABLE 23.2 Various sequencing platforms used in deciphering viroid RNA biology (Kulski, 2016).

Sequencing

platforms

Techniques Viroid biology

First
generation

� Two-dimensional chromatography and spectrophotometric
procedures

� Maxam and Gilbert
� Sanger technique
� Automated DNA sequencing (PCR technology, fluorescent dye)

Biological tests and infection assays for viroid
identification
2D fractionation technique for first viroid
sequencing [PSTVd (1978) and CEVd]
Broad classification of viroids into
Pospiviroidae and Avsunviroidae

Second
generation

� Shotgun sequencing (linkers/adapters)
� Pyrosequencing (Roche 454 pyrosequencing by synthesis)
� Illumina HiSeq and MiSeq sequencing (fluorescently labeled

nucleotides)
� Sequencing by Oligonucleotide Ligation and Detection, that is,

SOLiD (annealing of probes to template and ligation)
� DNA nanoball sequencing by BGI Retrovolocity (Nanoballs

with DNA amplified on it are attached to an arrayed flow cell)
� Ion Torrent (with microchips and sensors, nucleotides are

incorporated as electronic signal)

Detection of multiple viroids in a single assay
Small-RNA sequencing
Transcriptome analysis
Whole-genome sequencing
Genome-wide mutational analysis
Characterization of genetic variations and
impact of viroid infection on host cells and
functions

Third
generation

� Single Molecule Real Time, that is, SMRT sequencing method
(template and DNA polymerase coupled on ultrawells and
detection of nucleotide after each incorporation)

� Helicos sequencing system (addition of polyA-tailed
nucleotides to Oligo-DT)

� Nanopore sequencing (conductivity changes as a nucleotide
passes through nanopore)

� Electron microscopy
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(Walia et al., 2015). The data obtained was corroborated by RT-PCR for the presence of viroids and viruses in the

tested samples. Detection and identification of viroids using NGS in various host plants is listed in Table 23.3 (Barba &

Hadidi, 2017; Gucek et al., 2017; Hadidi, 2019; Jakše, Radišek, Pokorn, Matoušek, & Javornik, 2015) (Fig. 23.2).

23.4 Role of next-generation sequencing in unraveling viroid RNA biology

23.4.1 Characterization of viroid sequence variants

For the detection of Hop stunt viroid (HSVd), 2D-PAGE and sequential PAGE were used, but sequencing was still in

need for complete detection. The problem was solved with the development of hybridization-based methods. But with

the limitation of sensitivity, RT-PCR became one of the most sensitive techniques. However, high-throughput sequenc-

ing allowed detection of multiple viroids/variants using small-RNA deep sequencing.

Viroids upon infection leads to the generation of viroid variants, such as viruses, that can induce an array of symptoms

on host plants. They use host RNA polymerase that lacks proofreading activity and hence leads to generation of different

variants also known as “quasispecies.” Sequence variants were reported first in case of CEVd followed by PSTVd that has

mild, moderate, and severe sequence variants responsible for inducing similar effect on tomato plants (Adkar-

Purushothama, Sano, & Perreault, 2018). Four different sequence variants were also reported in ASSVd infection in

cucumber and apple using Single Strand Conformation Polymorphism corroborated by sequencing (Walia, Dhir, Ram,

Zaidi, & Hallan, 2014). High-fidelity ultradeep sequencing revealed high mutation frequencies in ELVd and PSTVd

infecting eggplant (López-Carrasco et al., 2017). Quasispecies generated during PSTVd infection was also studied using

deep sequencing of viroid small RNAs that also led to identification of strand-specific mutations and revealed hotspots for

mutations (Brass, Owens, Matoušek, & Steger, 2017). A similar study identified the regions on viroid genome that were

favored for mutations and their effect on viroid secondary structure and small-RNA generation was revealed using NGS

(Adkar-Purushothama, Bolduc, Bru, & Perreault, 2020). The development of NGS platform led to characterization of mul-

tiple viroid/variants and contributed to disease outcome due to presence of different sequence variants. In one such study,

genetic diversity of PLMVd and PSTVd infected with single-sequence variant in both cases was evaluated. PLMVd, mem-

ber of the family Avsunviroidae, revealed variant sequences with mutations at 50% of the viroid genome while mutations

were lower in sequence variants of PSTVd (Glouzon, Bolduc, Wang, Najmanovich, & Perreault, 2014).

23.4.2 Viroid pathogenesis

Pathogenesis in viroid infection has been associated with generation of viroid-derived small RNAs that lead to symptom

expression. The small RNAs bind to complementary endogenous RNAs and inhibit their expression. Such transcrip-

tional changes play a major role in viroid pathogenesis. NGS helped in deciphering the processes involved in viroid

pathogenesis. Different pathways associated with different cell organelles were studied to analyze the viroid infection

process. In a study on two cultivars of tomato having infection of mild and severe strains of PSTVd, the genes related

to chloroplast were downregulated and other genes related to nucleus, cell wall, ribosome, etc. were upregulated in one

of the cultivars (Visvader & Symons, 1983). In another study, the genes related to brassinosteroids synthesis were

detected as when the sources are applied, the genes were upregulated (Owens, Tech, Shao, Sano, & Baker, 2012).

Northern blot hybridization and sequencing revealed 21�24 nucleotide viroid-derived small RNAs and later the analy-

sis of RNA guiding, the step, which was sequence specific, revealed that the silencing machinery is being operated by

viroids (St-Pierre, Hassen, Thompson, & Perreault, 2009). This has also been evidenced in a study that involved genera-

tion of transgenics expressing viroid small RNAs verified the role of RNAi-based inhibition against PSTVd infection

(Adkar-Purushothama et al., 2015).

FIGURE 23.1 Outline of next-

generation sequencing used in viroid

discovery. Viroid-derived small

RNAs are isolated (library prepara-

tion) and subjected to amplification

and sequencing.
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TABLE 23.3 List of viroid species identified in different hosts using next-generation sequencing (NGS).

Viroid Host NGS Technique used for detection

Apple dimple
fruit viroid

Apple, Prunus, pear, fig Illumina Hi
Scan SQ

SDS-PAGE, northern blot hybridization, RT-PCR
(Shamloul, Faggioli, Keith, & Hadidi, 2002)

Apple fruit
crinkle viroid

Apple, hop Illumina HiSeq 2D-PAGE, SDS-PAGE, dot blot hybridization, multiplex
RT-PCR (Koganezawa, 1985)

Apple scar skin
viroid

Apple, pear, Prunus, sweet
cherry, apricot, quince

Illumina HiSeq
2500

Dot blot hybridization, tissue blot hybridization,
multiplex RT-PCR, RT-PCR-ELISA (Hadidi & Yang,
1990)

Hop stunt viroid Cucumber, grapevine, orange,
plum, peach, pear, apple,
almond, apricot, hop

Illumina
Genome
Analyzer IIx

NGS, multiplex RT-qPCR, northern blot hybridization,
SDS-PAGE (Sasaki & Shikata, 1977)

Peach latent
mosaic viroid

Prunus, nectarine, peach, pear,
apricot, quince

Illumina Tissue dot blot hybridization, multiplex RT-qPCR, NGS,
dot blot hybridization, RT-LAMP (Di Serio, Malfitano,
Flores, & Randles, 1999)

Tomato chlorotic
dwarf viroid

Tomato, Petunia spp. Deep
sequencing,
Illumina

Southern blot hybridization, dot blot hybridization,
multiplex RT-PCR, RT-qPCR (Matsushita, Kanda, Usugi,
& Tsuda, 2008)

Tomato apical
stunt viroid

Tomato, potato Illumina Northern blot hybridization, dot blot hybridization,
microarray, multiplex RT-PCR (Antignus, Lachman,
Pearlsman, Gofman, & Bar-Joseph, 2002)

Tomato planta
macho viroid

Tomato Illumina RT-PCR, polyprobe dot blot hybridization, RT-qPCR
(Verhoeven, Roenhorst, & Owens, 2011)

Potato spindle
tuber viroid

Potato, tomato, Dahlia, Petunia Illumina
Genome
Analyzer Ilx

Dot blot hybridization, tissue blot hybridization, dot
and print RT-PCR, RT-PCR-ELISA, RT-LAMP (Owens &
Diener, 1981)

Pepper chat fruit
viroid

Sweet pepper, tomato NGS R-PAGE, RT-PCR, RT-qPCR, polyprobe dot blot
hybridization, multiplex RT-PCR (Botermans et al.,
2020)

Mexican papita
viroid

Solanum cardiophyllum
(heartleaf nightshade), Tomato

Illumina R-PAGE, RT-qPCR, polyprobe dot blot hybridization,
RT-PCR, Multiplex RT-PCR (Martı́nez-Soriano et al.,
1996)

Columnea latent
viroid

Columnea erythrophae, tomato NGS PAGE, Polyprobe Dot Blot hybridization, RT-PCR, RT-
qPCR (Hammond, Smith, & Diener, 1989)

Chrysanthemum
chlorotic mottle
viroid

Chrysanthemum NGS Micro tissue direct RT-PCR, ICAN, RT-PCR (Hosokawa,
Matsushita, Uchida, & Yazawa, 2006)

Avocado
sunblotch viroid

Avocado NGS RT-PCR (Schnell, Kuhn, Ronning, & Harkins, 1997)

Citrus exocortis
viroid

Orange, grape, tomato Illumina
Genome
Analyzer IIx

Dot blot hybridization, RT-PCR (de Noronha Fonseca,
Marcellino, & Gander, 1996)

Chrysanthemum
stunt viroid

Petunia, potato, tomato,
Chrysanthemum

Roche 454 Y RT-PCR, polyprobe dot blot hybridization, multiplex
RT-LAMP (Mumford, Walsh, & Boonham, 2000)

Coleus blumei
viroids

Coleus (Plectranthus
scutellarioides)

NGS PAGE, northern blot hybridization (Hou, Li, Wu, Jiang,
& Sano, 2009)

Hop latent viroid Hop (Humulus lupulus) NGS Dot blot hybridization, multiplex RT-PCR (Matoušek &
Patzak, 2000)

Citrus bark
cracking viroid

Grapefruit, hop Illumina,
transcriptome
sequencing

NGS, RT-PCR (Owens, Sano, & Duran-Vila, 2012)

(Continued )
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Viroids are inducer as well as targets of RNA silencing mechanism in host plants. Different groups have shown the

role of viroid-derived small RNAs targeting host mRNAs and induce pathogenesis (Ramesh et al., 2020). Transgenic

plants expressing a region from PSTVd implicated to target an endogenous mRNA induced abnormal phenotypes simi-

lar to PSTVd-infected plants (Adkar-Purushothama et al., 2015). High-throughput sequencing techniques for the analy-

sis of viroid sRNAs and northern blot assay to detect mature forms of viroid were used for comparison between

infected and healthy RNA samples from cucumber plant infected with HSVd (Martinez, Donaire, Llave, Pallas, &

Gomez, 2010). The plus- and minus-sense RNAs were equally present. Similar findings were obtained in the case of

Grapevine yellow speckle viroid but contrarily infection in case of CEVd and PSTVd revealed more amount of sense

viroid RNA compared to antisense RNA. The complexity in generation of 21�24 nucleotide sRNAs (hallmark of RNA

TABLE 23.3 (Continued)

Viroid Host NGS Technique used for detection

Coconut
cadang-cadang
viroid

African oil palm, coconut palm,
buri palm

NGS 2D-PAGE, RT-LAMP (Vadamalai, Hanold, Rezaian, &
Randles, 2006)

Pear blister
canker viroid

Pear, quince, apple NGS Multiplex RT-PCR-ELISA, multiplex RT-PCR (Hadidi &
Yang, 1990)

Grapevine
yellow speckle
viroid 1

Grapevine Illumina
Genome
Analyzer IIx

RT-PCR, dot blot hybridization (Teruo, Kobayashi,
Ishiguro, & Motomura, 2000)

Grapevine
yellow speckle
viroid

Grapevine Illumina RT-PCR (Koltunow, Krake, Johnson, & Rezaian, 1989)

Grapevine
yellow speckle
viroid 2

Grapevine Illumina Multiplex RT-PCR, 2D-PAGE (Flores, Hernandez,
Llacer, & Desvignes, 1991)

Citrus viroid V Citrus spp. NGS RT-PCR, northern blot (Serra et al., 2008)

Citrus dwarfing
viroid

Citrus, citron, orange, grapefruit NGS RT-PCR, northern blot hybridization (Malfitano, Barone,
Duran-Vila, & Alioto, 2005)

Citrus bent leaf
viroid

Citrus, Citron NGS Dot blot hybridization, RT-PCR (Zhang et al., 2014)

Grapevine latent
viroid

Grapevine Illumina
HiSeq-2000

NGS (Fadda, Daròs, Fagoaga, Flores, & Durán-Vila,
2003)

Eggplant latent
viroid

Eggplant Illumina
MiSeq
machine
sequencer

PAGE, northern blot hybridization (Fadda et al., 2003)

FIGURE 23.2 A sequence of events occurs for the production of viroid derived small RNAs (vdsRNAs) during which the symptoms appear on

plants and then the silencing mechanism operates due to the unusual double stranded RNA structure formation.
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silencing) species revealed highest complexity in case of 21 nucleotide long sRNAs rather than 22, 23, and 24-nt sized

RNAs during HSVd infection (Martinez et al., 2010). Few other findings demonstrated the involvement of RNA silenc-

ing machinery like, when a PLMVd variant carrying a hair-pin sequence induced albinism in host plants which was due

to targeting of endogenous mRNA encoding heat shock protein 90 (HSP90) and a PSTVd sRNA target the callose

synthase gene in an artificial microRNA (miRNA) experiment (Zhang, Wu, Li, & Wu, 2015). Transcriptome data of

infected plants when compared with normal plants revealed differences that might have been triggered by viroid infec-

tion. This study was carried out first by using microarray technologies and later RNA sequencing was used and showed

changes in many processes such as photosynthesis and RNA regulation (Štajner et al., 2019). In case of HSVd infection,

the transcriptomic study revealed differences in lipid metabolism, photosynthesis (depressed), expression of RNA-

dependent RNA polymerase, etc. Besides, 2000 genes including protein metabolism, pigment metabolism, immune

response in plants, and phytohormone signaling were also modulated (Mishra et al., 2018).

23.4.3 Mutational analyses of the viroids

Mutation-related studies have also been done using site-directed mutagenesis which somewhere has helped in identify-

ing the regions of viroid related to degree of pathogenicity, its movement, and its replication. Some isolates of the same

viroid showed different degree of severity in infection. Thus, on comparing the sequence in isolates and inducing site-

directed mutations, the region related to pathogenicity was revealed. In one such studies, a change of single nucleotide

in upper part of the central conserved region results in loss of infectivity in CEVd (Visvader, Forster, & Symons,

1985). An isolate of PSTVd from tomato inoculated in tobacco plant resulted in nucleotide substitution from “cytosine”

to “uracil” at position 259 of the viroid for effective replication. Similarly, mutation from “uracil” to “adenine” at posi-

tion 257 changed the PSTVd strain into a lethal strain when inoculated on tomato plant. Substitution at 257th position

with “adenine” or “cytosine” has improved the viroid replication in tobacco plant (Qi & Ding, 2002; Qi & Ding, 2003).

Coleus blumei viroid (CBVd) is seed transmissible and to identify nucleotide/nucleotides responsible, genome-wide

mutants of CBVd were generated that revealed 25th nucleotide in loop five was responsible for viroid transmission

through seeds (Tsushima & Sano, 2018).

PSTVd sequence variants were studied based on the mutation over a period of 1 week and 2 weeks, respectively.

The variations were dominating after 1 week post inoculation and original sequence was found to be 25%. Two weeks

post inoculation, the original sequence was 70% till the infection was there (Adkar-Purushothama et al., 2020).

Genome-wide mutants were generated for PSTVd to generate a viroid genomic map with sequence characteristics

involved in trafficking, replication, and pathogenicity (Zhong, Archual, Amin, & Ding, 2008). NGS has its own advan-

tage in detection of sequence variants in purified isolates. The sequence analysis of full-length cDNA clones of CEVd

and PSTVd isolates revealed the presence of sequence variants in the same host. The reason speculated was high copy

error rate during replication or due to presence of multiple sequence variants during propagation (Visvader & Symons,

1985). It is possible that a particular naturally infected cultivar from viroids may contain a mixed infection of variants

in the same host (Visvader & Symons, 1985). For instance, AFCVd transferred to tomato, cucumber, and hop, had

incorporation of host-dependent sequence changes that appeared in naturally occurring other AFCVd isolates using

small-RNA deep sequencing. It also indicated that the left-hand half of the viroid genome is critical for infection

(Suzuki et al., 2017). High-throughput sequencing such as massively parallel sequencing helped the analysis of multiple

sequences of viroid RNA molecules much faster than first-generation sequencing techniques.

23.5 Bioinformatic intervention in next-generation sequencing

Bioinformatics is the field of science that develops different methods and software tools to understand the complex bio-

logical data and address them from computational point of view. Various bioinformatic tools have been developed to

interpret the data obtained through NGS. The main steps involved in sequence analysis were (1) accessing the data

banks such as GenBank that has publicly available nucleotide sequences, (2) using appropriate tools to analyze the data

such as FASTA, and (3) interpretation of the results in biological manner (Kamble & Khairkar, 2016). NGS has pro-

vided platforms for fast, efficient, and robust sequencing technology. But this advancement has been possible by corrob-

oration and unprecedented updation in tools that process raw data. Bioinformatic tools allow the discovery of novel

viruses and viroids using homology-dependent and homology-independent identification. After processing the raw data

generated by NGS platform, there occurs sequence assembly of the preprocessed reads using various tools such as

Velvet, Oases, and VCAKE (Mehmood, Sehar, & Ahmad, 2014). Similarly, the assembled reads are queried using the

homology-dependent tools such as USEARCH, HHbits, and SearchSmallRNA that were developed to make assembly
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of viral/viroid genomes in a much easier and reliable manner. Other than this, CLC Genomics Workbench, Geneious,

Galaxy, etc. were developed to facilitate the use of NGS technologies as they provided user-friendly interfaces.

It becomes easy to identify a pathogen using sequence homology approach using database. But metagenomic

approach makes it easier to identify a pathogen without any prior knowledge. Such programs included PFOR

(Progressive Filtering of Overlapping Small RNAs) that includes filtering of overlapping sRNA sequences for the

assembly of complete genome of viroids, as sRNA sequences are hallmark of viroid infection. Identification of

Grapevine latent viroid (GLVd) was done by this homology-independent identification metagenomic approach. PFOR/

PFOR2 is helpful in discovery of completely new Grapevine hammerhead viroid-like RNA and Apple hammerhead

viroid-like RNA. The detection of viroid sequences is possible without ribosomal RNA depletion and the available bio-

informatic tools do not provide a suitable platform for the identification of new viroid sequence. SLS developed as part

of PFOR2 discover biologically active circular RNAs by deep sequencing of long RNAs (Wu, Ding, Zhang, & Zhu,

2015). It successfully assembled PSTVd genome from small RNAs sequenced from infected plant after rRNA depletion.

Thus SLS-PFOR2 allowed discovery and identification of novel viroid sequences.

23.6 Conclusion

Viroids have been associated with major plant diseases and are emerging with expanding host range breadth. NGS has

helped in easy detection and discovery of new viroid species. Life Sciences 454 high-throughput platform using sequence

homology helped in the detection of many viroids along with their circularity confirmation using PAGE. Sequence homology

tools such as VirFind, Virtool, and VirusDetect were used for detection from reads obtained. Different algorithms such as

PFOR and PFOR2 were used for the detection of new viroids. The main function of the algorithm is to filter the overlapping

regions from RNAs after deep sequencing from RNA pool for full-length sequence of viroid genome.

NGS has also been very useful in exploring the transcriptomic analyses of plants infected with viroids. This allowed

in revelation of plant physiological processes affected due to viroid infection. The down- and upregulation of host genes

can be used as targets for generating knockout/genome edited transgenics that may serve as viroid-resistant varieties.

Third-generation sequencing is very helpful in sequencing as primers and amplification part is not included. Nanopore

sequencing technology provides low-cost platform and is helpful in both detection and quantification of viroids. With

the use of advanced sequencing methods, our understanding of viroid RNA biology has deepened, and the viroid

research has exponentially progressed. More advanced techniques must come in future, so that the detection and discov-

ery can be easy and cheap, and the functions of different genes can also be explored.

References

Adams, I., & Fox, A. (2016). Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. Current research topics in plant

virology (pp. 323�335). Cham: Springer.

Adkar-Purushothama, C. R., Bolduc, F., Bru, P., & Perreault, J. P. (2020). Insights into potato spindle tuber viroid quasi-species from infection to dis-

ease. Frontiers in microbiology, 11, 1235.

Adkar-Purushothama, C. R., Kasai, A., Sugawara, K., Yamamoto, H., Yamazaki, Y., He, Y. H., . . . Sano, T. (2015). RNAi mediated inhibition of viroid

infection in transgenic plants expressing viroid-specific small RNAs derived from various functional domains. Scientific Reports, 5(1), 1�13.

Adkar-Purushothama, C. R., & Perreault, J. P. (2020). Impact of nucleic acid sequencing on viroid biology. International Journal of Molecular

Sciences, 21(15), 5532.

Adkar-Purushothama, C. R., Sano, T., & Perreault, J. P. (2018). Viroid-derived small RNA induces early flowering in tomato plants by RNA silencing.

Molecular Plant Pathology, 19(11), 2446�2458.

Allison, L. A., Simon, L. D., & Maliga, P. (1996). Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. The

EMBO Journal, 15(11), 2802�2809.

Antignus, Y., Lachman, O., Pearlsman, M., Gofman, R., & Bar-Joseph, M. (2002). A new disease of greenhouse tomatoes in Israel caused by a distinct

strain of Tomato apical stunt viroid (TASVd). Phytoparasitica, 30(5), 502�510.

Barba, M., & Hadidi, A. (2017). Application of next-generation sequencing technologies to viroids. Viroids and satellites (pp. 401�412). Academic Press.

Botermans, M., Roenhorst, J. W., Hooftman, M., Verhoeven, J. T. J., Metz, E., van Veen, E. J., & Westenberg, M. (2020). Development and valida-

tion of a real-time RT-PCR test for screening pepper and tomato seed lots for the presence of pospiviroids. PLoS One, 15(9), e0232502.
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24.1 Introduction

Plant viruses are causing problems for food security by affecting crop quality and quantity across the world (Loebenstein,

2008; Soliman, Mourits, Oude, Lansink, & van der Werf, 2012). So to maintain plant protection and to attain food security,

reliable methods for plant virus diagnosis are required. Plant virus detection methods are roughly divided into two categories:

one is specific methods that are generally directed to one or more specific virus species like serological Enzyme-linked

Immunosorbent Assay (ELISA) or molecular tests (Polymerase chain reaction (PCR)) and second is nonspecific methods

like indicator test plants, electron microscopy. Specific methodologies require prior information of the pathogens while non-

specific methods do not need prior details about virus being diagnosed. But these approaches only categorize viruses at genus

level on the basis of the physical and biological properties revealed by viruses.

After the introduction of next-generation sequencing (NGS), detection of new viruses and host has increased signifi-

cantly. NGS-based approaches provide a nonspecific method for virus detection without requirement of prior knowledge

about test pathogens but give a specific result about species/strain (Adams & Fox, 2016).

In 2009 NGS was first used in discovery of novel DNA/RNA viruses and viroids (Adams et al., 2009; Al Rwahnih,

Daubert, Golino, & Rowhani, 2015; Kreuze, 2014). In the same year, to investigate the role of RNAi in plant�viroid

interactions (Navarro et al., 2009), and to study the pathogenesis of viroid-derived small RNAs (vd-sRNAs) from a

chloroplast-replicating viroid (Di Serio et al., 2009), sequencing of vd-sRNAs were done using NGS. Since then it has

been used in different plant virology studies comprising viral genome sequencing, analysis of plant viral diversity and

evolution, ecological and epidemiological studies, detection and diagnosis of known/unknown viruses in host plants.

In NGS a large number of viroid small Ribonucleic acid (vsRNA) or vd-sRNA sequencing can be performed in a

single run. These sequences can be reassembled to find out the nucleotide sequence of virus/viroid genome(s). On the

other hand, these sequences can be used in comparison with the host genome to recognize genes that may be suppressed

upon virus infection because of their local homology with the virus. Similarly, homology of viral satellite RNAs with

healthy plants sRNAs allows to predict a possible consequence of their evolution from the host plant genome, which

ultimately provides an idea about the origin of these pathogens (Zahid et al., 2015). NGS technologies are helpful in

monitoring the emergence and spread of pathogens by genotyping of previously known or unknown viral isolates and

setting the control measures based on information (Mahuku et al., 2015).

24.2 Development of next-generation sequencing technology

The first rapid DNA sequencing method was developed by Frederick Sanger using primer extension approach and pub-

lished as “DNA sequencing with chain-terminating inhibitors” in 1977 (Sanger, Nicklen, & Coulson, 1977). Another DNA
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sequencing method based on chemical degradation was also developed by Gilbert and Maxam (Maxam & Gilbert, 1977).

These sequencing method were called “first-generation” sequencing technologies. In early 21st century, new technologies

were developed to overcome Sanger sequencing method limitations that allowed whole genome to be sequenced in one run

by implementing steps, including fragmentation of genome into small sequences, random sampling of these small

sequences, sequencing, and de novo assembly. These technologies are called second-generation or NGS technologies. In

recent years, single molecular sequencer like PacBio and Nanopore sequencers has been developed, which are jointly called

“third-/or fourth-generation” sequencing methods. These technologies are able to read ,100-kb length sequences but have

issues in sequencing fidelity and still under development (Suzuki, 2020). So, currently NGS technology is being most used

in various basic and applied researches, including plant pathology and plant virology studies. By using NGS a large volume

of data can be produced, and it delivers fast, cheaper, and precise results.

In 2000 first NGS technology was launched by Massively Parallel Signature Sequencing (MPSS) Lynx Therapeutics

(the United States) Company which was later taken over by Illumina. In the case of MPSS, high-throughput data,

including large amount of short DNA sequences, were basically used for cDNA sequencing to check the expression

levels of different genes (Brenner et al., 2000).

In 2004 454 Life Sciences (Branford, CT, the United States) launched a new generation of sequencing technologies.

This company made a sequencing machine that reduced the cost of sequencing sixfold comparing to automated Sanger

sequencing.

In 2005 Solexa, which was in 2007 purchased by Illumina, marketed the sequencing by synthesis�based Genome

Analyzer. This analyzer was based on reversible dye terminator technology and engineered polymerase (Bentley et al.,

2008). The latest model of GAIIx can generate 85 billion bases of usable data in single run.

In 2005�06 Life Sciences that were purchased by Roche company (Basel, Switzerland) launched the 454 GS 20

Roche sequencing platform that could produce 20 million bases per run.

The 454 Life Sciences that was later taken over by Roche Company (with headquarter in Basel, Switzerland) devel-

oped a parallel version of pyrosequencing. In pyrosequencing, luciferase generates light on the addition of individual

nucleotide to nascent DNA, this light is detected and resultant data generate the sequence reads (Margulies et al.,

2005). Pyrosequencing gives intermediate read lengths and lesser price per base in comparison to other sequencing

methods like Sanger sequencing, Illumina, and SOLiD (Schuster, 2008).

In 2005�06 the 454 GS 20 Roche sequencing platform was launched, which transformed the sequencing technolo-

gies as it was able to generate 20 million bases (20 Mbp). New model 454 GS2 FLX1 Titanium sequencing platform

can generate 600 Mbp of sequence data per run with read lengths of up to 1000 bp. Roche launched small-sized GS

junior sequencing platform system that is capable of producing 400-bp long sequencing reads in a quick run (Life

Sciences, a Roche Company).

In later years, Illumina has launched HiSeq platform series, HiSeq 2500, HiSeq 2000, HiSeq 1500, and HiSeq 1000,

which differ in run time, output, cluster generation, and maximum read lengths. Sequencing platform HiSeq 2500 is

developed aiming high-throughput applications and can sequence a human genome in a day. HiSeq 2000 and HiSeq

2500 can generate 600 billion bases per run. In 2011 Illumina launched a benchtop platform MiSeq which is capable of

generating 1.5 Gbp per run. NovaSeq, the latest high-output sequencing platform of Illumina, can generate 13 billion

reads per run.

In 2011 Pacific Biosciences’ (Menlo Park, CA, the United States) single-molecule real-time (SMRT) sequencer and

Life Technologies’ Ion Torrent sequencer were launched [PacBio (Pacific Bioscience)]. In the year 2012�13 Oxford

Technologies’ Nanopore (Oxford, United Kingdom) single-molecule sequencer was released which has the ability to

read ultralong single-molecule reads [Nanopore (Oxford Technologies)]. SMRT sequencer is capable of reading maxi-

mum read length .100,000 bases with 87% raw read accuracy (GenomeWeb, 2012) but it is quite expensive. SMRT

sequencing techniques are also called “third-generation” or “long-read” sequencing.

Helicos BioSciences developed a single-molecule sequencing method that gives short B35 bp reads (SeqLL, 2014)

and it sequences nonamplified DNA, so to escape errors associated with amplification step (Heather & Benjamin,

2016). Other methods for DNA sequencing like microfluidic systems were also developed which can be used in RNA

sequencing too (Zilionis et al., 2017). This indicates that many of these DNA sequencing methods can be useful tools

for detail study of genomes and transcriptomes in future.

Additional methods of sequencing like Ion semiconductor sequencing, combinatorial probe anchor synthesis (BGI/

MGI), Nanopore sequencing were also developed recently. Sequence read length of these methods are up to 600, 300,

2,272,580 bp, respectively (Loose, Rakyan, Holmes, & Payne, 2018; Fang et al., 2018).

In recent years, companies like Illumina, Qiagen, and Thermo Fisher Scientific are actively working in the develop-

ment of high-throughput sequencing products (Straiton, Free, Sawyer, & Martin, 2019). In recent time, Illumina is
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considered to be the most popular platform for NGS technologies as it provides sequencing at affordable cost to diag-

nostic laboratories. Details about salient features and performance of main sequencing platforms are mentioned in

Table 24.1 (Kwong, McCallum, Sintchenko, & Howden, 2015; Lam, Clark, & Chen, 2012; Li, Tighe, & Nicolet, 2014;

Liu, Li, & Li, 2012; Metzker, 2010).

24.3 Next-generation sequencing data analysis by bioinformatics tools

Bioinformatics is a major limiting step for NGS technologies considering to overcome the growing challenges of

storage, analysis, and interpretation of NGS data (Land, Hauser, & Jun, 2015). NGS data analysis software can be

categorized into four general categories that are generation of sequence reads, base calling and/or polymorphism

detection, de novo assembly of genome, and annotation. For each category, various software programs have been

TABLE 24.1 Main features and performances of various next-generation sequencing (NGS) platforms.

NGS platform—

company

Template

preparation

Read

length

per run

Max

output

per run

Run

time

No of

reads

per run

Chemistry Raw

error

rate (%)

First generation

Sanger—Life
technologies

Primer
extension

800 bp 84Kb 2 h 1 Dideoxy
terminator

0.3

Second generation

454GSFLX—Roche Clonal-
emPCR

700 bp 0.7 Gb 1�2
days

13106 Pyrosequencing 1

GS Junior—Roche Clonal-
emPCR

500 bp 70 Mb 18 h 13105 Pyrosequencing

HiSeq—Illumina Clonal
bridge
amplification

23 150 1500 Gb 0.3�11
days

53109 Reversible dye
terminators

0.8

MiSeq—Illumina Clonal
bridge
amplification

23 300 15 Gb 27 h 33108 Reversible dye
terminators

0.8

SOLiD—Life
technologies

Clonal-
emPCR

50 120 Gb 14 days 13109 Ligation 0.01

Retrovolocity—BGI Gridded
DNA-
nanoballs

50 3000 Gb 14 days 13109 Hybridization/
Ligation

0.01

Ion Proton—Life
technologies

Clonal-
emPCR

200 100 Gb 2�5
days

63107 Proton detection 1.7

Ion PGM—Life
technologies

Clonal-
emPCR

200 2 Gb 2�5 h 53106 Proton detection 1.7

Third/or fourth
generation

SMRT—Pacific
Biosciences

Single
molecule

.10,000 1 Gb 1�2 h 13106 Real-time single-
molecule
sequencing

12.9

Helioscope—
Helicos

Single
molecule

35 25 Gb 8 days 73109 Real-time single-
molecule
Sequencing

0.2

Nanopore—Oxford
Nanopore
technologies

Single
molecule

.5000 1 Gb 2�3
days

63104 Real-time single-
molecule
sequencing
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developed. For example, to remove low quality and contaminant reads, an open-source software NGS QC Toolkit

was developed by Patel and Jain that allows parallel sequencing of large amount of data (Patel & Jain, 2012). The

resulting high-quality sequence reads are joined using de novo assembly bioinformatics tools to discover and recon-

struction of novel genomes (Van der Walt, van Goethem, & Ramond, 2017). Various bioinformatics software and

their practical applications are available for de novo assembly of short reads into whole genomes and transcriptomes

(Paszkiewicz & Studholme, 2010; Shendure & Ji, 2008; Zhang, Chen, & Yang, 2011). Advanced and improved soft-

ware are being commercially developed worldwide to analyze, assembly, and annotation of short reads. Detailed

reviews about main features of available software’s tools for quality control, genome assembly, taxonomic and func-

tional annotation of data produced by NGS have been published in different articles (Almeida & De Martinis, 2019;

Horner, Pavesi, & Castrignano, 2009; Miller, Koren, & Sutton, 2010; Pabinger, Dander, & Fischer, 2013). The tools

and algorithms for NGS data analysis are continuously being developed and upgraded to keep pace with the latest

advancement in these sequencing technologies.

24.4 Next-generation sequencing in plant virology

NGS and advanced bioinformatics tools have considerably added a number of new plant viruses/viroids detected and

identified in host plants and vectors. In plant virology, NGS is being used in whole-genome sequencing, diversity and

evolution of genome, ecology, epidemiology, transcription, replication, discovery, detection and identification. In recent

years, hundreds of new DNA and RNA plant viruses belonging to different genera and families have been reported

(Anja et al., 2017; Barba & Hadidi, 2015; Barba, Czosnek, & Hadidi, 2014; Gaafar & Ziebell, 2020; Hadidi & Barba,

2012; Ho & Tzanetakis, 2014; Roossinck, Martin, & Roumagnac, 2015; Wu et al., 2012). Since viroid RNA nature is

noncoding, so a combination of methods, including biological indexing and molecular biology techniques, as well as

plant certification and quarantine programs were being used in diagnosis of viroid (Gucek et al., 2017; Hadidi,

Czosnek, & Barba, 2004; Owens, Sano, & Duran-Vila, 2012). NGS allows pathogen characterization without any prior

knowledge about it thus assisting in detection and discovery of viroids (Barba et al., 2014; Li et al., 2012). One such

example is the discovery of two new viroids, persimmon viroid and grapevine latent viroid, by using NGS (Ito, Suzaki,

Nakano, & Sato, 2013; Zhang et al., 2014). In comparison with biological indexing method, NGS was found to be

quick, sensitive, and extensive method for the detection of grapevine viruses (Al Rwahnih, Daubert, Golino, &

Rowhani, 2009).

Plant viruses/viroids can be detected indirectly by sequencing small interfering RNA (siRNAs) in host plant.

siRNAs are produced by host as defense mechanism in response to infection by viruses/viroids, which are small 21- to

24-nt RNA molecules that inactivate DNA/RNA viruses and viroids (Flores et al., 2015; Zhang, Wu, Li, & Wu, 2015).

NGS reads of siRNAs provide information about pathogenic viruses/viroids that are previously unknown and present

even at very low titers. A large number of vsRNA or vd-sRNA can be sequenced by NGS in a single run. To find out

virus/viroids genome sequence, these small sequences can be reassembled. Sequencing of vsRNAs from nine different

viruses from four different host plants provided detail information about distribution and composition of these vsRNAs

in host plants and biogenesis of vsRNAs (Donaire et al., 2009). In the same year, two novel badnaviruses (double strand

deoxyribose nucleic acid (dsDNA)) and one novel mastrevirus (single strand deoxyribose nucleic acid (ssDNA)) were

identified (Kreuze et al., 2009). NGS offers to detect viruses that are not detectable by routine quarantine virus detec-

tion methods. One such example is discovery of sugarcane streak virus (genus Mastrevirus) from sugarcane plants

which was escaped to be detected during routine quarantine virus detection methods (Candresse et al., 2014). Similarly,

a new Luteovirus was discovered from introduced nectarine trees by using NGS (Bag et al., 2015; Villamor, Mekuria,

& Eastwell, 2016). In Slovenia the reason behind severe stunting and death of hop plants was found to be citrus bark

cracking viroid as revealed by NGS technologies (Jakse, Radisek, Pokorn, Matousek, & Javornik, 2015). These patho-

gens have been added in alert list for trading of plant material so that countries become aware of possible pathogen

introduction. NGS could be thus helpful in controlling the introduction of foreign pathogens into a new country during

the import of plant materials. Many novel and known viruses were detected from crop plants as well from wild hosts by

using NGS in metagenomic methods (Roossinck et al., 2015; Roossinck, 2015; Stobbe & Roossinck, 2014). By using

high-throughput sequencing techniques, complete genome sequencing of many known viruses were obtained which

could be utilized for the identification and characterization of viral isolates in different novel and known host plants

during infection. For example, complete genome sequencing of Artichoke latent virus by NGS identified that it is a

member of genus Macluravirus, family Potyviridae, and ranunculus latent virus is not a different species but a strain of

this virus (Minutillo et al., 2015); potato virus Y and S were detected in Maori potato (Solanum tuberosum) and turnip

mosaic virus in rengarenga (Arthropodium cirratum) which were found to be a novel host (Blouin et al., 2016).
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NGS is playing a major role in joining plant virology with other biological areas like CRISPER-Cas9-based

genome-editing. CRISPER-Cas9 has been utilized in developing resistance against DNA and RNA viruses (Ali et al.,

2015; Baltes et al., 2015; Ji, Zhang, Zhang, Wang, & Gao, 2015). An approach utilizing combination of NGS and

CRISPER-Cas9 genome editing technique may help in controlling disease that is triggered by DNA/RNA viruses and

viroids at the genomic level (Hadidi, Flores, Candresse, & Barba, 2016).

Conventional methods of virus detection in fruit trees are molecular, serological, and biological indexing, which are

labor intensive and lengthy. NGS technologies are comparatively rapid and highly sensitive to detect disease-causing

pathogens and potentially applicable in monitoring as well ensuring that trees are virus free. NGS was proved to be

equally efficient in detecting known viral pathogens from fruit trees and was equal or superior in detecting novel viruses

when compared to conventional viral detection methods (Rott et al., 2017). So, NGS-based approaches can be possibly

replacing most or all conventional methods in terms of being quicker and more extensive than conventional methods

with the same or more efficiency to detect fruit tree viruses. Applications of NGS in various studies of plant virus small

RNAs, SiRNAs, and viroid small RNAs are listed in Tables 24.2 and 24.3.

TABLE 24.2 List of application of next-generation sequencing (NGS) in various studies of plant virus small RNAs,

SiRNAs.

S.

no.

Host Results Sample preparation References

1. Sweet potato Identification of two novel badnaviruses
(dsDNA) and one novel mastrevirus (ssDNA),
detection of Sweet potato feathery virus and
sweet potato chlorotic stunt virus.

siRNA Kreuze et al.
(2009)

2. Gomphrena globosa Novel Gayfeather mild mottle virus was
discovered.

Total RNA Adams et al.
(2009)

3 Arabidopsis thaliana Tobacco mosaic virus siRNA mediated
virus�host interaction that may contribute to
viral pathogenicity.

vsRNA Qi et al.
(2009)

4. Nicotiana benthamiana,
A. thaliana, Cucumis
milo, and tomato

Nine different virus vsRNAs were studied in four
different hosts. This study provided details about
distribution and composition of vsRNA as well
biogenesis of vsRNAs.

vsRNA Donaire et al.
(2009)

5. Cassava The complete genome sequence of the
Tanzanian strain of Cassava brown streak virus
was obtained.

Total RNA Monger et al.
(2010)

6. Grapevine Grapevine syrah 1 virus was discovered in
grapevine and leafhopper vector.

Total RNA Al Rwahnih
et al. (2009)

7. N. benthamiana vsRNAs of Cymbidium ringspot virus were
determined. These vsRNAs are primarily derived
from positive strand of virus, had a 50

monophosphate, were accumulated with
different frequencies, and not perfect duplexes.

vsRNA Szittya et al.
(2010)

8. Oryza sativa Classification of vsRNAs from four rice stripe
virus genome RNAs.

vsRNA Yan et al.
(2010)

9. N. benthamiana, A.
thaliana

Identification of vsRNAs and its associated
satellite RNAs in bamboo mosaic virus.

vsRNA Lin et al.
(2010)

10. Wild cocksfoot grass Cereal yellow dwarf virus (Luteovirus) was
discovered in wild cocksfoot grass and
Cocksfoot streak virus (Potyvirus) was detected.

vsRNA Pallett et al.
(2010)

11. Grapevine Virus genera Foveavirus, Maculavirus,
Marafivirus, and Nepovirus of vsRNAs were
derived from both genomic and antigenomic
strands, while genus Tymovirus of vsRNAs was
originated from antigenomic strand.

vsRNA Pantaleo et al.
(2010)

(Continued )
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TABLE 24.2 (Continued)

S.

no.

Host Results Sample preparation References

12. Grapevine Mycoviruses showing similarity with Penicillium
chrysogenum virus, GLRaV-3, GRSPaV, GVA,
and Grapevine virus E were detected.

dsRNA Coetzee et al.
(2010)

13. Cotton siRNA profiling of Cotton leafroll dwarf virus
(Poleovirus, Luteoviridae) in infected cotton
plants.

siRNA Silva et al.
(2011)

14. Wild Passiflora caerulea The complete genome sequence of Passion fruit
woodiness virus (Potyvirus) was obtained.

Poly-A RNA Wylie et al.
(2011)

15. Pepper, eggplant The complete genome sequences of two novel
viruses Pepper yellow curl virus (Polerovirus) and
Eggplant mild leaf mottle virus (Ipomovirus) were
obtained.

vsRNA Dombrovsky
et al. (2011)

16. Tomato Detection of Tomato spotted wilt virus in tomato
at early infection period. Identification of
Tospovirus and squash-infecting geminivirus;
analysis of virus quasispecies.

siRNA Hagen et al.
(2011)

17. A. thaliana vsRNA and transcriptome profiling of
Arabidopsis plants infected by Oilseed rape
mosaic virus (genus Tobamovirus).

vsRNA Hu et al.
(2011)

18. Tomato, N. benthamiana Characterization of vsRNA of Tomato yellow leaf
curl virus and associated betasatellite.

vsRNA Yang et al.
(2011)

19. Citrus vsRNA profiling reconstructed the full genome
of T318A Spanish citrus tristeza virus isolate.
vsRNAs map primarily at 30 end of genomic
RNA.

vsRNA Ruiz-Ruiz
et al. (2011)

20. N. benthamiana,
Laodelphgax striatellus
(small brown leafhopper),
rice

siRNAs of Rice stripe virus were found in
infected rice, Nicotiana, and brown leafhopper.

siRNA Xu et al.
(2012)

21. Tomato Two strains of Pepino mosaic virus were
identified and differentiated. Complete genome
sequence of novel Tomato necrotic stunt virus
was discovered.

vsRNA Li et al. (2012)

22. Sweet potato Detection of different genera (Potyvirus,
Crinivirus, Begomovirus). Analysis of vsRNA by
NGS is a reliable and sensitive method for virus
detection in crops.

vsRNA Kashif et al.
(2012)

23. Citrus Identification of Citrus yellow vein clearing virus
in citrus (genus Mandarivirus).

siRNA Loconsole
et al. (2012a)

24. Citrus Identification of Citrus chlorotic
dwarf�associated virus in citrus (genus
Begomovirus)

siRNA and total DNA Loconsole
et al. (2012b)

25. Apple Two apricot viruses and four apple viruses
associated with apple green crinkle were
detected.

vsRNA Yoshikawa
et al. (2012)

26. Grapevine Detection of Grapevine rupestris stem-pitting
associated virus, Grapevine rupestris vein
feathering virus, and Grapevine syrah virus. A
novel Grapevine pinot gris virus was discovered.

vsRNA Giampetruzzi
et al. (2012)

(Continued )
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TABLE 24.2 (Continued)

S.

no.

Host Results Sample preparation References

27. Grapevine Characterization of vsRNAs associated with
grapevine leafroll disease

vsRNA Alebi et al.
(2012)

28. Apple, citrus, grapevine ASPV, ACLSV, and an unknown mycovirus were
detected. Two variants of CTV and ASGV were
detected. Variants of GLRaV-3, GVA, and an
unknown mycovirus were also detected.

siRNA Maree et al.
(2012)

29. Cherry Characterization of the genome of the divergent
Little cherry virus 1 (LChV1) isolate and
establishing that LChV1 isolates could be
responsible for Shirofugen stunt disease
syndrome.

dsRNA Candresse
et al. (2014)

30. Citrus The complete nucleotide sequence of a novel
virus Citrus leprosis virus cytoplasmic type 2
(genus Cilevirus) was determined

siRNA Roy et al.
(2013)

31. Citrus The complete nucleotide sequence of novel
Citrus vein enation virus was determined.

siRNA Vives et al.
(2013)

32. Grapevine Complete sequence of a novel single-stranded
DNA virus Grapevine red leaf�associated virus
was obtained.

Total RNA treated
with DNase

Poojari et el.
(2013)

33. Black pepper The complete genome sequence of Piper yellow
mosaic virus (genus Badnovirus, family
Caulimoviridae.) was determined. Partial
sequences of two additional novel viruses Piper
DNA virus 1 and 2 were obtained.

Viral and plant DNAs
were isolated from
virus-enriched
fraction

Hany et al.
(2013)

34. Potato (Solanum
tuberosum)

Potato virus Y strains O, N, and NTN vsRNAs
were different in same host that shows they
interact differently. vsRNA were generated from
every position in the genome.

vsRNA Naveed et al.
(2014)

35. Potato (S. tuberosum) Potato virus X siRNAs were separated according
to their strains.

siRNA Kutnjak et al.
(2014)

35. A. thaliana and N.
benthamiana

Vs-RNAs and vd-sRNAs profiling allowed de
novo reassembly of DNA and RNA viruses and
viroids for the diagnosis and detection of known
and novel virus.

vsRNA Seguin et al.
(2014)

36. Apple VsRNA profiling of apple stem grooving virus
was done. The role of tRNA-derived sRNAs in
plant�virus interaction was observed.

vsRNA Visser et al.
(2014)

37. Cucurbita pepo Zucchini mosaic virus vsRNAs were used to
analyze the systemic movement of virus within
inoculated leaf. With the distance from
inoculation site, the number of virus variant
increases.

vsRNA Dunham et al.
(2014)

38. Sugarcane Discovery of Sugarcane streak virus (genus
Mastrevirus). The accumulation levels of vsRNAs
are heavily influenced by both viral genomic
ssDNA and its mRNA transcript secondary
structure.

vsRNA Candresse
et al. (2014)

39. Mulberry Identification and molecular characterization of
novel monopartite geminivirus associated with
mulberry mosaic dwarf disease.

vsRNA Ma et al.
(2015)

(Continued )
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By NGS past disease epidemics and evolution of pathogens can be studied, using genetic material of plant viruses

and viroids that has been isolated from dried plant samples of years old herbaria or museums. In a remarkable study,

from an approximately 750-year-old barley grain, the whole-genome sequence of a barley stripe mosaic virus (BSMV)

TABLE 24.2 (Continued)

S.

no.

Host Results Sample preparation References

40. Apple Identification and molecular characterization of
novel monopartite geminivirus.

vsRNA Liang et al.
(2015)

41. Squash Identification and molecular characterization of
Squash mosaic virus.

vsRNA Li et al. (2012)

42. Chickpea (Cicer
arietinum)

Tomato mosaic virus infection to chickpea in
Europe

vsRNA Pirovano et al.
(2015)

43. Melon, cucumber Comparative vsRNAs analysis among source,
sink, and phloem tissues in two different
plant�virus pathosystems. Melon plants were
infected with melon necrotic spot virus and
cucumber plants were infected with prunus
necrotic ringspot.

vsRNA Herranz et al.
(2015)

44. Wild rose (Rosa multiflora
thumb.)

Identification and molecular characterization of
novel Closterovirus rose leaf rosette virus.

vsRNA He et al., 2015

45. Grapevine The presence of eight different viruses was
detected in one set of eight grapevines.

Small RNA Eichmeier
et al., 2016

46. Tomato, mustard, potato,
pea, tobacco

Twelve different viruses (Potato virus Y,
Cauliflower mosaic virus, Tomato yellow leaf
curl virus, Alfalfa mosaic virus, pea necrotic
yellow dwarf virus, Tobacco mosaic virus,
Tomato chlorosis virus, Pepino mosaic virus,
Potexvirus, Tomato mosaic virus, etc.) were
detected. A putative novel Cytorhabdovirus was
discovered.

Small RNA,
Ribosomal depleted
total RNA

Pecman et al.
(2017)

47. Grapevine Fifteen different viruses were detected and
phylogenetic analysis showed diseases caused
mainly because of infected propagating material.

vsRNA Czotter et al.
(2018)

48. Peach Six different virus genomes were obtained using
transcriptomic data. Amount and copy number
of viral RNA were also studied. Single-
nucleotide variations in each viral genome were
also analyzed.

vsRNA Jo et al. (2018)

49. Tomato, Go. globosa Model plants were infected with virus and full
viral genomes of Pepino mosaic virus and
Gayfeather mild mottle virus were sequenced
and identified.

cDNA Adams et al.
(2009)

50. Peach Eight different viruses were identified from a
single palm tree. Peach virus D was reported
first from China.

vsRNA Xu et al.
(2019)

51. Tomato Twenty-nine different viruses were identified
from tomato plant with and without Ty-1 gene.
A gemycircularvirus (Genomoviridae), a new
alpha-satellite, and two novel Begomovirus
species were detected only from tomato without
the Ty-1 gene. A novel begomovirus was found
exclusively in the Ty-1 pool.

Viral ssDNA de Nazaré
Almeida dos
Reis et al.
(2020)
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TABLE 24.3 List of application of next-generation sequencing (NGS) in various studies of viroid small RNAs.

S.

no.

Host Findings of study Sample References

1. Peach Vd-sRNAs of peach latent mosaic viroid were used to
analyze evolution and pathogenesis of viroid.

siRNA Di Serio et al. (2009),
Navarro et al. (2012a)

2. Grapevine Pathogenesis and plant�viroid interaction studies of hop
stunt viroid, and grapevine yellow speckle viroid.

siRNA Navarro et al. (2009)

3. Grapevine Identification of Australian grapevine viroid, Hop stunt
viroid, and Grapevine yellow speckle viroid.

Total RNA or
dsRNA

Al Rwahnih et al. (2009)

4. Nicotiana
benthamiana

RNA-dependent RNA polymerase 6 inhibits
accumulation and prevents meristem invasion of Potato
spindle tuber viroid which replicates in nuclei.

Plant and viroid
siRNA

Di serio et al. (2010)

5. Cucumber Analysis of Hop stunt viroid pathway which involved in
the biogenesis of the viroid siRNAs.

SiRNA Martinez et al. (2010)

6. Grapevine Characterization of vd-sRNA of hop stunt viroid and
grapevine yellow speckle 2 viroid.

siRNA Alabi et al. (2012)

7. Tomato Detection and identification of Potato spindle tuber
viroid.

siRNA Li et al. (2012)

8. Grapevine Detection and identification of Grapevine yellow speckle
viroid 1 and Hop stunt viroid.

siRNA Giampetruzzi et al.
(2012)

9. Grapevine Detection and identification of Grapevine yellow speckle
viroid 1 and Hop stunt viroid.

dsRNAs and
siRNAs

Chiumenti et al. (2012)

10. Grapevine It was found that viroid-infected plants generate 21- to
24-nt vd-sRNAs. Based upon this, an approach was
developed for identification of previously known and
unknown viroids.

siRNA Wu et al. (2012)

11. Grapevine Detection and identification of Grapevine yellow speckle
viroid 1, Hop stunt viroid, Citrus exocortis Yucatan viroid,
and Citrus exocortis viroid.

Total RNA
treated with
Dnase

Poojari et al. (2013)

12. Different
hosts

Viroid circular RNAs and satellite sRNAs were identified
using bioinformatics tools.

RNA seq. Zhang et al. (2014)

13. Fig (Ficus
carica)

Detection of apple dimple fruit viroid in new host fig. vd-sRNAs Chiumenti et al. (2014)

14. Peach Upon inoculation with a single variant of peach latent
mosaic viroid generates a highly heterogeneous progeny
within a single infected peach seedling.

vd-sRNAs Glouzon et al. (2014)

15. Tomato Potato spindle tuber viroid (PSTVd) vd-sRNAs and effect
of artificial miRNAs that were generated from PSTVd—
mild or severe infected plants were studied. Analysis of
distribution of vd-sRNAs hot spot indicates vd-sRNAs
involvement in symptom expression.

vd-sRNAs Adkar-Purushothama
et al. (2015), Avina-
Padilla et al. (2015)

16. Chickpea Detection of hop stunt viroid in new host chickpea. vd-sRNAs Pirovano et al. (2015)

17. Grapevine Grapevine yellow speckle viroid 1 and Hop stunt viroid
were detected.

vd-sRNAs Eichmeier et al. (2016)

18. Tomato,
Prunus
species

Three viroid species, including Columnea latent viroid,
Peach latent mosaic viroid, Tomato apical stunt viroid,
were reported.

Small RNA,
Ribosomal
depleted total
RNA

Pecman et al. (2017)

19. Grapevine Three viroids Hop stunt viroid (HSVd) and Grapevine
yellow speckled viroid 1�2 (GYSVd-1 and 2) were
detected.

vd-sRNA Czotter et al. (2018)

(Continued )
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isolate was obtained using NGS of small RNA sequences (Smith et al., 2014). Surprisingly, obtained sequence shows

position differently in phylogenetic tree of BSMV, suggesting recent origin of the virus isolate. Similarly, a viral

genome was discovered from 700-year-old caribou feces from a subarctic ice patch (Ng et al., 2014) and a huge DNA

virus named Pithovirus sibericum from 30,000-year-old Siberian permafrost sample was also detected and identified

through NGS (Legendre et al., 2014). Such findings would provide an insight into evolution of plant viruses and

viroids.

24.5 Challenges

NGS offers an efficient and fast DNA, or RNA high-throughput sequencing of the complete genomes of plant viral/

viroid pathogens and of the certain small RNAs produced during the infection process. High-throughput sequencing

sRNAs followed by bioinformatics analysis is a significant method to detect and identify known as well novel plant

viruses or viroids. This has been proved to be a powerful tool in the area of plant virus/viroids discovery and diagnosis

(Massart, Olmos, Jijakli, & Candresse, 2014). Sequencing small vRNAs by NGS methods has been a universal

approach, applied in approximately half of the published studies on plant viral diagnosis and disease symptom studies

(Barba et al., 2014). But still in many experiments, either partial or relatively short sequences are obtained which may

be due to lack of sufficient proportions of viral sRNA concentration in total sRNA as a result of which viruses are not

detected. During the assembly of viral sRNA sequences into contigs, assemblers face computational challenges like

great diversity of infecting viral population in a sample or relatively very less size of viral sRNAs in a large-sized host

sRNAs reads. The quality of preliminary sRNA assembly is very important for the effective detection of a novel patho-

gen that has not been yet submitted in reference sequence databases (Barrero et al., 2017). Although theoretically it

seems very simple for diagnosis of a pathogen by sRNA dataset analysis, practically it is a complex research experi-

ment (Soueidan, Schmitt, Candresse, & Nikolski, 2014; Wu, Ding, Zhang, & Zhu, 2015). The ability of a sensitive,

accurate, and replicable diagnosis during sRNAs analysis depends on setting a general strategy to opting specific tool

and parameters for experiment. The outcomes of viral small RNA analysis for discovery and diagnosis of virus depend

on characteristics of the obtained virus sequences and their accuracy, extensiveness, the pipeline performance, and

expertise of scientists (Massart et al., 2019). Bioinformatics analysis strategy should be selected considering various fac-

tors during experiment and relative concentration of viral sequence in sequence dataset directly correlates with the sen-

sitivity of results.

In testing pathogen infection in fruit trees, NGS is equally efficient and more rapid than conventional testing meth-

ods with no false negatives, but still a false positive is some concern in NGS-based diagnostic approaches. NGS-based

techniques are complementary only not exclusive, so bioassay should be followed after NGS to confirm the results.

Moreover, NGS can detect contaminant pathogen sequences which may not be essentially replicating at the host plant

cell from where it was isolated (Blawid, Silva, & Nagata, 2017).

To analyze NGS sequence reads, various bioinformatics tools are used to identify pathogens and symptoms etiology.

To develop these tools for analysis of RNA sequence data after NGS, various issues like uploading bulky NGS raw

reads, intensive data processing steps on computer, dependence upon already processed custom database, etc. are being

faced by researchers. Other than this, to identify novel virus scientific expertise as well frequent assembly and mapping

TABLE 24.3 (Continued)

S.

no.

Host Findings of study Sample References

20. Peach Two different viroids Hop stunt viroid and peach latent
mosaic viroid were identified using transcriptome data.
Amount of viroid RNA and copy number were analyzed.

Small RNA Sen Lian et al. (2018)

21. Apple Apple chlorotic fruit spot viroid (genus Apscaviroid) was
discovered.

Total RNA Leichtfried et al. (2019)

22. Peach Peach latent mosaic viroid (PLMVd), sequences were
isolated from symptomatic and asymptomatic peach
leaves.

vsRNA Xu et al. (2019)
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of viral sequences are required. To make tools available for effective, accurate, and easy analysis, NGS raw dataset is a

big challenge. To process data on locally installed computer programs, there is no need to upload data on a remote

server but requires expertise in software installation and operation. The webserver can be the most convenient option to

a nonexpert user but it needs advanced computer hardware at the remote site and large data files have to be uploaded to

process (Jones, Amanda, Stuart, & Lesley, 2017).

Plant virology has indeed advanced using new technologies like NGS but, at the same time, faces challenges like

biological characterization of novel viruses and evaluation of their effect on biosecurity, monitoring, and scientific

levels. The biological characterization of novel virus may be difficult with multiplex viruses, where viruses can trans-

form their pathogenic potential by mutualistic interactions (Syller & Grupa, 2016). With the more advancement in

sequencing technologies and bioinformatics tools, downstream epidemiology and disease etiology analysis will be quite

challenging in determining biological significance and impact of a new virus or mixture of different viruses (Massart

et al., 2017).

24.6 Conclusion and future prospective

NGS combined with bioinformatics tools has been providing a rapid sensitive and extensive method for DNA or RNA

sequencing of plant viruses/viroids. Whole-genome sequencing of viruses and viroids is helpful in discovery and diag-

nosis of pathogens as well diversity, evolution, ecology, and virus�host interaction analysis in plant virology. Many

known and unknown plant viruses and viroids are detected, identified, and classified from cultivated as well wild hosts

using NGS techniques in the last few years. Since NGS method does not require any prior knowledge of pathogens, it

has become a universal method for discovery and diagnosis of pathogen diagnosis. NGS is a powerful diagnostic tool

that offers a deep insight into virus infection and is helpful in monitoring pathogen infection in vegetative propagating

tree plants and during import/export of plant materials. In coming years, NGS can be used in increasing capabilities and

reliabilities of plant quarantine and certification programs. NGS has been showing promising role in developing virus

resistance in plants using genome-editing techniques. A combination of NGS and genome-editing techniques like

CRISPER-Cas9 system can be utilized in developing resistance against DNA/RNA viruses and viroids and controlling

pathogen infection at the genomic level. Since viruses cause significant loss in crop yield and affect the quality of plant

products, rapid diagnosis of pathogen by NGS could be helpful in successful crop production and combating negative

economic impacts.

NGS allows unbiased and hypothesis-free simultaneous detection of multiple viruses in plant samples. It can detect

viruses even from samples where multiple viral infection present or unclear and unspecified disease symptoms are pres-

ent. NGS technologies may become a game changer in the field of plant virology with more advancement in efficient

nucleic acid extraction protocols, robust bioinformatics tools, and with availability at affordable cost.
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25.1 Herbicides: use and impact on environment

Herbicides are the nonnatural agrochemicals that are being used for the removal of unwanted plants from the crop field

to enhance the agricultural yield. The majority of the herbicides kill plants through interference with the photosynthetic

system. A diagrammatic overview of the attacking mechanism of the herbicide diuron is shown in Fig. 25.1. Among the

pesticides, herbicides have been reported to have a very high percentage (. 45%) of sales in comparison to other cate-

gories. Herbicides can be classified on the basis of their translocation, time and method of application, and mode of

actions (Vats, 2015). The other classification on the basis of chemical (considers active ingredients and mode of action)

(Forouzesh, Zand, Soufizadeh, & Samadi Foroushani, 2015) properties of herbicide is also an efficient categorization to

study the group effect. As we know that the growing need of food has put the agricultural system on stress to enhance

crop yields, it indirectly increased the load of such agrochemicals on crop soils. Due to the consistent use and ineffec-

tive management for removal, these xenobiotics are accumulating in the environment and exerting toxic effect on the

other component of the ecosystem, including humans (Bailey-serres, Parker, Ainsworth, Oldroyd, & Schroeder, 2019;

Kah, 2020; Meena et al., 2020). The chemical structure of the herbicides plays an important role in their interaction and

persistence in the environment. Natural removal of these xenobiotics from the environment is very slow and depends

on the environmental conditions. Although the use and impact of the herbicide on environment vary, the overall mea-

surement is required about the toxicity of the herbicide to the nontarget populations. Environmental impact quotient

(EIQ) is a measure of the effect of herbicide on environment. EIQ can provide a categorization of herbicide on the basis

of amount of risk associated (Kniss & Coburn, 2015).

Herbicides come from a wide variety of chemical groups that interact with environment variably. Triazine herbicides

are known to have their long persistence and negative effect on the environment (Chan, Chan, & Wong, 2019). Due to

extensive use of the atrazine and potential hazards to human, it has become a serious issue. Investigations for its reme-

diation are in interest because it can contaminate the sources of drinking water (high persistence and mobility)

(Mudhoo & Garg, 2011). Hazardous effect of atrazine has been recorded on a range of organisms from invertebrates to

vertebrates. Toxicity of atrazine on the various systems of human body has been recorded (Singh et al., 2018).

Similarly, phenyl urea herbicides (PUHs) are being used extensively to remove weeds from the crop fields. The member

of PUHs (i.e., diuron, linuron, isoproturon) is being identified as a serious threat to environment. Being highly soluble

in water, PUHs have been reported as a pollutant in water bodies (Hussain et al., 2015).

Glyphosate (trade name: Roundup), a postemergence herbicide, is being used globally for weed control. Aquatic

environments have been found to be highly affected by the glyphosate herbicide. Bioaccumulation and food chain con-

tamination of glyphosate are identified mainly with aquatic organisms, at some extent (Annett, Habibi, & Hontela,

2014). Glyphosate is a chelator and has the ability to bind bivalent ions (i.e., Ca12, Mg12, Mn12) and exerts an inhibi-

tory effect on enzyme involved in shikimate pathway by associating with manganese (Richmond, 2018). An intermedi-

ate, aminomethylphosphonic acid of glyphosate transformation is more stable than the herbicide itself. It is found that

399
Bioinformatics in Agriculture. DOI: https://doi.org/10.1016/B978-0-323-89778-5.00030-1

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-89778-5.00030-1


glyphosate has low impact on environment in comparison to other xenobiotics used (Duke, 2020). Herbicides (quizalo-

fop-p-ethyl and cycloxydim) from arylphenoxypropionate group are postemergence herbicide have been recognized as

a source to contaminate groundwater due to their solubility in water and can exert negative effect to the aquatic organ-

isms (Rosculete, Bonciu, Rosculete, & Olaru, 2019).

More than five decades, 2,4-D (2,4-dichlorophenoxyacetic acid) is being used actively in agriculture and possesses a

significant impact on environment (Peterson, McMaster, Riechers, Skelton, & Stahlman, 2016). The herbicide is associ-

ated with high consumption worldwide and in environment, mainly it is found as a contaminant of water due to its high

solubility in water (indicating serious health hazard). Bioaccumulation of 2,4-D is reported on a faster rate and pos-

sesses toxic effects on various organisms (Islam et al., 2018). The removal of 2,4-D from the environment is an impor-

tant issue due to its high toxicity on the environment (Zuanazzi, Ghisi, & Oliveira, 2020). In addition, the repeated use

of the available herbicides (xenobiotics) in the crop soils increasing the herbicide resistance in the weeds and novel her-

bicides are needed to manage the resistant weeds. Researchers are trying to find out new targets/mode of actions that

remove the unwanted weeds from the crop fields (Qu et al., 2021) which in parallel is required to develop strategy for

their (residual) removal from environment.

Researchers have tried a range of approaches for the rapid removal of these pollutants from environment. Although

several investigations have been done to get rid of pollutants effectively and efficiently, the majority of the researches

have been carried out at small scale for a limited time duration. It is necessary to increase the in situ evaluation with

detailed investigations (Sun, Sidhu, Rong, & Zheng, 2018). Several physical, chemical, and biological strategies are

being followed to improve the bioremediation of herbicides (He et al., 2019; Pileggi, Pileggi, & Sadowsky, 2020;

Saravanan et al., 2020; Souza et al., 2016). Among the approaches, microbial degradation is an important tool to

develop an efficient strategy against the xenobiotic pollution. We know that the degradation of such synthetic com-

pounds in environment is mainly due to the microorganisms. The cell factory of microbes can be utilized for the clean-

ing of environment by integrating appropriate technology into it.

25.2 Microbial degradation of herbicides

Microorganisms are considered principal degraders of the herbicide in a wide range of contaminated environments

(Singh, Kuhad, Singh, Lal, & Tripathi, 1999). The consistent development in the molecular technologies helped to

extend our knowledge related to the degradation potential of microorganisms (Trigo, Valencia, & Cases, 2009). In the

environment, microorganisms coexist in communities and participate in the degradation process. Such degradation

FIGURE 25.1 An overview: effect of diuron as herbicide on targeted plant (Haynes et al., 2000).
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processes in environment are very complicated due to the interaction of several biotic and abiotic components (Li et al.,

2018).

Till date, several microorganisms from all the three domains of life have been explored for their relevance to bio-

degradation in environment. Among bacteria, Pseudomonas is a genus widely known for its ability to degrade a range

of synthetic substances. Pseudomonas fluorescens was extensively investigated at molecular level for degradation path-

way of sulfonylurea (Zanardini et al., 2002). In last more than 20 years, Pseudomonas sp. strain ADP (Adenosine di

phospate) has been investigated for atrazine degradation potential. Strain ADP harbors the atrazine degradation pathway

and is able to utilize atrazine as sole nitrogen source (Boundy-Mills, De Souza, Mandelbaum, Wackett, & Sadowsky,

1997; Esquirol et al., 2018). In addition to Pseudomonas, Arthrobacter is one of the efficient degraders of atrazine.

Several strains of Arthrobacter have been investigated for its potential to degrade atrazine under different environmen-

tal conditions (Aislabie, Bej, Ryburn, Lloyd, & Wilkins, 2005; Wang & Xie, 2012). There is a diversity in atrazine deg-

radation by Arthrobacter. TC1 strain of Arthrobacter is reported to transform atrazine in cyanuric acid (Strong,

Rosendahl, Johnson, Sadowsky, & Wackett, 2002) but some other strains of Arthrobacter have also been identified for

the utilization of cyanuric acid as nitrogen source (Hatakeyama et al., 2015).

In addition to Arthrobacter, Kaistobacter (Lin et al., 2018), Acinetobacter (Yang, Jiang, Zhu, Zhao, & Zhang,

2017), Bacillus (Khatoon & Rai, 2020), and Citricoccus (Yang, Wei, Zhu, & Geng, 2018) are some of the bacterial gen-

era identified as efficient degraders of atrazine. Recently, Fusarium, a fungus, is reported for its ability to degrade atra-

zine at some extent (Esparza-Naranjo et al., 2020). Though some of the bacteria have been considered a potential

candidate against atrazine pollution, still the need of identifying new degraders is required. Bacillus licheniformis and

megaterium spp. have been reported for their ability to degrade atrazine. Both the strains of Bacillus show faster degra-

dation in consortia in comparison to degradation in isolated culture (Zhu, Fu, Jin, Meng, & Yang, 2019).

PUHs are one of the most important categories in herbicide which is widely used to remove weeds or unwanted

plants. Diuron, linuron, isoproturon are some of the important herbicides among the phenyl urea category. Diuron deg-

radation in soil is mainly the outcome of microbial activity along with a small fraction of photochemical decomposition

(Kovács et al., 2016; Tasca & Fletcher, 2018). The rate of degradation is affected by physicochemical factors such as

soil pH, soil texture, and available organic matter (Guimarães et al., 2018). Biological factors affecting the process

include the crop plants that can stimulate the process (Piutti, Marchand, Lagacherie, Martin-Laurent, & Soulas, 2002).

Additional factors include the quality and quantity of the soil organic matter directly affecting the sorption of the diuron

and its accessibility to the microbes. Finally, the high amount of aromatic content in the organic matter enhances the

binding of diuron with the soil (Albers, Banta, Hansen, & Jacobsen, 2008).

Decomposition process typically leads to the formation of 3,4-DCA (DCA), a highly persistent pollutant that is

more toxic than diuron. The information on the complete mineralization pathway of the 3,4-DCA is still scarce.

Although several bacteria (including Streptomyces) and fungi have been reported to degrade the highly

stable metabolite, still the complete pathway needs more investigations (Arora, 2015; Briceño, Fuentes, Saez, Diez, &

Benimeli, 2018; Giacomazzi & Cochet, 2004). The capability of Pseudomonas to degrade DCA was suggested through

aromatic ring cleavage and its utilization as a carbon source (El-Deeb, Soltan, Ali, & Ali, 2000). On the same line, the

strong evidences for the DCA degradation in Pseudomonas have been provided by Kim et al. (2007). The presence of

12 genes linked to catechol pathway (including catechol 2,3-dioxygenase) was revealed for DCA degradation (similar

enzyme in Pseudomonas acidovorans was reported earlier also Hinteregger, Loidl, & Streichsbier, 1992). You and

Bartha (1982) observed muconate and butenolide which may likely have a fate toward the oxoadipate via maleylacetate.

In a study the transformation of DCA in Acinetobacter showed the formation of aniline and 4-chlorocatechol followed

by the ortho cleavage mechanism (Hongsawat & Vangnai, 2011). On the other hand, 1, 2 catechol dioxygenase gene

was recognized as a part of the phenyl urea degradation by Sphingobium sp. (Sun et al., 2009).

Fungi have been considered an efficient degrader in soil. The fungi are also recognized for their efficient enzyme

system for the xenobiotic degradation. The various oxido-reductases and peroxidases have been found to be involved in

a range of mineralization of aromatic hydrocarbons (Spina et al., 2018). The involvement of oxidases along with the

antioxidants has been demonstrated in the Ganoderma lucidum (Coelho-Moreira et al., 2018). Diuron degradation by

Mortierella sp. suggests the formation of the nonaromatic diol followed by N-dealkylation (Badawi et al., 2009).

Similarly, N-dealkylation-mediated degradation process has also been reported in Neurospora intermedia, an endophyte,

isolated from the sugarcane root (Wang, Li, Feng, Du, & Zeng, 2017). Apart from these proteins/enzymes, N-

acetyltransferase is found in fungi that is responsible for the acetylation of 3,4-DCA and results in the less toxic product

(Martins, Dairou, Rodrigues-Lima, Dupret, & Silar, 2010). The consortia of Aspergillus brasiliensis and

Cunninghamella elegans showed the significant transformation of diuron to reduce the toxicity of the metabolites. The

major intermediates observed through liquid chromatography were DCPMU (1-(3,4-dichlorophenyl)-3-methylurea),
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DCPU ((3,4-dichlorophenyl)urea), DCA along with the 3,4-dichloro acetanilide (Perissini-Lopes et al., 2016). The pro-

duction of acetanilides have also been observed in the degradation studies of DCA by bacteria (Egea et al., 2017; Yao

et al., 2011).

For linuron degradation, Variovorax is highly investigated at genomic and proteomic level. Variovorax sp. strain

SRS16 can utilize linuron as sole carbon and nitrogen source, the strain is also explored for its degradation pathway

and being considered a promising candidate for bioremediation of linuron (Bers et al., 2011; Öztürk et al., 2020;

Sørensen, Simonsen, & Aamand, 2009). A synergistic catabolism of linuron has been reported by Diaphorobacter and

Achromobacter, where the first one carries out the initial hydrolysis of linuron and second one mineralizes the produced

aniline derivatives (Zhang, Hang, et al., 2018). Isoproturon was found to be rapidly mineralized by Sphingomonas sp.,

isolated from a contaminated agricultural soil (Hussain, Sørensen, Devers-Lamrani, El-Sebai, & Martin-Laurent, 2009).

Pseudomonas aeruginosa strain JS-11 was used as an efficient bioinoculant against isoproturon pollution. The strain

has a positive contribution not only with bioremediation but with plant growth and disease management aspects too

(Dwivedi, Singh, Al-Khedhairy, & Musarrat, 2011). By following the green chemistry, fungal enzymes mainly laccase

(oxidoreductase) have been identified as a potential tool to remove isoproturon from the contaminated sites (Zeng, Qin,

& Xia, 2017).

Being in consistent use and stable compound, nonnatural phosphonates have become a serious environmental issue.

Glyphosate is a representative member of phosphonate and recognized as a contaminant of soil and water (Sviridov

et al., 2015). In bioremediation of glyphosate, Bacillus subtilis strain has been reported to have a significant ability to

remove the contaminant (Yu et al., 2015). Comamonas odontotermitis P2 strain can be found to have the ability to uti-

lize glyphosate as carbon and phosphorous source and can be a potential candidate for environmental removal of glyph-

osate (Firdous, Iqbal, & Anwar, 2020). Not only bacteria but also fungi are also known for efficient degradation of

glyphosate. A fungal strain of Trichoderma viride can utilize glyphosate as a sole phosphorus source and can be a

promising candidate in the bioremediation of glyphosate (Arfarita et al., 2013). In addition to Trichoderma, Aspergillus

oryzae also reported to be an efficient degrader of the herbicide (Carranza et al., 2019).

The rapid development in the molecular and computational methods allows researchers to find out new and effective

solutions for bioremediation. A strain of Paenibacillus polymyxa has been reported to possess degradation activity for

five different xenobiotics (Zhang et al., 2019). Such efficient strains need to be explored extensively related to degrada-

tion process for further utilization at commercial scale in bioremediation. New microbial degraders are being identified

and investigations to reveal their metabolic abilities and their interactions in communities are going on. A considerable

impact of the mixed culture of Pseudomonas and Achromobacter on herbicide degradation was recently investigated

(Yang et al., 2020). Some examples of the microbial degraders of various herbicides have been included in Table 25.1.

25.3 Strategies to improve biodegradation of herbicides

Although herbicides are considered a potent tool in the service of the agriculture economy, due to the excess and con-

sistent use, the fate of the herbicide has been found to exert negative impacts on environment. The developing methods

through science and technology are widely supporting to remove the pollutants from the soil and water. Several

research groups are working to develop methods that facilitate the bioremediation. Most of these methods are combined

with the degrading microorganisms/either pure culture or in consortium (Geed, Prasad, Kureel, Singh, & Rai, 2018;

Santos et al., 2019). Microbial degradation in vitro and in vivo is a result of interactions of several parameters associ-

ated to the growth conditions. The degradation process can be enhanced by evaluating the effects of individual para-

meters and the stability of the intermediates during the process (Wang, Lai, Latino, Fenner, & Helbling, 2018).

Several strategies have been followed to enhance the biodegradation of herbicides in the various environments

(Fig. 25.2). In bioremediation, bioaugmentation and biostimulation are considered an effective approach. In bioaugmen-

tation, addition of living cells (degraders) is included for the rapid removal of pollutants from the environment (Adams,

Fufeyin, Okoro, & Ehinomen, 2015). Bioaugmentation is a strategy to enhance the degradation capacity of the polluted

environment by introducing efficient exogenous degraders. There is a plethora of information on the microbial degrada-

tion of xenobiotic substances. Arthrobacter, Bacillus, Burkholderia, and Pseudomonas are some of the bacterial genera

renowned to have ability to degrade a range of nonnatural substances (Singh & Singh, 2016). The extensively character-

ized microorganisms for degradation are being utilized at a wide scale under bioaugmentation process (Cycoń, Mrozik,

& Piotrowska-Seget, 2017). For example, The impact of Pseudomonas sp. ADP strain on the triazine degradation in

soil as a bioaugmented bacteria was found to be weak (Morán, Müller, Manzano, & González, 2006) whereas bioaug-

mentation of Pseudomonas MHP41 was reported to have a significant impact on the degradation and soil microbial

community in the contaminated soil (Morgante et al., 2010).
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Against triazines, Arthrobacter has been considered a promising candidate for the bioaugmentation since it is known

to have a range of catabolic pathways for xenobiotic degradation (Sagarkar et al., 2016; Xu et al., 2019).

Novosphingobium was identified as a promising bioaugmented bacterial strain in the contaminated soils with herbicide

2,4-dichlorophenoxyacetic acid (2,4-D) (Dai, Li, Zhao, & Xie, 2015). Two bioaugmented bacterial species

Pseudochrobactrum and Masilia were reported to have a significant impact on the degradation process of chlorothalonil

in soil (Xu et al., 2018). A nitrile degrading bacterium Rhodococcus rhodochrous is extensively explored for its ability

to degrade nitrile and proposed as a promising candidate for bioaugmentation in the contaminated sites with nitriles

TABLE 25.1 Examples of herbicide degradation by microorganisms.

S. no. Herbicide Degrader (Scientific name) Classified as References

1 2,4-Dichlorophenoxyacetic
acid

Acinetobacter sp., Stenothrophomonas
maltophilia, Flavobacterium, Serratia
marcescens, and Penicillium sp.

Bacteria
Fungi

Silva et al. (2007)

2 Diuron Micrococcus sp. Bacteria Sharma and Suri
(2011)

3 Oxyfluorfen Pseudomonas sp., Arthrobacter spp.,
Mycobacterium sp., Micrococcus sp.,
Streptomyces sp., and Aspergillus sp.

Bacteria
Fungi

Mohamed, El
Hussein, El Siddig,
and Osman (2011)

4 Chloroacetamide Paracoccus sp. Bacteria Zhang et al. (2011)

5 Acetochlor
(chloroacetamide)

Rhodococcus sp., Delftia sp. and
Sphingomonas sp. (consortium)

Bacteria Hou et al. (2014)

6 Atrazine Anthracophyllum discolor Fungi Elgueta, Santos,
Lima, and Diez
(2016)

7 Triazine Leucobacter sp. Bacteria Liu et al. (2017)

8 2,4-Dichlorophenoxyacetic
acid

Cupriavidus gilardii Bacteria Wu et al. (2017)

9 2,4-D Umbelopsis isabellina Fungi Bernat et al. (2018)

10 Nicosulfuron Plectosphaerella cucumerina Fungi Carles et al. (2018)

11 Diuron Ganoderma leucidum Fungi Coelho-Moreira et al.
(2018)

12 Alachlor Trichoderma koningii Fungi Nykiel-Szymańska,
Bernat, and Słaba
(2018)

13 Chlorimuron-ethyl Enterobacter ludwigii Bacteria Pan, Wang, Shi,
Fang, and Yu (2018)

14 Alachlor (chloroacetamide) Xanthomonas axonopodis, Aspergillus niger,
A. flavus, and Penicillium chrysogenum

Bacteria,
fungi

Ahmad (2020)

15 Diuron, sulfentrazone, 2,4-
D, and oxyfluorfen

Bradyrhizobium sp. Bacteria Madureira Barroso
et al. (2020)

16 Atrazine Bjerkandera adusta Fungi Dhiman et al. (2020)

17 Butachlor Bacillus altitudinis Bacteria Kaur and Goyal
(2020)

18 Atrazine Pleurotus ostreatus Fungi Lopes et al. (2020)

19 Atrazine Pseudomonas sp., Arthrobacter sp., Variovorax
sp., Chelatobacter sp.

Bacteria Billet et al. (2021)

20 Butralin (dinitroaniline) Sphingopyxis sp. Bacteria Ghatge et al. (2021)
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(An et al., 2020). Although bioaugmentation strategy is considered an efficient approach, the introduction of exogenous

microbial species might bring some uncalculated effects associated with the indigenous microbial community (Pacwa-

Płociniczak, Płaza, & Piotrowska-Seget, 2016). To enhance the efficiency of the bioaugmented process and maintain

the interactions of the bioaugmented species, the optimization processes play a significant role in the process (Valdez-

Vazquez, Castillo-Rubio, Pérez-Rangel, Sepúlveda-Gálvez, & Vargas, 2019).

Besides bioaugmentation, biostimulation is recognized as another efficient approach deals with the stimulation of

indigenous microbial degraders to enhance the degradation rate in contaminated environment (Kanissery & Sims,

2011). In the bioremediation studies, generally eco-friendly biostimulants have been a priority of the researchers to

improve the soil health. Agri and food wastes can be utilized as an efficient biostimulant after the optimization process

(Xu & Geelen, 2018). The addition of organic waste changes the physical and nutritional status of the soil and activates

indigenous microorganisms for rapid degradation (Briceño, Palma, & Durán, 2007). A study suggests that soil amended

with compost and corn-related organic waste influenced the atrazine degradation rate in soil. A significant enhancement

in bacterial load and dehydrogenase enzyme activity was recorded in relation to high degradation rate (Moorman,

Cowan, Arthur, & Coats, 2001). Similar results, high microbial activity with dehydrogenase was detected in the biore-

mediation process under the influence of Olive cakes as organic amendment (Delgado-Moreno & Peña, 2007). A study

suggested the role of soil type in the final impact of the amendments on degradation process. The different degradation

rate of herbicide was recorded in the sandy loam and silty clay soils (Forouzangohar, Haghnia, & Koocheki, 2005). The

effect of organic and inorganic amendment was investigated by Kadian, Gupta, Satya, Mehta, and Malik (2008) on atra-

zine degradation. Among the tested ones the highest atrazine degradation rate was recorded with the biogas slurry

amended conditions.

Manure with sodium citrate (inorganic amendment) showed strong enhancement after a lag. Farmyard manure in

comparison to rice straw, sawdust, and compost was reported to have stronger effect on the degradation rate of atrazine

(Mukherjee, 2009). It is reported that some organic amendments show a negative effect on the degradation process. It is

already known that in general the microbial load and the functional activity (e.g., dehydrogenase activity) enhance due

FIGURE 25.2 Different strategies to improve biodegradation in soil. (A) Addition of amendments/biostimulants to alter the absorption and bioavail-

ability of herbicides in contaminated environment. (B) Construction and introduction of recombinants to enhance degradation process. (C). A generic

scheme for computational-based strategies for the optimization of process in bioremediation.
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to the addition of organic amendments indicating high rate of degradation. The reverse effect of oak and pinewood-

based amendments was recorded on linuron degradation in soil. The wood-based amendments possibly adsorbed the

linuron strongly and reduced its bioavailability which led to high persistence of linuron in comparison to nonamended

soils (Grenni, Caracciolo, Rodrı́guez-Cruz, & Sánchez-Martı́n, 2009). It has been noticed that same soil amendment

impacts differently on the degradation of different herbicide. Oak- and pine-based amendments showed a significant

contribution in the degradation of terbuthylazine in contaminated soil. These amendments alter the rate of microbial

degradation in the soil by manipulating the adsorption and bioavailability of the herbicide in contaminated soils along

with limiting its mobility (Grenni et al., 2012). Enhancement of herbicide retention capacity of soils can be achieved

through the organic amendments, a potential strategy to make the pollutant available for microbes to degrade. This also

reduces the spread of the herbicide in the various components of environment through processes like leaching (Gámiz,

Celis, Hermosı́n, & Cornejo, 2010). The microbial response to the herbicide and the soil amendments varies with time

and the amount of herbicide in soil. The dissipation of mesotrione was assessed in the amended and unamended soil

with a range of doses which recruited a significant effect on the microbial load and functional activity (Pose-Juan,

Sánchez-Martı́n, Herrero-Hernández, & Rodrı́guez-Cruz, 2015).

Organic carbon processed through a different physical process impact differently as amendment in soils. The degra-

dation process of isoproturon was variably affected by pyrochar and hydrochar, the later one was comparatively better

for the herbicide accessibility to microbial degradation (Eibisch, Schroll, & Fuß, 2015). In general, biochar alters the

soil properties and affects the adsorption of the herbicides which leads to the change in the microbial degradation rate

of herbicide in soil (Zhelezova, Cederlund, & Stenström, 2017).

Green compost was identified as an effective amendment in soil to increase the persistence of prosulfocarb and tri-

sulfuron and significantly affected leaching process (Marı́n-Benito, Barba, Ordax, Sánchez-Martı́n, & Rodrı́guez-Cruz,

2018). In diuron removal, plant husks (natural adsorbents) are being used due to its good adsorption ability and fast

removal of contaminant from water (Bezerra et al., 2020). The addition of organic matrix to the soil is more eco-

friendly approach that can facilitate the degradation of the herbicides. The main problem with the herbicide diuron is

that its accessibility to the microbes is very less. The cyclodextrin (hydroxypropyl-β-cyclodextrin) disrupts the strong

bonding between diuron and organic matter that results in high solubility of diuron. The consortium of degrading bacte-

ria further mineralizes the herbicides to CO2. The strategy showed positive results in achieving a high degree of degra-

dation in the contaminated soil system (Rubio-Bellido, Morillo, & Villaverde, 2018).

Biochar (product of partial pyrolysis of wood/organic matter) enhances the soil fertility by altering the soil physico-

chemical properties and the associated microbiota (Liu, Lonappan, Brar, & Yang, 2018). The amendment of soil by

mixing the biochar contributed positively to biodegradation. It has the ability to adsorb the xenobiotic compounds and

accelerate their dissipation process (Zhelezova et al., 2017). Further, the rate of degradation of the adsorbed molecules

depends on the dynamics of interactions between soil and biochar (Rubio-Bellido et al., 2018). Sometimes, the physical

factor (e.g., temperature) dominates the effect of organic amendments. The increase in temperature accelerates the

microbial activity that led to a rapid degradation in the soil (Marı́n-Benito, Carpio, Sánchez-Martı́n, & Rodrı́guez-Cruz,

2019).

In addition, nanobiotechnology is an advanced branch of biotechnology and has been proved its worth in remedy of

various problems in environment and health science. The nanomaterials have showed favorable effect on the phytore-

mediation and bioremediation process (Vázquez-Núñez, Molina-Guerrero, Peña-Castro, Fernández-Luqueño, & de la

Rosa-Álvarez, 2020). The removal of the pollutants from the soil through nanomaterials is considered significant.

Although it has shown good results on the lines of bioremediation, still it is important to investigate its effect on the

soil and the other components (biological and nonbiological) of ecosystem (Gong et al., 2018). Though all the

approaches are very effective, the optimization process demands high consumption of resources, time, and efforts. To

reduce the complexity and to improve the efficiency, integration of computational biology is being identified as an effi-

cient approach.

The involvement of upcoming in silico methods (sequencing, metabolic models, etc.) is also recognized as a potent

tool to study the microbial community response against the herbicide exposure. The metabolic modeling is an applied

approach to predict the phenotype of a model on the basis of computational algorithms (Faust, 2019; Henry et al.,

2010). The approach is alluring to the various scientists and engineers because you need not to play with the genomes

at molecular experiments but with the sequences through computational process. This provides an immense support to

produce an efficient degrader that reduces the time and costs of wet laboratory efforts (Ali, Khan, Li, Zheng, & Yao,

2019; Xu et al., 2019). The only thing that is challenging in the predictive biology is to design the consortia and the

conditions to get the favorable on-ground results. The involvement of computational-based methods can increase the

efficiency of bioremediation approaches (bioaugmentation or biostimulation).
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25.4 Integration of computational biology to improve biodegradation of herbicides

So far we have discussed traditional and advanced methods to improve the biodegradation of herbicides in various con-

taminated environments. Computational-based methods are one of the efficient approaches to improve biodegradation

with cost-effective and time-saving properties (Finley, Broadbelt, & Hatzimanikatis, 2009). Among the computational

methods, genome-scale metabolic modeling is proven as a promising tool that helps to predict the phenotype of the

microorganisms under a specific environmental condition (Terzer, Maynard, Covert, & Stelling, 2009).

Metabolic modeling helps to explore the metabolic potential of the microbial degraders and to develop improved

bioremediation strategies. Either bioaugmentation or biostimulation, the efficiency of both the approaches can be

enhanced by incorporating the modeling methods. The algorithms of modeling methods calculate the impact of a spe-

cific environmental condition and predict the rate of degradation in silico. The screening of multiple conditions extracts

comparatively suitable conditions for the improved degradation process. In brief, the affected group of the microorgan-

isms in the polluted environment is identified through high-throughput methods, that is, sequencing technologies (Jo,

Oh, & Park, 2020). The identified microbial groups are then explored at genomic and metabolic level. The entire infor-

mation of a particular microbe or microbial group can be retrieved through literature and online resources. The avail-

able genome and metabolic information are then integrated into modeling algorithms to study the potential of the

microbial group. The predictive biology identifies the metabolic capacities of the target microbial group which can be

further validated through laboratory/field experiments (Fig. 25.3).

Genome-scale metabolic model (GSMM) construction follows the integration of genomic and metabolic information

with mathematical model to predict the behavior of organism. In short, GSMM refers to a mathematical framework

which is constructed by incorporating all the gene proteins reaction associations based on the genome annotations and

the metabolic information available (Gu, Kim, Kim, Kim, & Lee, 2019; Thiele & Palsson, 2010). To construct a high-

quality genome-scale model, online available resources and related packages are useful at different stages to construct

functional GSMM. Model SEED is an online resource for a rapid generation and optimization of GSMM (Henry et al.,

2010). The consistent development in technology led us to several online resources other than SEED for rapid and

FIGURE 25.3 An overview of the different steps in metabolic modeling approach for bioremediation.
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efficient construction of genome-scale models, such as Raven Toolbox, Pathway Tools (such as CarveMe) (Faria,

Rocha, Rocha, & Henry, 2018). Further, the Model SEED-generated reconstruction requires biomass reaction genera-

tion and curation for a valid working metabolic model (Devoid et al., 2013). Constraint-based reconstruction and analy-

sis (COBRA) is a modeling approach that helps in the prediction of a behavior of an organism. The conversion of

fluxes in a working model can be computed by COBRA toolbox (Becker et al., 2007). BiGG knowledge base helps to

integrate all the information (genomic and metabolic) of an organism systematically (Schellenberger, Park, Conrad, &

Palsson, 2010).

The biomass reaction (it includes all the biomass constituents) generation plays an important role in validating the

genome-scale models. To enhance the accuracy of the model, biomass objective function considered an important factor

that includes the principal biomass components (nucleic acids, lipids, species-specific components, etc.) (Lachance

et al., 2019). In addition, the quality and accuracy of the model also depends on the genome coverage of the model.

Genome coverage is the ratio of the genome protein reaction association to the total genes present in the genome. To

date, several software platforms have been developed to achieve more accurate and functional metabolic models to

keep the pace with the genome sequences obtained from high-throughput sequencing technologies (Mendoza, Olivier,

Molenaar, & Teusink, 2019). In this way the predictive biology contributes to identify desirable conditions through

algorithms that can be validated further through wet laboratory experiments.

Several microbial GSMMs have been constructed and utilized in a range of different applications, including degra-

dation of xenobiotics. Pseudomonas genus is widely known for its wide biotechnological applications. iJN746, a

genome-scale model of Pseudomonas putida KT2440 was constructed by following COBRA approach. The metabolic

capacities of the strain KT2440 was explored efficiently toward its application in biotechnology (Nogales, Palsson, &

Thiele, 2008). The metabolic model PpuMBEL1071 of P. putida KT2440 was constructed and explored for its ability

to degrade a range of aromatic compounds. The modeling also helped to extend the information on anaerobic survival

of the strain through predictive biology (Sohn, Kim, Park, & Lee, 2010). In addition to the biodegradation of pollutants,

phthalates are recognized as harmful xenobiotics from the plastic industries. A Rhodococcus strain HS-D2 reported to

utilize n-butyl benzyl phthalate as a sole carbon source. The potential of bacterial strain to degrade BBP (blood-brain

barrier penetration) was extensively studied in silico and in vitro. The constructed genome-scale model iYZ1601 can be

utilized further to predict the degradation of capacities of the Rhodococcus in a wide range of environmental conditions

(Zhang, Chen, et al., 2018).

Alphaproteobacterium, Sphingopyxis granuli strain TFA extensively explored for the complete mineralization of

aromatic hydrocarbon tetralin. Genome strain metabolic model for TFA strain was constructed to explore its metabolic

capacities through modeling approach. The model-based predictions were successful to reveal the consumption of new

substrates as a sole carbon and energy source by TFA strain. This study helped in the unraveling of metabolic potential

of the oligotrophic strain TFA (Garcı́a-Romero, Nogales, Dı́az, Santero, & Floriano, 2020).

The advancement in sequencing technologies and annotation tools has supported genome-scale metabolic modeling

significantly (Mahadevan & Henson, 2012). Investigations unraveled the microbial potential of several organisms,

including three domains of life (archaea, bacteria, and fungi). Metabolic modeling-based predictions are not only effi-

cient in the functional predictions of single GSMMs but they work equally good to the microbial communities in the

environment (Biggs, Medlock, Kolling, & Papin, 2015). It is a well-known truth that the microbial processes in environ-

ment are very complicated due to the interactions of several factors. To understand these microbial processes at molecu-

lar level, it is very important to explore their metabolic exchanges. Members of microbial communities interact

(positive or negative interactions) each other to maintain life processes. Prediction of microbial community behavior is

a challenging task due to a complex network of dependent and independent members and requires enough data to study

community interactions. More accurate GSMMs and high-quality genomes can enhance the efficiency of community

modeling (Henry et al., 2016).

Investigations on microbial interactions are useful to decode the mechanism of a process at molecular level. The

enhanced cellulose mineralization by the two species of Clostridium in coculturing was investigated through metabolic

models and extended the information on mechanism of community dynamics (Salimi, Zhuang, & Mahadevan, 2010).

Another study suggested the use of constraint-based modeling of microbial community to investigate the process of oil

degradation. The computationally derived metabolic fluxes along with online available resources and metagenomic data

were utilized systematically to enhance the information on the oil degrading community (Röling & Van Bodegom,

2014). RedCom is an approach implemented to analyze community process based on community modeling. It included

the construction of balanced microbial communities by integrating reduced stoichiometric models. It was based on the

final conversions of individual species models. Here, community of nine members was investigated for the degradation

in anaerobic digestion under biogas formation (Koch et al., 2019). The community process for methane metabolism was
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TABLE 25.2 Some examples of genome-scale metabolic models with biotechnological applications.

S. No. Microorganism Classified as Application References

1 Penicillium
chrysogenum

Fungi Penicillin
production

Agren et al. (2013)

2 Methanococcus
jannaschii

Archaea Metabolic pathways Tsoka, Simon, and Ouzounis (2004)

3 Methanosarcina
barkeri

Bacteria Methane
metabolism

Feist, Scholten, Palsson, Brockman, and Ideker
(2006)

4 Pseudomonas putida Bacteria Biotechnological
applications

Puchałka et al. (2008)

5 Bacillus subtilis Bacteria Biotechnological
applications

Henry, Zinner, Cohoon, and Stevens (2009)

6 Mycoplasma
genitalium

Bacteria Biotechnological
applications

Suthers et al. (2009)

7 Synechocystis sp. Cyanobacteria Photobiological cell
factories

Montagud, Navarro, Fernández de Córdoba,
Urchueguı́a, and Patil (2010)

8 Chromohalobacter
salexigens

Bacteria Physiology Ates, Oner, and Arga (2011)

9 Clostridium
ljungdahlii

Bacteria Biotechnological
applications

Nagarajan et al. (2013)

10 Lactococcus lactis Bacteria Dairy industry Flahaut et al. (2013)

11 Methanococcus
maripaludis

Archaea Metabolic pathways Goyal, Widiastuti, Karimi, and Zhou (2014)

12 Pseudoalteromonas
haloplanktis

Bacteria Biotechnological
applications

Fondi et al. (2015)

13 Methylomicrobium
buryatense

Bacteria Methane
metabolism

Torre et al. (2015)

14 Mortierella alpina Fungi Arachidonic acid
production

Ye et al. (2015)

15 Caenorhabditis
elegans

Nematoda Animal physiology Safak Yilmaz and Walhout (2016)

16 Cordyceps militaris Fungi Cordycepin
production

Vongsangnak et al. (2017)

17 Yarrowia lipolytica Fungi Lipid production Wei, Jian, Chen, Zhang, and Hua (2017)

18 Methylococcus
capsulatus

Bacteria Methane
metabolism

Lieven et al. (2018)

19 Chromohalobacter
salexigens

Bacteria Ectoine production Piubeli et al. (2018)

20 Pseudomonas
aeruginosa

Bacteria Pharmacological
Research

Zhu et al. (2018)

21 Geobacillus icigianus Bacteria Biotechnological
applications

Kulyashov, Peltek, and Akberdin (2020)

22 Lachancea kluyveri Fungi Biotechnological
applications

Nanda, Patra, Das, and Ghosh (2020)
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investigated through metabolic modeling approach. High-quality models of methanotrophs were constructed and their

interactions were studied as the modeled community. Methylomonas and Methylobacter, community members showed a

competition over methane utilization. The study provided significant results to understand the methane utilizing mecha-

nism in a community (Islam, Le, Daggumati, & Saha, 2020). GSMM has also been found to be an efficient tool in vari-

ous applications. Some examples are shown in Table 25.2.

25.5 Bioremediation of atrazine by following metabolic modeling method

Atrazine is a widely known herbicide in consistent use for the removal of weeds in crop fields (Mueller et al., 2017).

Due to the extensive use, mobility and shelf life of atrazine emerged as a serious environmental pollution. Several

research found that atrazine is impacting negatively on the nontargeted population, including human (Jablonowski,

Schäffer, & Burauel, 2011; Mueller et al., 2017; Singh et al., 2018). The integration of modeling approach to the study

of microbial degradation of atrazine is being seen as a promising approach to improve the rate of the process in environ-

ment. Arthrobacter is known as an efficient degrader of atrazine and it can utilize atrazine as sole nitrogen source.

Arthrobacter is considered a suitable candidate for model-based design of bioremediation strategies against atrazine pol-

lution due to its available information associated with genome and metabolic pathways.

A genome-scale model of Paenarthrobacter aurescens TC1 was constructed to explore its potential toward atrazine

degradation (Ofaim et al., 2020). The model iRZ1179 was constructed in a semiautomated manner by using Model

SEED. The draft model was further improved for atrazine degradation pathway by manual curation utilizing online

resources with literature. The performance of final experimentally validated model was simulated through dynamic flux

balance analysis for atrazine degradation under different carbon and nitrogen sources (separately). The impact of amino

acids, glucose, and phosphate was investigated in the study. The observations supported the predictions and led to an

optimized condition for atrazine degradation by P. aurescens TC1. The study revealed that the modeling methods can

be considered an efficient tool to improve the atrazine degradation through biostimulation strategies.

Biostimulation is one of the efficient approaches for the enhanced rate of herbicide degradation in soil. The integra-

tion of modeling methods with the biostimulation strategies can improve the impact of the process (Mehdizadeh et al.,

2019). A case study by Xu et al. (2019) related to the improvement of atrazine degradation in crop soils by studying the

community dynamics through modeling approach is included here. In the study the atrazine exposed soils were ana-

lyzed for community shifts through 16S rRNA gene amplicon sequencing. Differentially affected bacterial groups

Arthrobacter (as degrader) and other nondegraders species were selected for the community modeling. GSMMs were

constructed for the differential abundant bacterial species (degrader and nondegraders). Initial draft model was con-

structed by using Model SEED (Faria et al., 2018). RAST (Rapid Annotations using Subsystems Technology) algo-

rithms were used for the genome annotation (Overbeek et al., 2014). KBase (www.kbase.us) was used for the

generation of draft metabolic model. All the draft models were further manually curated on the basis of literature and

online available resources such as KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa, Sato, Kawashima,

Furumichi, & Tanabe, 2016), UniProt (D506-D515, 2019), JGI (Joint Genome Institute) (Grigoriev et al., 2012) for the

biochemical and physiological characteristics.

The manual curation generally involved a few important steps such as addition of new reactions on the basis of liter-

ature and genome annotations, conversion of all the reaction IDs to the standard KBase IDs, including the correction of

stoichiometry and reversibility of all the reactions and elimination of futile loops. The final working model was consis-

tent with reported experimental evidences for growth requirements of the five modeled species. Finally, all the models

were combined as a single dynamic model. Dynamic flux balance analysis (Henson & Hanly, 2014) was used to simu-

lated the growth of modeled community under the given media condition with time. Community modeling function

revealed that exchange fluxes between community members enhanced the efficiency of atrazine degradation compari-

son to the degradation activity of the main degrader per se. A range of consortia composed of different combinations of

community members were designed and further used for simulating the corresponding performance of atrazine degrada-

tion and growth under the given conditions. The simulations were validated in in vitro. In addition, the impact of glu-

cose on the atrazine degradation by the modeled community was also simulated and validated in the pot experiment.

In general, optimization process in bioremediation is a hit and trial process. A range of conditions has to be screened

to identify the promising ones. But the predictions related to the degradation behavior of the microbial communities

under a set of given environmental conditions reduce the time and cost and improve the efficiency of optimization pro-

cess. The approach is comparatively reliable because it takes all the genomic and metabolic information (molecular

level interaction) in account to reach a final result.
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25.6 Conclusion

The consistent advancement in the science and technology has opened new ways to improve bioremediation strategies

for the cleaning of contaminated agricultural soils. Though metabolic modeling is an effective approach, the limitation

of existing knowledge on the genome sequences and experimental-based biochemical data restrict its full use in various

fields. Investigations on the functional properties of the microbial groups can help to improve the performance of meta-

bolic modeling through incorporation of “omic” technologies.
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26.1 Introduction

The origin of first photosynthetic eukaryote dates back to more than 1000 million years ago. The prime attainment of a

cyanobacterial endosymbiont by a eukaryotic host, eventually catalyzed formation of chloroplast containing green algae

and subsequently higher plants. Chloroplasts are often known as metabolic centers of plants, as they are the chief orga-

nelles involved in photosynthesis and biosynthesis of metabolites such as, vitamins, phytohormones, amino acids, and

nucleotides. They are involved in assimilation of nitrogen and sulfur and are also associated with the synthesis of vari-

ous metabolites which are involved in defense against pathogens and abiotic stresses.

Among different plant pathogens, plant viruses are one of the most widely spread and economically important

pathogens. Basically they are nucleoprotein containing obligate parasites that multiply inside the living host cell by

using their components and resulting in the development of symptoms on infected plants that ultimately causes diseases.

Nearly all the crop plants, grown either for food or fiber, get affected by one or more than one plant viruses. Though

the cultivated crops are common hosts for most of the viruses, several reports of virus infection on wild species are also

available, which acts as both host and reservoir for different viruses (Hull, 2014). The recognition of viruses as an infec-

tious entity was reported by M.W. Beijerink in late 1890s, very early records of virus infection in crop plant are also

known. A Japanese poem written by Empress Koken in CE 752 was found to be the earliest known record of virus dis-

ease where infection of virus on tulip flower leads to the development of color break type of symptoms. Further, the

work of Albert Mayer in 1886 established the infectious nature of “MOSAIKKRANKHEIT” [later known to be caused

by Tobacco mosaic virus (TMV)], a disease of tobacco which can be transmitted from a diseased to healthy plant by

inoculation with leaf extracts from infected plants. In 1892, Dmitri Ivanovsky proved that the aforementioned disease

of tobacco was not a bacterial infection as the sap of infected plant remained infectious after passing it through bacterial

proof filter paper. In 1898, M.W. Beijerink gave the term “Contagium Vivum Fluidum” to the agent present in the infec-

tious fluid and responsible for the disease in tobacco plant (Hull, 2014). Further discoveries of viruses as plant patho-

gens is attributed to the repertoire of classical and advanced research work done around the globe in different aspects of

virology, that is, detection and diagnosis of plant pathogenic viruses, classification, symptomatology, mechanism of

infection, gene cloning, etc. Application of high throughput Next Generation Sequencing (NGS) technologies has fur-

ther aided the progress. Ever since the decoding of first viral genome using omics, discovery, and identification of novel

viruses/viroids, their characterization and diagnostic methodology has been refined tremendously, thus making a mam-

moth impact in plant virology (Barba, Czosnek, & Hadidi, 2014; Blawid, Silva, & Nagata, 2017; Hadidi, Flores,

Candresse, & Barba, 2016; Pecman et al., 2017).

Plant viruses generally encode very few proteins, owing to their small genome sizes and thus largely bank on the

host cellular machinery for their propagation and spread. Effects of viral infection include necrosis, stunning, and plant

chlorosis. Leaf chlorosis is the most common viral symptom which is generally associated with reduced photosynthetic

activity. Past studies have reported that changes in expression of chloroplast related genes and chloroplast components

and structure due to viral infection, were responsible for development of viral symptoms in plants (Li, Cui, Cui, &

Wang, 2016; Manfre, Glenn, Nunez, Moreau, & Dardick, 2011; Revers & Garcı́a, 2015; Xu & Nagy, 2010).

Chloroplast and its factors are known to interact with or become targets of viruses and thereby favor their replication,
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movement and symptom development. It is known that chloroplast is a target of choice for viruses and it undergoes

colossal damage both functionally and structurally. Other modifications coupled with leaf chlorosis such as reduced

chlorophyll pigmentation (Balachandran, Osmond, & Daley, 1994; Wang et al., 2018), decreased expression of CPRGs,

that is, Chloroplast and Photosynthesis-Related Genes encoded by nuclear genome (Dardick, 2007; Das, Lin, & Wong,

2018; Mochizuki, Ogata, Hirata, & Ohki, 2014), alterations in chloroplast functioning and aberrant structures (Bhat

et al., 2012; Otulak, Chouda, Bujarski, & Garbaczewska, 2015), and accumulation of nitric oxide (Mwaba & Rey,

2017), implies indispensable interactions between virus and the chloroplast (Zhao, Zhang, Hong, & Liu, 2016). For

instance, a 2b mutant strain (pepo strain) of Cucumber mosaic virus (CMV) possesses point mutations in its coat protein

and represses the expression of CPRGs in the host plant (Mochizuki et al., 2014). In fact, there are reports which pro-

vides evidence for genetic material exchange among the plants and viruses and hence evolution of host and pathogen

relationship between the two. For example in the tobacco nuclear genome, copies of the geminiviral replication protein

as well as the chromosomal material of partitiviruses and totiviruses have been found to be incorporated (Liu et al.,

2010). Another example is of CMV Y-Sat virus, which infects Nicotiana species with the help of small interfering

(siRNA)-directed RNA and silences the host chlorophyll biosynthetic gene (CHLI). The aforementioned mechanism is

known to be aided by the presence of a sequence (22-nucleotide) in “yellow region” of CMV Y-Sat complementary to

a sequence in CHLI. Further, Nicotiana species lacking this complementary stretch exhibit considerable resistance to

the viral infection (Shimura et al., 2011; Smith, Eamens, & Wang, 2011).

26.2 Chloroplast genome

26.2.1 Structure and gene content

Plant chloroplasts generally consists of a typical structure, that is, a quadripartite structure composed of 1 large single

copy (LSC), 1 small single copy (SSC), and 2 inverted repeats (IRs) region. Size of these regions may vary among dif-

ferent plant species (Fig. 26.1). For instance, the IR region spans 12�75 kb of the region separating LSC and SSC

region which varies between 80�90 kb and 16�27 kb of size respectively. Generally, among the diverse species the

chloroplast genome is known to be conserved, although variation in the length of intergenic spacers and the events like

contraction, expansion and loss of IR regions results in the observed variations in the size of the chloroplast genome

among different species. For instance, chloroplast genome size ranges from 107 kb in Cathaya argyrophylla to 218 kb

in Pelargonium (Daniell, Choun, Ming, & Wan, 2016). Although, chloroplast genome comprises of a single circular

molecule, there are also studies reporting the existence of linear form of chloroplast genomes and it has been observed

that the percentage of each form varies within the cells, among different reports (Oldenburg & Bendich, 2015, 2016).

The chloroplast genome contains 110�130 genes, which comprises of 80�90 protein coding genes, 30�31 tRNAs and

4 rRNAs. Majority of the chloroplast proteins are nuclear encoded and are transported to the chloroplast with the help

of transit peptide, a short amino acid sequences present on the N-terminal of protein (Jarvis & Soll, 2001; Leister,

2003).

Although the chloroplast genome is conserved, differences in gene copy number and synteny has also been reported.

In the course of evolution, various genes from the plastid have got transferred to the nuclear genome. One such example

is of infA gene (chloroplast encoded), there are reports showing the translation of infA gene in the cytosol of some

plants (Arabidopsis thaliana and Glycine max) and subsequent transportation of the protein to the chloroplast with the

help of transit sequence. Similarly, genes like rpl22 and rpl32 have been moved to the nuclear genome over the course

of evolution. Considering NDH family, partial to complete loss of this gene family has been reported. For example,

pine and orchids lack function ndh genes in their plastome (Lin et al., 2015). Other genes like accD, rps16, rpl23,

rpl33, psaI, and ycf4 have also been reported to be lost from the plastid genome (Jansen et al., 2007; Magee et al.,

2010). Genes like ndhF and ycf2 have been observed to be lost repeatedly in the course of evolution from various

angiosperms (Sato, Nakamura, Kaneko, Asamizu, & Tabata, 1999; Shinozaki et al., 1986).

On the other hand, duplication and pseudonization of plastid genes has also been reported. For instance, in maize

and rice, ycf2 pseudogene present in the chloroplast genome governs cell viability; ycf2 is reported to be present in plas-

tome of various land plants (Hiratsuka et al., 1989; Maier, Neckermann, Igloi, & Kössel, 1995). Similarly, rpl23 is a

pseudogene present in spinach plastid genome and infA is present as a pseudogene in tobacco and Oenothera elata chlo-

roplast genome (Thomas, Massenet, Dorne, & Briat, 1988). Likewise, some tRNA genes, ycf2, psbA, and rpl23 have

been reported to undergo duplication in some plastomes.

Among the angiosperms, extensive rearrangements in the chloroplast genomes have been reported to those belong-

ing to the fabaceae family compared to others (Cai et al., 2008; Guo et al., 2007; Jansen, Wojciechowski, Sanniyasi,
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Lee, & Daniell, 2008; Kato, Kaneko, Sato, Nakamura, & Tabata, 2000). Moreover, in large clades of legumes a com-

plete loss of IRs has happened and tribes like Trifolieae, Fabeae, Cicereae, Galegeae, Carmichaelieae, and Hedysareae

belonging to this clade are known as Inverted Repeat Lacking Clade (IRLC) (Wojciechowski, Sanderson, Steele, &

Liston, 2000). Various rearrangements reported in legume genomes like 50 kb inversion in the LSC region (Palmer &

Thompson, 1982; Palmer, Osorio, & Thompson, 1988), 78 kb rearrangement reported in the LSC region of Phaseolus

and Vigna (Bruneau, Doyle, & Palmer, 1990; Guo et al., 2007; Tangphatsornruang et al., 2010), and a 36 kb inversion

within 50 kb inversion, newly reported in lupines and other genisotoids (Martin et al., 2014), are believed to be the

result of unstable chloroplast genome. It has been observed that the loss of IR has made the chloroplast genome more

liable to rearrangements (Doyle, Doyle, & Palmer, 1995; Palmer & Thompson, 1982).

Various instances of intron loss have also been reported in angiosperms. Protein coding genes from various species,

that is, chickpea (Jansen et al., 2008), cassava (Daniell et al., 2008) and barley (Saski et al., 2007) have lost their introns

in the course of evolution. Intron loss has also been observed in atpF gene and recombination between an intron lacking

and intron bearing copy of cDNA has been explained as the mechanism behind intron loss in Malpighiales. Other genes

namely, rpl2, rps12, and rps16 (ribosomal proteins), rpoC2, and clpP have undergone intron losses (Jansen et al.,

2007). Loss of intron in clpP gene also marks for the monophyly of IRLC (Trifolium, Pisum sativum, Lathyrus sativus,

Cicer and Medicago) (Jansen et al., 2008).

FIGURE 26.1 General structure of legume chloroplast genome (top center), chloroplast genome of Cyamopsis tetragonoloba (Kaila et al., 2017) and

Cajanus cajan (Kaila et al., 2016).
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26.2.2 Genomic advances

With the advent of high-throughput sequencing technology, there has been rapid advancement in the discipline of chlo-

roplast genomics, genetics and engineering. The first plastome genomes to be sequenced were those of tobacco

(Shinozaki et al., 1986) and liverwort (Ohyama et al., 1986) and since then 4645 chloroplast genomes have been

sequenced and are available at NCBI organelle genome resources (https://www.ncbi.nlm.nih.gov/genome/browse#!/

organelles/).

With the availability of complete chloroplast genome sequences, deep insights into the evolutionary relationships of

plants among the phylogenetic clades have been established. The analysis of different plastome sequences has also

revealed significant sequence and structural variations among them. The instances of gene transfer from the chloroplast

genome, to the nuclear and mitochondrial genomes have been revealed with the help of plastome sequence analysis and

have helped in deciphering the relationship among the three plant genomes (chloroplast, mitochondrial, and nuclear).

From providing protection against various abiotic and biotic stresses to progress in vaccine development, chloroplast

genomics have proved to have important applications as well. As compared to earlier methods such as, rolling circle

amplification (Jansen et al., 2008; Lee et al., 2006; Ruhlman et al., 2006; Saski et al., 2007) or cloning into Bacterial

Artificial Chromosome (BAC) vectors or Fosmids (Jansen, Saski, Lee, Hansen, & Daniell, 2011; Saski et al., 2005;

Wolfe, Morden, & Palmer, 1992), NGS has provided faster and cheaper means to sequence the chloroplast genome.

Moore and colleagues (2006) were the first to explore the field of NGS (454 GS-20 systems) to decode the chloroplast

genome sequences of Nandina domestica and Platanus occidentalis. Nowadays, the major NGS platform used for chlo-

roplast genome sequencing is Illumina. As sequencing with Illumina produces short reads, it can be combined with

PacBio platform (third generation sequencer) which produces long reads.

26.2.3 Bioinformatic approaches and plastomes

Chloroplast genome assembly done by using both short and long reads results in high accuracy. In recent years, a lot of

efforts have been put in for the amelioration of chloroplast genomics. A lot of bioinformatics tools have been developed

starting from assembly to visualization (Fig. 26.2). If we start from the organelle genome assembly, then tools like

ORGanelle ASseMbler, NOVOPlasty, Canu, CLC workbench are available. ORGanelle ASseMbler (http://python-

hosted.org/ORG.asm/) is a command line software tool, which uses short reads for organelle genome assembly.

NOVOPlasty (Dierckxsens, Mardulyn, & Smits, 2016) is a helpful tool for de novo assembly of chloroplast genomes.

Canu (Koren et al., 2017) is a tool which is useful in assembling reads generated from PacBio or Oxford Nanopore

platform.

FIGURE 26.2 General approaches to

chloroplast genome analysis using various

bioinformatics tools.
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The CLC Genomics workbench (https://www.qiagenbioinformatics.com/) is commercial software that assists in de

novo as well as reference based assembly. The next step, the functional annotation of the chloroplast genome is a key

stage in the whole process. Earlier DOGMA (Wyman, Jansen, & Boore, 2004) was the most frequently used tool for

this purpose but it is no longer used. Other tools namely, CpGAVAS (Chloroplast Genome Annotation, Visualization,

Analysis and GenBank Submission) (Liu et al., 2012), Verdant, PLANN (Plastome Annotator) (Huang & Cronk, 2015),

GeSeq (Tillich et al., 2017) and CGAP (Chloroplast Genome Analysis Platform) (Cheng, Zeng, Ren, & Liu, 2013) are

used for organelle genome annotation. Display of genes coding proteins, tRNAs and rRNAs, and boundaries defining

different regions of the plastome is a pivotal feature among different steps of chloroplast genome analysis. The

Organellar Genome Draw (OGDRAW) is a tool which allows the users to generate good quality graphs (circular and

linear) (Lohse, Drechsel, & Bock, 2007; Lohse, Drechsel, Kahlau, & Bock, 2013).

Several genomic resources to mediate plant�virus interactions such as Phytozome (https://phytozome.jgi.doe.gov/

pz/portal.html), viruSITE (http://www.virusite.org/index.php), Descriptions of Plant Viruses (DPV, http://www.dpvweb.

net/seqs/plantviruses.php) Virus-host DB (https://www.genome.jp/virushostdb/index/virus/all), PlatGDB (http://www.

plantgdb.org/), PLAZA (https://bioinformatics.psb.ugent.be/plaza/), etc., are freely available. One can also explore dif-

ferent aspects like SSR (Simple Sequence Repeats) mining and posttranscriptional modifications using genome

sequencing in chloroplasts. The chloroplast genome houses conserved gene regions that have led to the development of

molecular markers and their analysis across different species. The MISA perl script (Thiel, 2003) allows the extraction

of SSRs present in the plastome. ChloroMitoSSRDB (Sablok et al., 2013) is a repository which assists in large scale

visualization of SSRs across the plastomes. Other tools like, PREP suite (Predictive RNA Editor for Plants) (Mower,

2009) and PREPACT (Plant RNA Editing—Prediction & Analysis Computer Tool) (Lenz & Knoop, 2013) allows to

explore the aspect of RNA Editing which entails cytidine to uridine conversion and constitutes an important aspect of

RNA maturation.

26.2.4 Status of chloroplast genome sequencing in plants

With the increase in availability of resources, there has been substantial increase in the number of sequenced genomes

being deposited in NCBI. Till date, 4645 chloroplast genome sequences have been submitted to NCBI organelle

genome resources. Organelle genomes play an important role in DNA barcoding studies (Dong, Liu, Yu, Wang, &

Zhou, 2012), phylogenetic studies (Provan, Powell, & Hollingsworth, 2001) and species identification (Li et al., 2015).

One can explore various aspects like genome organization, gene number, comparison of gene order among different

species and RNA editing status. Also, SSR markers can be developed from the plastome and the same can be studied

for cross-transferability across the species (Saxena et al., 2019). There has been a tremendous increase in number of

chloroplast genomes being submitted in NCBI for past few years. Taking a look at some families of land plants, then

Poaceae (573) contains maximum number of species whose chloroplast genomes has been sequenced and submitted to

NCBI, followed by Fabaceae (155), Malvaceae (57), and Piperaceae (5) families. Few important crop plants whose

chloroplasts genomes have been sequenced includes Oryza sativa (Hiratsuka et al., 1989), Raphanus sativus L. Jeong,

Chung, Mun, Kim, and Yu (2014), Vigna radiata (Tangphatsornruang et al., 2010), Glycine max (Saski et al., 2005),

Cajanus cajan (Kaila et al., 2016), Lotus japonicus (Kato et al., 2000) and Cyamopsis tetragonoloba L. Kaila et al.

(2017) (Table 26.1). The increased availability of chloroplast genomes has opened the doors for another field, such as,

Chloroplast Genetic Engineering. Transformation of chloroplast genomes has offered various advantages over nuclear

genomes. High levels of foreign protein accumulation as polyploidy nature of chloroplast genomes permits the introduc-

tion of thousands of copies of foreign gene (De Cosa, Moar, Lee, Miller, & Daniell, 2001), lack of gene silencing in

genetically engineered chloroplasts, containment of transgene by maternal inheritance (Hagemann, 2004; Zhang & Liu,

2003), and absence of position and pleiotropic effects (Jin & Daniell, 2015) are some of the advantages.

With the help of chloroplast engineering numerous possibilities have arisen and can lead to the development of

crops exhibiting resistance to insects, bacterial, viral, and fungal diseases. Production of biopharmaceuticals, industrial

enzymes, bio fuels, and various antigens have been facilitated with the help of plastid engineering (Bock, 2007; Bock

& Warzecha, 2010; Clarke & Daniell, 2011; Daniell, Singh, Mason, & Streatfield, 2009; Daniell et al., 2016).

26.3 Viral infection symptoms in plants

Directly or indirectly plant pathogenic virus affects majority of cell organelles during their replication and movement

that causes various histological changes that is, necrosis, hypoplasia and hyperplasia. These histological changes either

singly or in combination produce various macroscopic symptoms which includes yellowing, puckering, blistering, leaf
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curl, intervenial chlorosis, leaf deformation, mottling, stunted plant growth, and necrosis. (Fig. 26.3). Further, among

different organelles, chloroplasts are most frequently infected during virus infection (Balachandran et al., 1994; Herbers

et al., 2000; Kyselakova et al., 2011; Mandahar & Garg, 1972; Reinero & Beachy, 1989), which results in symptoms

such as abnormal plant size, mosaic, yellows/chlorosis, and necrosis. Various viral infection symptoms include the

following:

1. Abnormal plant size: Dwarfing and stunting of infected plant is one of the most common symptoms produced as

result of virus infection. Intensity of this symptom is commonly related to the degree of other symptoms, especially

in which leaf chlorophyll losses are encountered. Stunting symptoms results due to the reduction in internode length

and leaf size of the plants.

2. Mosaic: Development of dark green and light green area pattern on leaf surface is called as mosaic and it is also a

common symptom observed in virus infected plants. Almasi, Harsanyi, and Gaborjanyi (2001) observed that virus

infection in the plant causes various degree of chloroplast damage in clustered mesophyll cells that leads to the pro-

duction of mosaic like symptoms.

TABLE 26.1 List of few sequenced chloroplast genomes.

S.

No.

Species Chloroplast

genome size

Sequencing platform References

1 Paphiopedilum
delenatii

160,955 bp Illumina HiSeq Vu et al. (2020)

2 Metasequoia
Glyptostroboides

131,887 Illumina Miseq Chen et al. (2015)

3 Globe artichoke 152,529 Illumina GAIIx Curci, De Paola, Danzi,
Vendramin, and Sonnante (2015)

4 Acacia ligulata 158,724 Illumina Hiseq 2000 Williams, Boykin, Howell, Nevill,
and Small (2015)

5 Lupinus luteus 151,894 Illumina HiSeq 2000 Keller et al. (2017)

6 Ipomoea batata 161,303 Illumina Hiseq 2000 Yan et al. (2015)

7 Ananas comosus 159,636 Illumina and PacBio RSII Nashima et al. (2015)

8 Fragaria _ananassa
“Benihoppe”

155,549 Illumina HiSeq 2500 Cheng et al. (2017)

9 Capsicum pubescens 157,390 Illumina Hiseq 2500 D’Agostino et al. (2018)

10 Panax Quinquefolius 156,359 Roche 454 GS FLX and Illumina short-
read

Han, Li, Liu, and Gao (2016)

11 Pinus taeda L. 121,531 Illumina Hiseq 2000 Asaf, Khan, Shahzad, Lubna, and
Kang (2018)

12 Fagus crenata 158,227 Illumina Hiseq 2000 Worth, Liu, Wei, and Tomaru
(2019)

13 Raphanus sativus L. 153,368 Illumina HiSeq1000, Roche/454 GS-
FLX 129 Plus, and PacBio RS II

De Cosa et al. (2001)

14 Cajanus cajan (L.)
Millspaugh

152,201 Roche 454 GS FLX Leister (2003)

15 Cajanus
scarabaeoides (L.)
Thouars

152,242 Roche 454 GS FLX Leister (2003)

16 Cyamopsis
tetragonoloba L.

152,530 Illumina Hiseq 1000 Kaila et al. (2017)
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3. Yellows/Chlorosis: Yellows/chlorosis is one of the most predominant symptom of viral infection manifested in terms

of chloroplast structural changes and altered pigmentation; depleted photosynthetic activities, etc. Vein clearing/yel-

lowing in young leaves are the first sign of viral infection in yellows type symptoms that are then followed by gen-

eral yellowing and reddening of the infected leaves. Several workers reported development of chlorosis symptoms

following the virus infection (Manfre et al., 2011; Rahoutei, Garcia-Luque, & Baron, 2000; Roberts & Wood,

1982). Choudhury et al. (2019) observed that infection of Barley yellow dwarf virus in wheat genotypes leads to sig-

nificant reduction in leaf chlorophyll content that results in the development of strong yellows type symptoms. Thus

photosynthetic inhibition via disrupting components of chloroplast appears to be one of the conserved lines of attack

adopted by virus pathogens to establish an ideal niche for themselves and spreading the infection.

4. Necrosis: Generally plant viruses don’t kill the host cell due to its obligate parasitic nature. But certain viruses, such

as those belonging to Tomato spotted wilt virus group are reported to kill their host cells/tissue by necrosis. In case

of necrosis, death of plant tissue and organ occur but in case of severe infection the whole plant can die. Further,

necrosis also affects the chlorophyll content of the infected plant to some extent. For instance, reduced chlorophyll

FIGURE 26.3 Major viral infection symptoms related to chloroplast infection (A) Stunting of moong bean plant due to Moong bean yellow mosaic

virus infection (B) Mosaic symptom on cucumber plant (C) Mosaic on moong bean due to Moong bean yellow mosaic virus infection (D) Chlorosis

symptom on cucumber due to the infection of Tomato leaf curl New Delhi virus (E) Yellows symptom on Muskmelon due to the infection of Tomato

leaf curl New Delhi virus (F) Necrosis symptoms produced on tinda due to infection of Groundnut bud necrosis virus (Dhkal M personal

photographs).
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content in peanut leaves with necrosis symptom as compared to asymptomatic leaves has been reported (Rowland,

Dornera, Sorensena, Beasley, & Todd, 2005).

26.4 Role of chloroplasts in plant�virus life cycle

Considering the relatively small sizes of the virus genomes, capturing of the host plant cell components to facilitate

viral replication and their movement is inevitable. Though there is a constant tug-of-war between defense responses

mediated by host cells in terms of hypersensitive response (HR)/Post transcriptional gene silencing etc. and suppression

of viral gene silencing; a successful viral infection overcomes various defense barriers of a plant cell and triggers dis-

ease symptoms. Participation of various chloroplast constituents at different stages of virus infection cycle is reported

during several intensive research studies conducted across globe. For instance, Xiang, Kakani, Reade, Hui, and Rochon

(2006) observed the association of chloroplast in viral uncoating which is a major step in virus replication. Chloroplast

consists of various compartments and membrane contents that are suitable for plant virus replication and helpful for

them in evading plant RNA-mediated defense response (Ahlquist, Noueiry, Lee, Kushner, & Dye, 2003; Dreher, 2004;

Torrance, Cowan, Gillespie, Ziegler, & Lacomme, 2006). Following virus infection, “virus factories” are established at

specific sites inside the cell for their efficient replication and movement, which is must to cause disease on the host

plant (Zhao et al., 2016). Virus factories are that recruit some specific organelles for their build up excluding majority

of host organelles and proteins. Majorly mitochondria, cytoplasmic membranes and cytoskeleton components of the

host plant cells are involved in the formation of virus factories, which plays a prominent role in virus replication

(Asurmendi, Berg, Koo, & Beachy, 2004).

Viral replication complexes (VRCs) are a major site for the progeny virus production and are commonly associated

with chloroplast envelops (includes cytoplasmic invaginations and peripheral vesicles) in majority of viral infections to

probably prevent the recognition of viral RNAs from RNA-Silencing machinery of host (De Graaff, Coscoy, & Jaspars,

1993; Dreher, 2004; Torrance et al., 2006). Replication of viruses and development of subsequent virion assembly take

place in chloroplast as different viral factors viz. genomic RNAs and viral protein, mediates chloroplast targeting of

VRCs (Jakubiec et al., 2004; Prodhomme, Jakubiec, Tournier, Drugeon, & Jupin, 2003; Torrance et al., 2006). In chlo-

roplast, there are some special components that help in chloroplast targeting of VRCs. For instance, lipid component of

chloroplast membrane are associated with Pomovirus PMTV-TGB2 and helps the viral RNA to stay at chloroplast mem-

brane for replication (Cowan et al., 2012). Certain chloroplast proteins namely Chloroplast protein phosphoglycerate

kinase (ChlPGK) and heat shock proteins (Hsp90) play an important role in virus replication (Budziszewska &

Steplowska, 2018). In replication of bamboo mosaic virus, these protein along with eEF1a, glutathione S-transferase

NbGSTU4 (from N. benthamiana), and exonuclease XRN4 are known to interact with 30 end of the viral genomic RNA

during early stages of replication (Chen et al., 2017; Huang, Chen, & Tsai, 2017; Mower, 2009).

Further, to ensure virus survival in a host cell, its movement from one cell to another are crucial in its systematic

spread and developing infectious symptoms. To fulfill these, the virus modifies various components of cell, that is, plas-

modesmata, endomembrane system and cytoskeleton. Plant endomembrane system consists of many interrelated mem-

branes and various organelles like chloroplast, mitochondria, endoplasmic reticulum, vacuole, endosomes, peroxisomes,

nuclear envelopes, plasmamembrane and vesicles (Chen et al., 2012; Morita & Shimada, 2014). In the cytoskeleton,

microtubule and actin filaments are two main components that are involved in proper positioning of endomembrane sys-

tem and movement of constituents through them (Toivola, Strnad, Habtezion, & Omary, 2010; Wang & Hussey, 2015).

Movement of virus requires various proteins known as “Movement Proteins” (MP) for its transport through host plant

symplastic routes (Lazarowitz & Beachy, 1999; Wolf, Lucas, Deom, & Beachy, 1989). Different movement proteins

produced by viruses share few common features like binding to nucleic acid (Citovsky, Knorr, Schuster, & Zambryski,

1990), specific localization at plasmodesmata (Ding et al., 1992) and increasing the exclusion size limit of plasmodes-

mata (Wolf et al., 1989). Similar to the viral replication, chloroplast and associated factors also play an important role

in intercellular and systemic virus movement inside the host plant. After infection of Alternanthera mosaic virus

(AltMV), expression of triple gene block-3 (TGB-3) gene leads to the preferential accumulation of its protein in the

mesophyll cells after receiving information from chloroplast after having chloroplast targeted signal which is very

important for the virus movement in plant (Lim et al., 2010). Similarly, MP of Abutilon mosaic virus (AbMV) interacts

with cpHSC70-1, a chloroplast targeted heat shock protein and subsequently colocalize inside the chloroplast (Krenz,

Jeske, & Kleinow, 2012). So, it was commonly observed that during virus-chloroplast interactions, viral factor initially

interacts with chloroplast factor and then hijack them and use them for their movement. Several viruses like

Cauliflower mosaic virus (CaMV), TMV and Tomato mosaic virus (ToMV) were reported to target chloroplast and their
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factors for the efficient intercellular and systemic movement of these viruses inside the host plant (Angel et al., 2013;

Hohn, Fütterer, & Hull, 1997; Rodriguez et al., 2014; Zhang et al., 2008; Zhao et al., 2013).

26.4.1 Changes in chloroplast structure upon viral infection

To invade the host cell environment to an optimal level, numerous biochemical, and physiological features of host cell

are utilized by the viruses upon infection, such as disruption of double membrane structure of chloroplasts. These rear-

rangements and alterations in the ultrastructure organization of the plant cell have been reported by various research

studies (Allen, 1972; Appiano, Pennazio, & Redolfi, 1978; Arnott, Rosso, & Smith, 1969; Bald, 1948; Laliberte &

Sanfacon, 2010; Li et al., 2006; Musetti, Bruni, & Favali, 2002; Yan, Lehrer, Hajirezaei, Springer, & Komor, 2008;

Zhao et al., 2016). Virus infection is known to hamper numerous genes involved in chloroplast and photosynthesis

activity and includes chlorophyll synthesis enzymes, antenna proteins, chlorophyll catabolism, Electron transport chain,

Antioxidant defense component of chloroplasts, chloroplasts differentiation, PSI and PSII related proteins, Rubisco pro-

teins etc. Further, reported evidences also highlight the manipulation of protein sorting mechanism in plant cells by

viruses through molecular mimicry. For instance, Coat Protein (CP) of Cucumber necrosis virus (CNV) localize itself

to the thylakoid membrane as it possess N-terminal domain bearing sequence similarity to transit peptide (TPs) of chlo-

roplast (Xiang et al., 2006). However, CP of TMV, Potato virus X (PVX), chloroplast targeting of P5-2 of Rice black-

streaked dwarf virus (Bhattacharyya et al., 2015) deploy other mechanisms to make their way to chloroplast. CP of

PVX has been demonstrated not to be synthesized from viral RNA in the chloroplast; rather its posttranslational locali-

zation to chloroplast following its interaction with the TP of the plastocyanin precursor has been revealed by Qiao, Li,

Wong, and Fan (2009). Barley stripe mosaic virus (BSMV) causes the structural and functional retardation of plastids

via altering the lipid composition of etioplasts, thus affecting the translocation of NADPH: protochlorophyllide oxidore-

ductase, a nuclear-encoded plastid inner membrane protein. The lipid-facilitated binding of precursor proteins on chlor-

oplasts surface is imperative as it governs the translocation of nuclear encoded proteins into plastids (Harsanyi et al.,

2006). Though many research studies have been conducted, albeit still detailed insight are required to decode the pre-

cise mechanisms adopted by the viruses to conquer the chloroplasts upon infection.

Some of the primary changes that take place in the chloroplast ultrastructure during viral infection includes:

1. Chloroplast clustering and a decline in their overall number.

2. Atypical chloroplast appearances such as presence of swollen or globule type chloroplasts, or some chloroplasts

becomes ameboid shaped with membrane bounded extrusion and in some cases there would be the generation of

stromules.

3. Normal structure of peripheral vesicle and cytoplasm invagination get disturbed, membrane proliferations takes

place and envelope get broken.

4. Size of chloroplast vacuoles and vesicles get reduced whereas, size of intermembranous sacs get increased, large

number of enlarged starch grain get synthesized, size and number of electron dense plastoglobules/granules/bodies

get increased.

5. Disappearance of grana stacks, thylakoids get distorted/dilated/loosen

6. Entire chloroplast gets destroyed and disorganized and grana gets scattered in cytoplasm.

26.4.2 Virus factors involved in structural and functional changes of chloroplast

The ultimate fate of chloroplast-virus interaction is governed by maintaining the dynamic equilibrium between activa-

tion of plant defense response and sequestering of chloroplast proteins such as PsbP by viruses that facilitates effective

viral replication. The implications of these interactions largely depend on the localization of host proteins and could be

mediated either in the thylakoid membrane or lumen, stroma, chloroplast membrane or cytosol.

Earlier many workers reported that formation of different virus inclusion bodies or virion like particles in chloroplast

is directly related to the development of viral infection symptoms (Shalla, 1964; Zhao et al., 2013). It was also reported

that these virions like particles are actually pseudovirion in nature where transcripts of chloroplast are encapsidated by

coat protein of TMV (Atreya & Siegel, 1989; Shalla, Petersen, & Giunchedi, 1975) which showed the involvement of

coat protein in chloroplast ultrastructure alteration (Banerjee & Zaitlin, 1992). Coat protein of different viruses affects

the different components of chloroplast. In TMV, coat protein affects the thylakoid membrane component of chloroplast

in artificially infected tobacco leaves (Hodgson, Beachy, & Pakrasi, 1989; Reinero & Beachy, 1986) and found to

induce ultrastructure rearrangements in the chloroplast. Infection by Tobamovirus causes its coat protein to affect the
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chloroplast structure by binding with ferredoxin-I component (Sun et al., 2013). Coat protein of Potato virus X was

reported to affect the grana stacks and membranes of chloroplast (Kozar & Sheludko, 1969; Qiao et al., 2009).

However, in Potato virus Y (PVY), coat protein was reported to affect the membranes of thylakoid (Gunasinghe &

Berger, 1991). Along with effecting thylakoid membrane, coat protein of Potato virus Y was also found to affect the

large subunits of RuBisCo (Rbcl) that leads to the chlorosis development and mosaic symptoms (Feki et al., 2005).

CMV infection also leads to the change in chloroplast ultrastructure (Mazidah, Lau, Yusoff, Habibuddin, & Tan, 2012;

Roberts & Wood, 1982). Coat protein of CMV can get transported inside the intact chloroplast in an Adenosine Tri

Phosphate (ATP)-independent mode and severity of mosaic symptoms is directly correlated with the amount of coat

protein present in chloroplast (Liang, Ye, Shi, Kang, & Tian, 1998). In addition to coat protein, there are some other

factors also present in viruses that cause alteration in chloroplast ultra structure. Unlike Potato virus X TGB3,

Potexvirus AltMV TGB-3 has a chloroplast targeting signal and accumulates around membrane of chloroplast preferen-

tially (Lim et al., 2010). However, vesiculation of the chloroplast membrane and development of venial necrosis symp-

toms also take place due to the over expression of AltMv TGB3 (Jang et al., 2013; Lim et al., 2010). TGB-3 protein of

AltMv was reported to interact with PsbO [PSII oxygen evolving complex (OEC) protein] and this interaction was

found to be very crucial in the development of virus infection symptoms and disruption of chloroplast (Jang et al.,

2013). In case of PVY infection, change in size and number of chloroplast takes place as helper component - proteinase

(HC-Pro) protein that is a viral multifunctional protein interact with Min D factor that is chloroplast division related

factor (Lin, Ding, Hsu, & Tsai, 2007). Some of these interactions between the proteins of virus and chloroplasts and

their implications are listed in Table 26.2.

Several transcriptomic and proteomic studies have established disruption of numerous molecular events in plants fol-

lowing virus infection. Majority of chloroplast proteins get affected during virus infection and most of them get down

regulated and are directly correlated with the chlorosis severity (Dardick, 2007; Mochizuki et al., 2014; Rodriguez,

Munoz, Lenardon, & Lascano, 2012; Wu et al., 2013). Chloroplast photosynthesis related proteins (CPRPs) are the

common target during viral infection. Out of different CPRPs, RbCs and Rubisco activase in the stroma of chloroplast

whereas, OEC and light harvesting antenna complex in the PSII of thylakoid get majorly effected (Kundu, Chakraborty,

Kundu, & Pal, 2013; Liu, Yang, Bi, & Zhang, 2014; Moshe et al., 2012; Pineda, Sajnani, & Baron, 2010; Wang,

Hajano, Ren, Lu, & Wang, 2015). Plant pathogenic viruses can affect the biosynthesis of CPRPs at various stages that

include their transcription, translation, posttranscriptional, chloroplast transportation, assembly, and/or their degradation

in the plastid that ultimately contributes towards the symptom development (Lehto, Tikkanen, Hiriart, Paakkarinen, &

Aro, 2003; Perez-Bueno, Rahoutei, Sajnani, Garcia-Luque, & Baron, 2004).

26.5 Role of chloroplast in the defense against plant pathogenic viruses

Chloroplast induced defense action in response to pathogen requires the elicitor signal molecules to localize in the chlo-

roplast or presence of receptors on chloroplast membrane which in turn generate a retrograde signal from chloroplast to

the nuclei for subsequent activation of defense components. For instance, Toll interleukin receptor (TIR)-NB-LRRs

TABLE 26.2 Interaction between chloroplast�virus proteins and their implications.

Chloroplast�virus interaction Virus (gene) Chloroplast protein

Hampering of host protein translocation into chloroplast Soybean Mosaic Virus (P1)
Sugarcane Mosaic Virus (HC-Pro)

Rieske Fe/S
Ferredoxin-5 precursor

Regulation of defense components Tomato Mosaic Virus (MP)
Tobbaco Mosaic Virus (Replicase)

RbcS
ATP synthase γ -subunit
(AtpC), RuBisCO
activase (RCA)

Regulation of virus infection Plum Pox Virus (Cl)
Potato Virus X (CP)

Photosystem I PSI-K
RuBisCO large subunit

Affects Chloroplast stability Tomato Mosaic Virus (CP)
Rice Stripe Virus (Disease-specific protein)

IP-L
PsbP

ETI elicitation Tobacco Mosaic Virus (Replicase) NRIP 1
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possesses putative chloroplast localization signals. Further, receptors which are not localized in the organelle, recog-

nizes pathogen through interaction with chloroplast proteins. For example, in TMV infection, helicases domain of TMV

replicase (p50) is recognized by TIR domain belonging to TIR-NB-LRRs class through a chloroplast localized protein

N receptor-interacting protein 1 (NRIP1), which gets released from chloroplast in the presence of p50, to form a tripar-

tite complex that subsequently activates defense signaling (Caplan, Mamillapalli, Burch-Smith, Czymmek, & Dinesh-

Kumar, 2008). TMV p50 induced, N-mediated defense activation results in the formation of stromules (array of tubular

structures filled with stroma) from chloroplast to nucleus and elicits HR-programmed cell death (PCD) (Caplan et al.,

2015).

Various aspects of chloroplast mediated defense action are described below:

1. Chloroplasts are rich source of reactive oxygen species (ROS), which could elicits HR/effector—triggered immunity

and ultimately PCD in the plant

2. Synthesis of defense hormones in local and systemic defense responses, primarily salicylic acid (SA) and along with

jasmonic acid (JA) and abscisic acid (ABA) in regulation by chloroplast apparatus (Caplan et al., 2008)

3. Level of calcium (Ca21) pool stored inside chloroplasts changes in response to immune response and pathogen

invading (Mur, Kenton, Lloyd, Ougham, & Prats, 2008)

4. Since gene silencing machinery is not available in the chloroplasts, cross-talk between chloroplast derived signaling

molecules and RNA silencing is of utmost validity.

5. Light dependent regulation of expression of small subunit of RuBisCO; interaction between RbcS with other compo-

nents such as OEC to stimulate defense actions

Chloroplast is the major site for the salicylic acid (SA) and jasmonic acid (JA) biosynthesis in providing resistance

to the plants against biotrophic plant pathogens by regulating systemic acquired immunity (Lin et al., 2015; Wasternack

& Hause, 2013; Wasternack, 2007). For instance, SA promotes plant defense response against viruses and its biosynthe-

sis (through its exogenous application/or its analogs) and signaling in the resistant plant varieties get enhanced and

accounts for basal immunity (Falcioni et al., 2014; Garcion et al., 2008; Wildermuth, Dewdney, Wu, & Ausubel, 2001).

Along with these hormone biosynthesis, there are some factors of chloroplast that controls antagonistic interaction of

SA-JA synthesis and signaling (Kunkel & Brooks, 2002; Lemos et al., 2016; Zheng et al., 2012). Further, expression of

chloroplast’s calcium sensing receptors is reported to be increased with SA accumulation that links cytoplasmic-nuclear

immune responses to the chloroplast (Nomura et al., 2012). Similar to salicyclic acid, JA also plays an important role in

controlling disease during compatible plant�virus interactions (Alazem & Lin, 2015).

Further, chloroplast is also an important site for the synthesis of ROS that plays an important role in the plant

defense during incompatible plant�virus interactions (Allan, Lapidot, Culver, & Fluhr, 2001; Hakmaoui et al., 2012).

ROS burst is an important component of HR against various plant pathogens during incompatible interaction (Torres,

Jones, & Dangl, 2006; Zurbriggen, Carrillo, & Hajirezaei, 2010). Moreover, retrograde signaling from chloroplasts to

nucleus to activate immune response is pivotal in resistance response. Particularly, stromules of chloroplast are involved

in magnifying and transporting the defense related signals to the nucleus. For instance, TMV infection has been

observed to bring about the accumulation of chloroplast localized defense components NR1P1 and H2O2 in the nucleus

(Zhao et al., 2016). Lastly, changes in the chloroplast ultrastructure, such as TMV infection causes chloroplast swelling

and bursting of its membrane during the N-mediated hypersensitive reaction results in the resistance response.

26.6 Plant�virus metagenomics

To further expand the avenues of plant�virus biodiversity, metagenomics analysis is the new approach for identifying

causative viral disease features, screening of viruses, detecting novel, cryptic, or asymptomatic viruses, recognizing

new viral strains/species/families, identifying virus agents in a single or complex infections, etc., through sequencing of

viral populations present in a particular environmental sample (MacDiarmid, Rodoni, Melcher, Ochoa-Corona, &

Roossinck, 2013; Roossinck, Martin, & Roumagnac, 2015). From a particular sample, several technologies exist to

enrich for the plant viral specific sequences such as dsRNA enrichment (Roossinck et al., 2010), siRNA (Kreuze et al.,

2009), or isolation of virus like particles (Muthukumar et al., 2009) to provide a deeper insight into host specific- or

environment specific virus�plant interactions. As Plant�virus interaction in terms of appearance of disease symptoms

are widely studied, further, one could also explore the paths of characterizing plant�virus collaboration as conditional

mutualists, cross-protection agents etc. (Fraser, 1998; Roossinck, 2011) in special reference to plastome specific or plas-

tome directed changes. Wamonje et al. (2017) utilized NGS to explore dicistrovirus diversity in maize and their insect

vectors, aphids and identified strains of a novel Big Sioux River virus (BSRV) -like, along with Rhopalosiphum padi
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virus (RhPV), Aphid lethal paralysis virus (ALPV) dicistrovirus in Aphis fabae and maize. These viruses are known to

use the plants in which they do not replicate as a reservoir to infect new insect hosts wherein the virus could replicate.

Moreover, viruses rarely causes any visible symptom upon infection in their wild host species and chloroplast genome

structural features of these wild hosts needs to be explored in a larger details to better capture the plant�virus ecology

relative to the cultivated counterparts.

26.7 Conclusion

Advent of novel molecular tools and techniques has provided a deeper insight into chloroplast�virus interaction studies,

though still a nano-scale investigation in terms of chloroplast genes, virus proteins, alleles, their interactions, implica-

tions, manipulations etc. needs to be carried out. Retrograde signaling mediated by chloroplasts is another promising

aspect for further exploration. Chloroplast genome sequence of numerous plant species have been deciphered and could

be utilized for the plastome engineering strategies, genome editing tools etc. for boosting viral resistance. Numerous

sequence databases and bioinformatics tools have aided in the characterization of virus and their interaction with their

host through in silico studies. Though this still requires precise pinpointing of the candidate chloroplast genes/proteins

involved and decoding of their metabolic pathways. Viral metagenomics has also opened new avenues to be discerned

to aid in development of virus-resistant plants. By studying a careful interaction between virus and its wild and culti-

vated host, differences, and similarities between genes, pathways, mechanisms, etc., could be interpreted. Thus chloro-

plast�virus interaction studies require a multidisciplinary approach by molecular biologists, virologists,

bioinformaticians, and geneticists, etc., to contribute towards the future development of plants with virus resistance.
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Hohn, T., Fütterer, J., & Hull, R. (1997). The proteins and functions of plant pararetroviruses: Knowns and unknowns. Critical Review in Plant

Science, 16, 133�161.

Huang, D. I., & Cronk, Q. C. (2015). Plann: A command-line application for annotating plastome sequences. Applications in Plant Sciences, 3(8).

Available from https://doi.org/10.3732/apps.1500026.

Huang, Y. P., Chen, I., & Tsai, C. H. (2017). Host factors in the infection cycle of Bamboo mosaic virus. Frontiers in Microbiology, 8, 437.

Hull, R. (2014). Plant viruses and their classification. In R. Hull (Ed.), Plant virology (pp. 15�68). Ciudad: Academic Press.

Jakubiec, A., Notaise, J., Tournier, V., Hericourt, F., Block, M. A., Drugeon, G., et al. (2004). Assembly of turnip yellow mosaic virus replication

complexes: Interaction between the proteinase and polymerase domains of the replication proteins. Journal of Virology, 78(15), 7945�7957.

Jang, C., Seo, E. Y., Nam, J., Bae, H., Gim, Y. G., Kim, H. G., et al. (2013). Insights into Alternanthera mosaic virus TGB3 functions: Interactions

with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Frontiers in Plant

Science, 4, 5.

Jansen, R. K., Cai, Z., Raubeson, L. A., Daniell, H., Depamphilis, C. W., Leebens-Mack, J., et al. (2007). Analysis of 81 genes from 64 plastid gen-

omes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences

of the United States of America, 104, 19369�19374.

Jansen, R. K., Saski, C., Lee, S. B., Hansen, A. K., & Daniell, H. (2011). Complete plastid genome sequences of three rosids (Castanea, Prunus,

Theobroma): Evidence for at least two independent transfers of rpl22 to the nucleus. Molecular Biology and Evolution, 28, 835�847.

Jansen, R. K., Wojciechowski, M. F., Sanniyasi, E., Lee, S. B., & Daniell, H. (2008). Complete plastid genome sequence of the chickpea (Cicer arieti-

num) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molecular Phylogenetics and Evolution,

48, 1204�1217.

Jarvis, P., & Soll, J. (2001). Toc, tic, and chloroplast protein import. Biochimica et Biophysica Acta, 1541, 64�79.

Jeong, Y. M., Chung, W. H., Mun, J. H., Kim, N., & Yu, H. J. (2014). De novo assembly and characterization of the complete chloroplast genome of

radish (Raphanus sativus L.). Gene, 551(1), 39�48.

Jin, S., & Daniell, H. (2015). Engineered chloroplast genome just got smarter. Trends in Plant Science, 20(10), 622�640.

432 SECTION | II Omics application

http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref50
https://doi.org/10.1385/0-89603-385-6
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref63
https://doi.org/10.3732/apps.1500026
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref74


Kaila, T., Chaduvla, P. K., Rawal, H. C., Saxena, S., Tyagi, A., Mithra, S., et al. (2017). Chloroplast genome sequence of clusterbean (Cyamopsis tet-

ragonoloba L.): Genome structure and comparative analysis. Genes, 8(9), 212.

Kaila, T., Chaduvla, P. K., Saxena, S., Bahadur, K., Gahukar, S. J., Chaudhury, A., et al. (2016). Chloroplast genome sequence of pigeonpea (Cajanus

cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) thouars: Genome organization and comparison with other legumes, . Frontiers in Plant

Science (7, p. 1847). .

Kato, T., Kaneko, T., Sato, S., Nakamura, Y., & Tabata, S. (2000). Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA

Research, 7, 323�330.

Keller, J., Rousseau-Gueutin, M., Martin, G. E., Morice, J., Boutte, J., Coissac, E., et al. (2017). The evolutionary fate of the chloroplast and nuclear

rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA

Research, 24, 343�358.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Research, 27(5), 722�736.

Kozar, F. E., & Sheludko, Y. M. (1969). Ultrastructure of potato and Datura stramonium plant cells infected with potato virus X. Virology, 38(2),

220�229.

Krenz, B., Jeske, H., & Kleinow, T. (2012). The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra-

and intercellular macromolecular trafficking route. Frontiers in Plant Science, 3, 291.

Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., et al. (2009). Complete viral genome sequence and discovery of novel

viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology, 388, 1�7.

Kundu, S., Chakraborty, D., Kundu, A., & Pal, A. (2013). Proteomics approach combined with biochemical attributes to elucidate compatible and

incompatible plant-virus interactions between Vigna mungo and mungbean yellow mosaic India virus. Proteome Science, 11, 15.

Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4),

325�331.

Kyselakova, H., Prokopova, J., Naus, J., Novak, O., Navratil, M., Safarova, D., et al. (2011). Photosynthetic alterations of pea leaves infected systemi-

cally by pea enation mosaic virus: A coordinated decrease in efficiencies of CO2 assimilation and photosystem II photochemistry. Plant

Physiology and Biochemistry, 49(11), 1279�1289.

Laliberte, J. F., & Sanfacon, H. (2010). Cellular remodeling during plant virus infection. Annual Review of Phytopathology, 48, 69�91.

Lazarowitz, S. G., & Beachy, R. N. (1999). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. The Plant Cell,

11, 535�548.

Lee, S. B., Kaittanis, C., Jansen, R. K., Hostetler, J. B., Tallon, L. J., Town, C. D., & Daniell, H. (2006). The complete chloroplast genome sequence

of Gossypium hirsutum: Organization and phylogenetic relationships to other angiosperms. BMC Genomics, 7, 61.

Lehto, K., Tikkanen, M., Hiriart, J. B., Paakkarinen, V., & Aro, E. M. (2003). Depletion of the photosystem II core complex in mature tobacco leaves

infected by the flavum strain of tobacco mosaic virus. Molecular Plant-Microbe Interaction, 16(12), 1135�1144.

Leister, D. (2003). Chloroplast research in the genomic age. Trends in Genetics, 19, 47�56.

Lemos, M., Xiao, Y., Bjornson, M., Wang, J. Z., Hicks, D., Souza, A. D., et al. (2016). The plastidial retrograde signal methyl erythritol cyclopyro-

phosphate is a regulator of salicylic acid and jasmonic acid crosstalk. Journal of Experimental Botany, 67(5), 1557�1566.

Lenz, H., & Knoop, V. (2013). PREPACT 2.0: Predicting C-to-U and U-to-C RNA editing in organelle genome sequences with multiple references

and curated RNA editing annotation. Bioinformatics and Biology Insights, 7.

Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2015). Plant DNA barcoding: From gene to genome. Biological Reviews, 90,

157�166.

Li, Y., Cui, H., Cui, X., & Wang, A. (2016). The altered photosynthetic machinery during compatible virus infection. Current Opinions in Virology,

17, 19�24.

Li, Y. H., Hong, J., Xue, L., Yang, Y., Zhou, X. P., & Jiang, D. A. (2006). Effects of Broad bean wilt virus 2 isolate infection on photosynthetic activ-

ities and chloroplast ultrastructure in broad bean leaves. Journal of Plant Physiology and Molecular Biology, 32(4), 490�496.

Liang, D., Ye, Y., Shi, D., Kang, L., & Tian, B. (1998). The role of viral coat protein in the induction of mosaic symptoms in tobacco. Scientia Sinica

Vitae, 28, 251�256.

Lim, H. S., Vaira, A. M., Bae, H., Bragg, J. N., Ruzin, S. E., Bauchan, G. R., et al. (2010). Mutation of a chloroplast-targeting signal in alternanthera

mosaic virus TGB3 impairs cell-to cell movement and eliminates long-distance virus movement. Journal of General Virology, 91(8), 2102�2115.

Lin, C. S., Chen, J., Huang, Y. T., Chan, M. T., Daniell, H., Chang, W. J., et al. (2015). The location and translocation of ndh genes of chloroplast ori-

gin in the Orchidaceae family. Scientific Reports, 5, 9040.

Lin, J. W., Ding, M. P., Hsu, Y. H., & Tsai, C. H. (2007). Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient

accumulation of bamboo mosaic virus. Nucleic Acids Research, 35(2), 424�432.

Liu, C., Shi, L., Zhu, Y., Chen, H., Zhang, J., Lin, X., & Guan, X. (2012). CpGAVAS, an integrated web server for the annotation, visualization, anal-

ysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics, 13, 715. Available from https://doi.org/

10.1186/1471-2164-13-715.

Liu, H., Fu, Y., Jiang, D., Li, G., Xie, J., Cheng, J., et al. (2010). Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic

nuclear genomes. Journal of Virology, 84, 11879�11887.

Liu, J., Yang, J., Bi, H., & Zhang, P. (2014). Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the

effect of chlorophyll degradation on symptom development. Journal of Integrative Plant Biology, 56(2), 122�132.

Chloroplast genome and plant�virus interaction Chapter | 26 433

http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref99
https://doi.org/10.1186/1471-2164-13-715
https://doi.org/10.1186/1471-2164-13-715
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00025-8/sbref102


Lohse, M., Drechsel, O., & Bock, R. (2007). OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical

maps of plastid and mitochondrial genomes. Current Genetics, 52(5�6), 267�274.

Lohse, M., Drechsel, O., Kahlau, S., & Bock, R. (2013). OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mito-

chondrial genomes and visualizing expression data sets. Nucleic Acids Research, 289.

MacDiarmid, R., Rodoni, B., Melcher, U., Ochoa-Corona, F., & Roossinck, M. (2013). Biosecurity implications of new technology and discovery in

plant virus research. PLoS Pathogens, 9, e1003337.

Magee, A. M., Aspinall, S., Rice, D. W., Cusack, B. P., Sémon, M., Perry, A. S., et al. (2010). Localized hypermutation and associated gene losses in

legume chloroplast genomes. Genome Research, 20, 1700�1710.
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27.1 Introduction

Soil is the most dynamic environment with huge plethora of known and unknown microbial species thriving in it. The

complex biochemical mechanism occurring in the soil reflects several unknown functions which are very much impor-

tant for sustenance of life (Sabale, Suryawanshi, & Krishnaraj, 2019). Soil erosion, extensive agricultural practices, cli-

matic conditions, the everyday changing scenarios challenge the microbial diversity. To assess these microbial

diversities and to understand their functions various approaches are used. These methods can extensively be classified

under culture-dependent and culture-independent methods. The culture-dependent methods usually account various bio-

chemical parameters to understand microbial diversity. Agricultural microbiomes are studied by targeting rhizopheric,

endophytic, and phyllospheric microbiome. Microbial diversity in the soil have been projected to maintain the sustain-

ability of agriculture production systems. The associated microbiomes are largely influenced by the environmental fac-

tors affecting the host plants such as the type and pH of soil, mineral content in soil, rainfall, salinity, temperatures. To

know the diversity and distribution among different groups of microbes associated with different crops in the form of

epiphytic, endophytic, and rhizospheric should be explored through culturable and unculturable techniques (Yadav,

Kumar, Dhaliwal, Prasad, & Saxena, 2018). Since the microbial diversity plays integral role in fundamental metabolic

processes in the soil, a basic understanding of diversity and function of soil biota is required in for preserving the integ-

rity, function and long-term sustainability varied ecosystems (Sabale et al., 2019).

27.2 Sustainable agriculture

The land used for agriculture should be capable of maintaining their productivity indefinitely and should be useful to

society for long term. This will be helpful in conserving the resources and would be useful to the environment and to

the society. This has given way to the sustainable agricultural practices. The basic tenant of sustainable agriculture is

preservation of environmental health, economic profitability, and maintenance of social equity.

Hence the production should not compromise with the human as well as natural resources. The human resources

refer to the laborers, whose health and living conditions should be taken care of. The sustainable agriculture can be

achieved with the integrated efforts of researchers, educationalists, policymakers, farmers, laborers, retailers, and the

consumers. For achieving this objective, planned strategy should be adapted for internal cycling of nutrients and energy.

This can also be obtained by minimizing the use of toxic chemicals and fertilizers

Soil is important natural resources that must be considered for long term sustainability. The highly diverse and

dynamic soil microbial community is important for sustainable agriculture approach. The soil microbes are important in

improving the soil health as well as the crop productivity. The diverse microbes associated with the crop in soil plays a

major role in crop improvement. As it is already known that only 1% of the microbes are culturable under laboratory

conditions and 99% still remain to be explored. Culture-independent techniques clubbed with the recent sequencing
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technologies have helped in exploring the soil microbial communities. Although the soil is rich in the microbial popula-

tion, but the area near the crop roots known as rhizoshere is specifically enriched with the microbes due to high nutrient

content present there in. The microbial community present in the rhizosphere mainly comprises of bacteria, fungi, algae,

nematodes protozoa and microorthopods (Raaijmakers, Paulitz, & Steinberg, 2009). Rhizosphere is one of the most

extensively studied regions of the soil environment (Hiltner, 1904). This region comprises of huge microbial diversity

and the microbial population in this region is around 10�100 times higher than bulk soil (Verma, Yadav, Khannam, &

Mishra, 2019).

27.3 Soil microbiomes

Soil harbors varied microbial communities because it provides favorable condition as well as ecological niches for sur-

vival and supporting the metabolic activities of the thriving microbes. Soil is the main source of nutrient and raw mate-

rial for plant growth. Sustainable agriculture relies on the strategies to improve or maintain the current rate of food

production without damaging to the environmental and human health (Yadav et al., 2017).

Soil microbes are well recognized for maintain the balance between the diverse interacting factors responsible for

the environmental equilibrium. Thereby standing as an integral element for a sustainable healthy food production.

Microbes are primarily attracted to the rhizo deposit pools where they develop their microhabitat for survival (Hirsch,

Miller, & Dennis, 2013). The in vivo influence of the soil microbial population to the environment has a greater impact

than the artificially created microbial ecosystem for remediation purposes. The relative abundance of the microbial pop-

ulation has large impact on the ecosystem functioning, more, the alteration in relative abundance of organisms regulat-

ing the metabolic processes have direct effect on the rate of that very mechanism (Schimel & Schaeffer, 2012).

The rhizosphere is defined as the soil present in the vicinity of the roots (Hiltner, 1904). The microbial commu-

nity structure in the rhizosphere is different from that found in the bulk soil. This may be due to either presence of

the root exudates having high concentration of the nutrients or may be because of the increased microbial biomass

which cause alteration in the environmental conditions of the rhizosphere. The rhizosphere is being incessantly influ-

enced by plant roots through the rhizodeposition of exudates, mucilages, and sloughed cells (Bais, Weir, & Perry,

2006). Thus, plant roots can have an impact on the surrounding soil and the inhabiting microbial community.

Mutually, the rhizospheric organisms can have influence on the plant by producing regulatory compounds. Thus, the

rhizospheric microbiome acts as a highly evolved external functional milieu for plants (Badri, Weir, van der Lelie, &

FIGURE 27.1 Common culture-

dependent and culture-independent

methods used for microbial analysis.
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Vivanco, 2009; Bais et al., 2006). In this chapter we will be dealing with the metagenomics based analysis of the rhi-

zospheric soil sample. The overview of culture-dependent and independent methods and techniques both conven-

tional and recent are highlighted in Figs. 27.1 and 27.2.

27.4 Soil microbial diversity

Soil is the conglomerates of millions of fungi, billions of bacteria, and other macro organisms (Bardgett & Van Der

Putten, 2014). Different type of soil have different diversity of microbes which is effect grow of plants. The soil

microbe’s effect differed depending on the soil type and the plant growth developmental stage (Schreiter, Sandmann,

Smalla, & Grosch, 2014). Diverse microbial genera have been reported from rhizospheric soil of different host plants

including Arenimonas, Azotobacter, Bradyrhizobium, Burkholderia, Chitinophaga, Delftia, Dyella, Enterobacter,

Erwinia, Flavobacterium, Gluconacetobacter, Klebsiella, Lysobacter, Massilia, Methylobacterium, Methylocystis,

Ohtaekwangia, Paenibacillus, Pseudomonas, Sphingobium, Stenotrophomonas, and Variovorax (Li et al., 2014),

Azospirillum, Bacillus, Flavobacterium, Micrococcus, and Staphylococcus (Rameshkumar, Krishnan, Kandeepan, &

Kayalvizhi, 2014), Achromobacter, Acinetobacter, Agrobacterium, Alcaligenes, Arthrobacter, Duganella,

Exiguobacterium, Kocuria, Lysinibacillus, Planococcus, Planomicrobium, Rhodobacter, Salmonella, Serratia,

Sporosarcina, and Xanthomonas (Majeed, Abbasi, Hameed, Imran, & Rahim, 2015), Aspergillus (Wang et al., 2018),

Penicillium (Elias, Woyessa, & Muleta, 2016; Mittal, Singh, Nayyar, Kaur, & Tewari, 2008), Talaromyces (Zhang

et al., 2018), and Trichoderma (Kapri & Tewari, 2010).

27.5 Analysis of the rhizosphere microbial community

To assess these microbial diversities and to understand their functions various approaches are used. These methods can

extensively be classified under culture-dependent and culture-independent methods.

The culture-dependent methods usually account various biochemical parameters to understand microbial diversity.

Abiotic and Biotic factors affect microbial diversity (Fakruddin & Mannan, 2013). Agricultural microbiome studies targets

rhizopheric, endophytic, and phyllospheric microbiome. The method in general involves culturing microbe in specific

media. For endophytic and phyllopspheric surface sterilization is performed prior to microbes culturing. These cultured

microbes can be assessed molecularly or biochemically or by both to achieve the objective of study (Yadav et al., 2018).

This method of screening and isolation of microbe is easy, feasible, and result oriented. But the spatial heterogeneity of

microbes, their dependence over abiotic and biotic factors, the risk of contamination in pure culture raises arrow towards

some amendments to the methods in use. The culture-dependent method relies on the tools such as plate count, analysis of

the carbon utilization pattern, and community level physiological profiling.

Culture-independent methods on contrary involves no culturing of the microbes. In this method, collective isolation

of DNA takes place. The viable source of information regarding the soil microbes can be discovered through the biomo-

lecules such as lipids, DNA, RNA, and proteins. The extraction procedures of the biomolecules from the soil is a

FIGURE 27.2 Culture-independent

methods used for the microbiome

analysis.
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challenging task due to variability and high concentration of the soil content, soil structure, and humic acids content.

These parameters vary in its location and time. A new emerging area of collective isolation of DNA is called as meta-

genome. And this approach is coined as Metagenomics. This complete metagenomic DNA is processed for library clon-

ing for functional and sequence based studies.

Culture-independent tools for the analysis of the microbial community includes lipid profiling techniques such as

PFLA and FAME; PCR based techniques such as RAPD, RFLP, DGGE, qPCR, RISA to name a few; non PCR based

techniques such as reverse sample probing technique, G1 C content analysis. In the present chapter we will focus pri-

marily on the metagenomics based approach for the analysis of the rhizospheric microbes.

27.6 Metagenomics in agriculture

Metagenomics has revolutionized the study of environmental microbiology and microbial ecology. The microbial diver-

sity and function can be extensive studied ecological niches. It is a culture-independent method of assessing the largely

untapped genetic reservoir microbial communities present in the soil environment. Metagenomics is performed through

high-throughput sequencing technology to infer the taxonomic and functional traits of biological communities present

in the environmental samples (Handelsman et al., 1998). It is performed without isolation of the microorganisms from

the sample site. It directly detects and quantifies DNA. With the help of recent high through put sequencing platforms,

the data can be quickly and accurately obtained. The obtained microbial data has been widely used in the analysis of

soil microorganisms (Yuan et al., 2020).

The microbial diversity of soils serves as a promising source for exploring a wide range of industrial, agricultural,

and environmental niches. This helps exploring the soil microbial communities extensively that can be useful in several

aspects. These are in relevance to soil habitat, abundance, synergistic or antagonistic interactions, microbial diversity,

their functional and phylogenetical interconnections, dynamic stability, and sensitivity of microbial communities

(Simonet, Nesme, Achouk, & Agathos, 2016). Metagenomics is an integrated branch empowered with genomics, bioin-

formatics, and systems biology. It provides comprehensive overview of the microbial world. Hence genomics aspect

has given way to the detailed analysis of the microbial communities (Sabale et al., 2019).

Meta science takes in account the aggregate genes of microbes, secondly it takes in account the computational biol-

ogy tools to expedite the functional and sequential attribute. Metagenomics is sectioned into two major approaches,

sequence based and function-based which target different features of the local microbial community within a deter-

mined environment.

The sequence-based approach is performed either by sequencing the clones of the library or random fragments

obtained by metagenomic mining. 16S rDNA-based sequencing analysis of the clones gives an overview of the phylo-

genetic diversity of the metagenome (Soni, Shaluja, & Goel, 2010). The functional metagenomic approach leads to the

Rhizospheric soil sample 
collection 

Isolation of metagenomic 
DNA 

Library 
preparation 

Library Screening 

Sequence 
based 

PCR 

Hybridization 

High-Throughput 
screening 

Bioinformatic 
analysis 

Function based 

FIGURE 27.3 Workflow in the metagenomic

analysis of rhizospheric soil sample.
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identification of the genes that code for a function of interest. This is done by activity-based screenings of the clones of

the expression libraries (Guazzaroni et al., 2018). Metagenomics offers a new way of examining the microbial world

that has given way to modern microbiology. It has potential to revolutionize understanding of the entire microbial living

world and their functions in different ecosystem.

27.6.1 Metagenomics based techniques for rhizosphere analysis

The basic workflow for metagenomic analysis of the rhizospheric soil sample is shown in Fig. 27.3.

27.6.1.1 Sample collection and isolation of metagenomic DNA

For analysis of the rhizosphere, the bulk soil sample is separated and then the rhizospheric soil sample is collected from

the roots of the crop plants. This is then subjected to DNA isolation. Isolation of good quality metagenomic DNA from

soil is a prerequisite for a successful metagenomic study. Soil is a heterogeneous mixture comprising of high concentra-

tion of several contaminants like humic acid and phenolic compounds that inhibit the downstream processing of the

DNA (Nair, Vincent, & Bhat, 2014). These contaminants coprecipitate with metagenomic DNA and make it unfit for

further molecular based methods (Amorim et al., 2008). Several research groups have attempted to obtain high quality

of the meta-DNA that is suitable for PCR and library preparation (Singh, Devi, Verma, & Rasool, 2014; Tanveer,

Yadav, & Yadav, 2016; Volossiouk, Robb, & Nazar, 1995; Zhou, Bruns, & Tiedje, 1996).

27.6.1.2 Library preparation

Once a good quality DNA is obtained, the next step is the preparation of metagenomic library. The library preparation

includes the cloning of the DNA fragments into specific vectors which are transformed into the host cell. These clones

are then subsequently screened by either sequence or function-based approaches as described earlier. The vector is

selected depending upon the size of DNA to be cloned.

Bacterial Artificial Chromosome (BAC) 100�200 Kb,
Cosmids 25�35 Kb
Fosmids 25�40 Kb
Yeast artificial chromosome (YAC) over 40 Kb

Depending upon the strategy for the metagenomic DNA analysis, the size of the library is decided. Large size inserts

are suitable for screening functional genes of high molecular weight. Host selection is also crucial for library prepara-

tion (Gabor, Alkema, & Janssen, 2004). E. coli is the most commonly used host for library preparation. It is easy to

handle due to small genome size and high efficiency of transformation (Steele, Jaeger, Daniel, & Streit, 2009). But

E. coli cannot express most of the genes present in the metagenome due to lack of expression machinery of large num-

ber of genes (Craig, Chang, Kim, Obiajulu, & Brady, 2010). To evade this, researchers have come up with alternative

hosts such as Bacillus, Pseudomonas, and Streptomyces (Aakvik et al., 2009; Lorenz & Eck, 2005).

27.6.1.3 Library screening

The library thus obtained is then screened by either sequence and function-based approach. Each approach along the

techniques associated with it will be described in this section.

27.6.1.3.1 Sequence-based screening

It involves sequencing of the clones of the library. This may be useful for diversity analysis, investigation of the genes

present in the metagenome or for deciphering the phylogenetic ancestry of the microbes present therein.

The common techniques used for the above mentioned analysis are PCR based, probe based or high throughput

sequencing based procedures.

1. PCR based screening

The library may be screened for specific enzymes and genes responsible for resistance to antibiotics. Specific

primers are designed that amplify the gene of interest in the metagenome (Handelsman, 2004). The microbial com-

munity profiling may be performed with help of 16s rRNA-based amplification. Certain genes such as rRNA, recA,

radA, nif, and phenol hydroxylase are used to decipher the phylogenetic relationship in the microbial population

(Suenaga et al., 2009a).
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2. Hybridization based screening

It allows simultaneous screening of large number of genes in the metagenomic DNA sample with the help of

specific probes. The probes are designed to bind specific genes. Several labeled probes are also available that assist

in the detection of the microbial wealth in the metagenome. Several microarray chips have been designed exclu-

sively for the metagenome based analysis of the microbial community.

GeoChip is the example of fixed oligo microarray. The first version of the chip contained probes obtained by

direct amplification of environmental DNA using primers for nirS, nirK, and amoA genes (Wu et al., 2001). Since

then the number of probes in the chip has increased there by providing better analysis of the metagenomic commu-

nity. The latest version (GeoChip 4.0) has 83,992 probes with 152,414 target genes which are divided into 410 cate-

gories. It covers the functional genes from fungi, archaea, bacteria, and viruses (Van Nostrand, He, & Zhou, 2012).

GeoChip version 4.0 has been used in various analyses of metagenomic samples from the Amazon rainforest (Paula

et al., 2014), and samples from effluent treatment plants (Wang et al., 2014). Virochip has been developed for the

Screening of the viruses. Its probe is derived from the conserved sequences of several viral families (Wang et al.,

2002). Similarly Human Gut Chip (HuGChip) and Human Intestinal Tract chip (HITChip) have been designed for

the analysis of the gut microflora (Rajilić-Stojanović, Smidt, & De Vos, 2007; Tottey et al., 2013). Chip for

antibiotic-resistant gene screening has been designed that contains 8746 probes for the 9 major groups of resistant

genes. This chip has been used for characterization of the microflora and its association with the population of dif-

ferent age groups.

3. High-throughput sequencing-based screening

This allows large scale sequencing of the metagenomic DNA. This helps in functional profiling and community

structure analysis for the sample collected from a particular site. The sequencing can be performed by either directly

sequencing the metagenomic DNA or the clone collection obtained in the form of library. This helps in the discovery of

new genes from the environmental samples. But it does not give the functional perspective of the genome. Hence

function-based screening is performed to get functional insight of the metagenome.

The next-generation sequencing approach has revolutionized the analysis of the DNA obtained directly from the

environmental samples. Several sequencing platforms with recent technologies have been introduced that facilitate the

process. Advanced sequencing platforms used for sequence based screening of the metagenomic DNA library are listed

in Table 27.1.

Roche 454 genome sequencer is one of the earliest tools used for sequence based analysis of the metagenomic

library. It relies on sequence by synthesis methodology and the PPi released by the incorporation of the nucleotide is

TABLE 27.1 Advanced sequencing platforms used for sequence based screening of the metagenomic DNA library.

S. No Technique Read length Properties

1. Roche 454 genome
sequence

up to 1000�1200 bp highest cost per base and the lowest output

2. Illumina sequencing
(Solexa genome
analyzer)

Up to 300bp,
sequence 1 GB data in
single run

low cost per base and high yield, multiplexing

3. Applied biosystems
(AB) SOLiD sequencer

85 bp whole genome sequencing, targeted sequencing, transcriptome, and
epigenome analysis

4. Ion torrent sequencing B200bp sequencing quality is high and stable

5. Helicos biosciences
(HeliScope)

Upto 55bp /run
Median read length of
35nt.

Sequencing without amplification, small read length (24�70 bases)
and low data output (20 GB)

6. PacBio technology/
SMRT sequencer

1500bp-20kb fast sample preparation, no need for PCR amplification during the
preparation, longer-read length than any other next-generation
sequencing platform

7. Oxford Nanopore
technology

500bp-2.3 mb read long sequences at low-cost in real time
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detected. The sequencing takes place along with the amplification with the barcoding primers. Illumina sequencing is

the most widely used sequencing platform for metagenomic study. Each incorporated nucleotide generates a lumines-

cent signal which is recorded by the optical sensors.

In another sequencing strategy, applied biosystems (ABI) SOLiD sequencer. The sequence data is generated through

signal detection by ligation with interrogation probes. Another sequencing platform is the Ion torrents sequencing, in

which chemical sensors is used that detect the change in hydrogen ion concentration on incorporation of the nucleotide.

The sequencing speed is high and the cost is comparatively low as compared to previously mentioned sequencing techni-

ques (Liu et al., 2012). HeliScope platform allows sequencing without PCR amplification from single stranded DNA or

RNA samples (Harris, Buzby, & Babcock, 2008; Zhang, Chiodini, Badr, & Zhang, 2011). The fluorescently labeled bases

are attached at a time for sequencing along with the DNA polymerse. This generates a fluorescent signal which is detected

by the CCD camera. Single-molecule real-time or PacBio technology is a real time sequencing technology which does not

need PCR amplification. Zero-mode waveguide is used for observing the DNA synthesis in real time. It differs from other

sequencing platforms that it uses different colored fluorescent labels for each nucleotide and the label is present at the ter-

minal phosphate group of the nucleotide. Hence the signal is release by base incorporation (Flusberg et al., 2010). The

washing step between nucleotide is not required needed thereby the quality of sequencing is improved and it can read lon-

ger bases as compared to other next-generation sequencing platforms (Zhou et al., 2010). Oxford Nanopore Technology

devised by Nanopore sequencing is carried out by passing the DNA sequence through 1 nm diameter hole (nanopore)

where electric current is applied. The current generated varies for each nucleotide and the signal is generated in real time

(Hart et al., 2010). The MinION can read long sequences at low-cost in real time (Hayden, 2012). It is portable, pocket

size and so the sample can be directly sequences at the sampling site itself (Jain et al., 2015).

The result generated by different sequencing strategies is subjected to bioinformatics analysis. The sequencing data

can be used either to study the microbial diversity or the functional gene in the genome. 16S rRNA sequence strategy is

used for understanding the microbial diversity at molecular level. QIIME, MOTHUR, DADA2, UPARSE are commonly

used bioinformatics tools for analysis of 16S rRNA (Niu et al., 2018).

Few recent examples of analysis of the crop rhizospheric soil by sequence based metagenomics approach has been

reported. Cotton rhizosphere soils from Alwar district of Rajasthan was subjected to library preparation and subsequent

analysis (Singh, Johri, & Dua, 2020). Of the 185,231 assembled scaffolds 229,401 genes were predicted. These genes

had an average gene length of 351 bp. About 75% of the reads could be identified taxonomically. Among the 75% iden-

tified reads, Bacteria (70%) dominated the microbial diversity, while Eukaryota (2%) and Archaea (3%) formed very

small parts. Microbial communities analysis and its interaction with the plant crop in the rhizosphere of kodo millet

(Paspalum scrobiculatum) was performed though metagenomics (Prabha et al., 2019). Microbial analysis has revealed

that Actinobacteria and Proteobacteria were most abundant in the soil. The functional analysis has shown that the pro-

teins present in the rhizospheric microbe encoded genes are involves in several mechanisms. The actinobacteria was

shown to be mainly associated with the genes responsible for survival in the stressed and nutrient deprived conditions.

Thus the rhizosphere associated microbes are responsible for survival under harsh conditions. Next-generation sequenc-

ing has been performed to analyze the rhizosphere microbial community of maize plants and comparative study was

performed from plants grown in organic and inorganic manure (Enebe & Babalola, 2020). Proteobacteria and

Bacteroidetes were present in both the sets but with different proportions. They have concluded that microbial commu-

nity structure, relative abundance of each microbe and dynamics may help in the management of soil microbial commu-

nity for improved agroecosystem.

27.6.1.3.2 Screening-based on function

Function-based screening provides the specific enzymatic activity of the screened clones of the library. It can be per-

formed by four basic strategies as described by Felczykowska, Bloch, Nejman-Falenczyk, & Baranska, 2012.

1. Performing enzymatic assays for specific enzymes

2. Induced gene expression

3. Direct detection of enzyme activity through fluorescent catabolic products

4. Heterologous complementation

5. Substrate-induced gene expression screening (SIGEX) (Ko, Han, Cheong, Choi, & Song, 2013)

The main challenge for function-based screening is that the functional gene expression is governed by several fac-

tors such as the incomplete genes cloning, incompatible expression factors, differences in codon usage, difference in

protein folding pattern and lack of effective means to screen large number of clones, host incompatibly (Felczykowska

et al., 2012; Schoenfeld et al., 2010).
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27.7 Metagenomics for sustainable agriculture

Soil microorganism play an important role in nutrient cycling and protecting the plant from harmful abiotic and biotic

stresses (Ahmad et al., 2012, 2013; Hashem, Abd_Allah, Alqarawi, Radhakrishnan, & Kumar, 2017; Kumar et al.,

2010, 2013). Microbes play integral role in plant growth and functioning of ecosystems. For instance, Mycorrhizae,

lives in symbiotic partnerships between plant roots and specific soil fungi which is grow in close association with the

plant roots and even they can grow partially within the plant’s cells. Most plants are dependent on these mycorrhizal

associations to obtain nutrients and to defend themselves against disease-causing microbes. The complete overview of

the metagenomic analysis of the rhizospheric soil sample and its diverse applications in sustainable agriculture in pres-

ent in Fig. 27.4. Application of the microbe is sustainable agriculture in listed in Table 27.2.

The soil matrix is the most biodiverse ecosystem on earth as it harbors large number of microbes that interact with

plants (Vogel et al., 2009). The soil microbial diversity is directly linked to plant health. For instance, the soil microbes

may suppress plant diseases by preventing the plant pathogen from infecting plant tissues (Mendes et al., 2011; Weller,

Raaijmakers, Gardener, & Thomashow, 2002). It also restricts survival of exogenous organisms thereby maintaining the

microbial integrity in and environmental niche (Elias, Woyessa, & Muleta, 2016; van Elsas et al., 2012) It is also now

established that large number of the microbes present in the plant soil are not the cause of disease occurrence (Mendes,

Garbeva, & Raaijmakers, 2013). Plant associated microbes serve several important functions namely (1) phosphorus

solubilization and nitrogen fixation; (2) nutrient uptake; (3) Promote plant protection from biotic and abiotic stress

(Halmann, Quadt-Hallmann, Mahaffee, & Kloepper, 1997; Mendes et al., 2011; Mendes et al., 2013; Quecine et al.,

2014).

The conventional method of microbial study allows only cultivation of only 1% to 5% of the microbes by standard

cultivation (Amann, Ludwing, & Schleifer, 1995). Exploration of the plant microbiomes interaction may reveal the

whole set of microorganisms interacting with plants. This may also provide insight into numerous other functions that

microbes exert when interacting with the host plant. Some authors have also hypothesized that a coevolution process

FIGURE 27.4 Overview of the metagenomic analysis of the rhizospheric soil sample and its application in sustainable agriculture.
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TABLE 27.2 Application of soil rhizosphere microbiome in sustainable agriculture.

Uses Sl. No. Plants Soil microbiomes Function References

BIO
FERTILIZER

1 Alder (Alnus
glutinosa [L.]
Gaertn.).

Bacillus
licheniformis and
Bacillus pumilus

produce gibberellins that helps
in the promotion of plant growth

Guti_errez-Mañero
et al. (2001)

2 Peanut Pseudomonas
fluorescens,
Pseudomonas spp.

Produce siderophore, ammonia,
and indole aceticacid (IAA),
solubilize the tri-calcium
phosphate, ACC deaminase that
considerably increases the root
length of the seedlings of peanut.

Dey, Pal, Bhatt, and
Chauhan (2004)

3 barley, chickpea,
maize, and pea

Acinetobacter
rhizosphaerae

phosphate-solubilizing in plant,
producing auxin and
siderophore, ammonia, showing
the activity of ACC deaminase
activity

Gulati, Vyas, Rahi, and
Kasana (2009)

4 Wheat Bacillus
thuringiensis,
Enterobacter
asburiae, and
Serratia marcescens

producing IAA, HCN, ammonia,
and solubilizing phosphorus

Selvakumar, Kundu,
Gupta, Shouche, and
Gupta (2008)

5 Tomato Pseudomonas
aeruginosa

Production of IAA, siderophore,
solubilization of inorganic
phosphate with the activity of
with chitinase, urease, and b-
1�3-glucanase.

Kumar, Pandey, and
Maheshwari, (2009)

6 Rice Agromyces,
Bacillus,
Microbacterium,
Methylophaga, and
Paenibacillus

production of IAA, siderophore,
ammonia and ACC deaminase
activity

Bal, Das, Dangar, and
Adhya (2013)

BIO-
PESTICIDES

1 Potato, Pear,
apple and other
rosaceous plants

Pseudomonas
fluorescens, Erwinia
herbicola

Control the fire blight by
supressing the Phytophthora
infestans and Erwinia amylovara.

Kumari, jha, kumar,
and Rajanikant (2018)

2 Bean B. subtilis Control the bean rust by
resistance again Uromyces sp.

Kumari et al. (2018)

3 Cruiciferae S. griseoviridis Reducing the damping off of
crucifer by suppressing the agent
Agrobacterium brasicicola

Kumari et al. (2018)

4 Cotton P. fluorescens
Rhizoctonia solani

Prevent the growth of
Rhizoctotnia solani P. ultimum
and reduces the damping off of
cotton.

Kumari et al. (2018)

5 Mushroom P. fluorescens Prevent the Pythium ultimum
which cause the Brown blotch of
Mushrooms

Kumari et al. (2018)

6 Several crops
(tomato, cotton,
sugar beet,
grapes etc.)

A. radiobacter Control the bacterium
Agrobacterium tumefaciens
which causes crown gall.

Kumari et al. (2018)

7 Cotton,
chickpea, maize,
tomato,
groundnut etc.

Bacillus
thuringiensis

It produced a toxin that
specifically Kill the Heliothis and
other Lepidoptera and
Coleopteran.

Kumari et al. (2018)

(Continued )
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TABLE 27.2 (Continued)

Uses Sl. No. Plants Soil microbiomes Function References

8 Citrus fruits
plants

1. Hirsutella
thompsonii

2. Verticillium
lecanii

1. Controls the citrus rust mites.
2. control the Aphids, white,

Lies

Kumari et al. (2018)

9 Groundnut,
chickpea

Trichoderma viride Prevent the growth of fungus
Macrophomina phaseolina
which causes damping off,
seedling blight, collar rot etc.

Kumari et al. (2018)

10 Sisam T. viride Prevent the growth of F. solani
that causes wilt.

Kumari et al. (2018)

11 Rice, Cotton,
Cabbage

Nucleopoyhedrosis
virus

Suppressed the Rice borer,
cotton leaf worm, and cabbage
looper. It generally commercially
use in USA.

Kumari et al. (2018)

12 Potato,
rice

Granulosis
viruses (GV)

Prevent Codling
moth, tuber worm
rice borer

Kumari et al. (2018)

BIO
STIMULANTS

1 Broccoli Brevibacillus
reuszeri/Rhizobium
rubi

Promoting in the growth of the
root system, an increased yield
and an enhanced macro- and
micronutrients uptake.

Yildirim, Karlidag,
Turan, Dursun, and
Goktepe (2011)

2 Lettuce R. leguminosarum
bv.
phaseoli strain P31

Promoting in the growth of the
root system, an increased yield
and an enhanced macro- and
micronutrients uptake

Chabot, Antoun, and
Cescas (1996)

3 Fruit crop
(apricot, apple
cherry, banana)

Bacillus sp. increase the production, the
weight and the quality
parameters in the
aforementioned fruits

Esitken, Pirlak, Turan,
and Sahin (2006),
Kavino, Harish, Kumar,
Saravanakumar, and
Samiyappan (2010),
Ryu et al. (2011)

4 Apple Pseudomonas spp. Increases the yield Aslantas, Çakmakçi,
and Şahin (2007)

BIO
HERBICIDES

1 Tomato Pseudomonas
fluorescence

Promote the growth of plants Gamalero et al. (2005)

2 Wheat Azotobacter sp. Stimulate the plant growth by
nitrogen fixation.

Vessey (2003)

3 Grass Pseudomonas
fluorescens

Help in the production antifugal
substance that root inhibition in
weed

Kremer (2019).

4 Crops Phytophthora
citrophora

Help to control the growth of
Milk weed

Kumari et al. (2018).

5 Crops Colletrotrichum
gloecosproioides

Inhibit the Aeschynomene
verginica growth.

Kumari et al. (2018).

6 Crops Malameba locustae Control the Grass hoper,
Lepidoptera in crops.

Kumari et al. (2018).

BIOCONTROL
AGENTS

1 eggplant Pseudomonads Eggplant wilt caused by
Ralstonia solanacearum was
reduce.

Ramesh, Joshi, and
Ghanekar (2008)
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occurs between plants and its associated microbiome causing resilient genomic interdependency, leading to the “metaor-

ganism” concept (Bosch & McFall-Ngai, 2011).

Rhizosphere associated microbes of agriculturally important crops can augment plant growth and improve plant

nutrition through biological N2 fixation and other mechanisms (Yadav et al., 2017). Microbes are associated with

important functions such as increasing crop yields, removing of contaminants, inhibiting pathogens, and production of

new substances (Quadt-Hallmann, Kloepper, & Benhamou, 1997). The growth stimulation by microbes can be a conse-

quence of biological N2-fixation (de Bruijn, Stoltzfus, So, Malarvithi, & Ladha, 1997; Iniguez, Dong, & Triplett, 2004;

Pankievicz et al., 2015; Suman et al., 2001; Taulé et al., 2012); production of phytohormones, such as indole-3-acetic

acid (IAA)and cytokinins (Lin & Xu, 2013; Rashid, Charles, & Glick, 2012; ); biocontrol of phytopathogens through

the production of antifungal or antibacterial agents (Errakhi, Bouteau, Barakate, & Lebrihi, 2016; Raaijmakers, Vlami,

& De Souza, 2002); siderophores production (Ellis, 2017; Leong, 1986); nutrient competition (Bach, dos Santos Seger,

de Carvalho Fernandes, Lisboa, & Passaglia, 2016); and induction of acquired host resistance (Van Loon, Bakker, &

Pieterse, 1998), enhancing the bioavailability of minerals (Haas & Défago, 2005). The microbial plant growth promo-

ters have been useful alternative to the conventional agricultural technologies (Kaur, Sharma, Chhabra, Chand, &

Mangat, 2017) Yadav et al., 2017). They influence the plant growth directly or indirectly. The PGP microbes promote

direct growth of plant by facilitating the uptake of certain nutrients from the environment. Indirectly the PGP microbes

decrease or prevent the damaging effects of phytopathogenic organisms. The interactions of plants and microbes in the

rhizosphere influence soil fertility and plant health.

The rhizospheric microbiomes may play promising role in stimulating the plant growth under the normal and abiotic

stress conditions and has prospective to replace the harmful agrochemicals in the future (Yadav, 2020; Kour et al.,

2020). Many plant growth-promoting microbes have been reported from stressed environmental conditions.

Pseudomonas sp. and Enterobacter sp. (Sandhya et al., 2010), Bacillus sp., and Paenibacillus sp. (Vardharajula,

Zulfikar Ali, Grover, Reddy, & Bandi, 2011) have been isolated from drought stress conditions. Enterobacter sp.

(Sarkar et al., 2018), Arthrobacter sp., Bacillus sp., and Pseudomonas sp. (Upadhyay, Singh, & Saikia, 2009) from

salinity stress. Bacillus sp., Methylobacterium sp., and Pseudomonas sp. (Verma et al., 2015) have been obtained from

low-temperature stress conditions. The rhizospheric microbiomes assist the plant in uptake of the essential nutrients

from the soil which cannot be easily taken up by the roots of the plant. These nutrients include phosphorus, potassium,

zinc, and manganese.

Organic farming is one of the examples of the use of natural microflora. These soil microbes constitute of all

kinds of useful bacteria and fungi including the arbuscular mycorrhiza fungi called plant-growth-promoting rhizobac-

teria (PGPR). A key advantage of beneficial microorganisms is to assimilate phosphorus for their own requirement,

which in turn is available as its soluble form in sufficient quantities in soil. The microorganisms Bacillus,

Pseudomonas, Micrococcus, Flavobacterium, Fusarium, Sclerotium, Aspergillus, and Penicillium have been reported

which are active in the solubilization process. Many tools of modern science have been broadly connected for crop

improvement under stress, of which PGPRs role as bioprotectants has turned out to be significantly useful (Yang,

Kloepper, & Ryu, 2009).

Microbes assist in fixing atmospheric nitrogen for the plants and producing plant growth regulators including auxins,

cytokinins, and gibberellins. These microbes also protect the plants from phytopathogens through siderophores which

are low-molecular weight iron-chelating compounds. The plant growth-promoting microbes also help the plants to over-

come abiotic and biotic stress conditions.

In a recent study, nematicidal microbes have been studies that act on the Root-knot (Niu, Paulson, Zheng, & Kolter,

2017) nematode Meloidogyne incognita which adversely affect the crop productivity (Zhao et al., 2021). The microbes

associated with soil were deciphered through sequence based metagenomics by Illumina HiSeq platform. These

microbes produced enzymes, proteases, chitinase, and lipases which act on the nematode causing its death.

27.8 Concluding remarks

With the diverse application of the rhizospheric microbes, the microbes serve as promising tool in sustainable agricul-

ture. These rhizospheric microbes are highly beneficial for plant productivity due to synergistic interaction between the

plants and the corresponding microbes. Many research groups are engaged in the analysis of microbial consortia present

in the rhizosphere of specific crops. The current agriculture practices should be focused on adopting sustainable prac-

tices. It should be focused towards conserving the environment, reducing global warming and meeting the global food

demands. The Food and Agriculture Organization of the United Nations estimated that the global food production needs

to be increased by about 70% by 2050, so as to feed the projected world population of about 10 billion. The current
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challenge is exploiting the sustainable path to produce more food in an environment friendly. That can cater the basic

need of all on the planet.
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28.1 Introduction—a conceptual framework for sustainable agriculture

Over the last few years, “sustainable agriculture” has become one of the key concepts underpinning global policy for

agricultural development and food security. Defined by the Food and Agriculture Organization of the United Nations as

“agriculture that meets the needs of present and future generations, while ensuring profitability, environmental health

and social and economic equity” (FAO, 2022), this concept recognizes that current agricultural practices rely on the

consumption of finite resources and production of damaging waste more rapidly than the global ecosystem can regener-

ate them. Accordingly, on the formal adoption by the world leaders of the UN Sustainable Development Goals in

September 2015, promoting sustainable agriculture was included as a vital pillar of SDG 2 (Zero Hunger).

Measuring and achieving sustainability in agriculture is far from simple. Positive actions to protect genetic diversity,

reduced and more efficient use of natural resources and agrochemicals, minimization and valorization of waste pro-

ducts, and the restructuring of trade and distribution networks for agricultural products are all essential. One major para-

digm shift toward sustainability is a move away from elite cultivars of crops, which provide maximized yields at the

expense of high agricultural inputs and limited genetic diversity, toward diverse locally adapted crops that are able to

flourish and provide reliable yields with fewer inputs and suboptimal environmental conditions (Shelef, Weisberg, &

Provenza, 2017). However, the performance of such varieties depends on a complex interplay of genotype, phenotype,

and environmental interactions (Fig. 28.1).

It is in this complexity that bioinformatics is increasingly important for agricultural science. In the genotype sphere,

rapid technological developments in high-throughput DNA sequencing and genotyping methods mean that the amount

of genetic data available for crop species is growing exponentially (Scheben, Batley, & Edwards, 2018). Phenotyping

for many traits remains time-consuming and labor-intensive, but techniques utilizing autonomous vehicles or scanning

platforms, spectroscopy at multiple bandwidths, and high-resolution imaging are also starting to be deployed in the field

(Shakoor, Lee, & Mockler, 2017). Finally, in the environment sphere, weather stations collect continuous climatic data

and remote sensors operating from aerial vehicles and satellites can assess soil and field conditions down to square

meter resolution (Shafi et al., 2019). All of these emerging technologies generate enormous datasets; mining these data

for functionally significant features and elucidating the relationships between them are the major challenges facing agri-

cultural bioinformaticians.

In this chapter, we focus primarily on the bioinformatic tools and resources currently available for exploiting genetic

data from crop and livestock species, and the gaps that must be filled in order to convert these resources into improve-

ments in agricultural sustainability.

28.2 Database resources for agricultural bioinformatics

The proliferation of nucleotide sequences and related biological data produced by high-throughput sequencing and other

“omics” platforms in recent years has also led to a proliferation of biological databases. These databases collect data

from diverse research studies in a consistent format and typically include integrated software tools designed for the

455
Bioinformatics in Agriculture. DOI: https://doi.org/10.1016/B978-0-323-89778-5.00012-X

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-323-89778-5.00012-X


storage of biological information and to update the records stored in the system. However, no single database can cur-

rently integrate all of the different kinds of “big data” that are relevant to agriculture. There is also a fairly rapid turn-

over of more specialized databases that are funded as part of a specific research program but may not be maintained

beyond the end of the initial grant. In these circumstances, finding the most recent data and software tools to address a

particular scientific question can be a bewildering challenge.

In Table 28.1, we present a nonexhaustive list of current databases that are actively updated, cover multiple crop

species, and provide access to data that is useful to bioinformaticians. For example, the first port of call for nearly any

scientist exploring genetic data are the members of the International Nucleotide Sequence Database Collaboration, or

INSDC: NCBI-GenBank, EMBL-EBI, and DDBJ. The first two of these databases were initiated in 1982, and since

1987 all three databases have been committed to ensuring that publically available nucleotide sequence data is pre-

served and made accessible to users across the world (Arita, Karsch-mizrachi, & Cochrane, 2020). In particular, open

scientific data policies most recently codified in the FAIR (Wilkinson et al., 2016) (Findable, Accessible, Interoperable

and Renewable) principles require that as a minimum, raw sequence data from newly published studies are available in

the INSDC sequence archives, and in many cases assembled and annotated data are also deposited. Each of these data-

bases mirrors the same data collection, but each also include supercomputer infrastructure and unique tools allowing

users to interact with the data in different ways.

One of the main goals of bioinformatics is to understand the relationship between the sequences of nucleotides or

amino acids, the three-dimensional structures they form, and the molecular functions of these structures. Unfortunately,

the relationship between sequence and structure is not trivial, so most known protein structures have been resolved

empirically or by modeling based on a known structure with a related sequence. The single comprehensive repository

of protein, nucleic acid, and complex 3D structures is the worldwide Protein Data Bank (wwPDB), which is celebrating

its 50th anniversary in 2021 and now contains .170,000 entries (Berman, Henrick, & Nakamura, 2003).

These global databases are an essential resource for any study aiming to mine and reevaluate existing datasets.

However, the resources required to store such a huge amount of data (Genbank exceeded 9 Petabytes5 9 million GB in

2020) and their breadth of scope (covering sequences from all forms of life) means that these databases do not incorpo-

rate some types of analysis that are particularly valuable for crop genomics. For example, homology and colinearity of

genes between related species is common throughout the plant kingdom and an extremely powerful tool for inferring

the function and evolutionary history of genes in nonmodel crops, for which experimental data may be limited (Tello-

Ruiz et al., 2018). Several comparative genomics databases (Gramene, Ensembl-Plants, Phytozome, and PLAZA) exist

to address this need, with slightly different datasets and emphases. Each of these databases contain fully annotated and

curated genomes representing diverse plant species, which can be of considerable value in identifying orthologous

genes and identifying species-specific mutations.

In many cases, the newest genome assemblies and annotations for a given crop are not found in the completely pub-

lically accessible databases mentioned earlier, because they are covered by a limited early release agreement (which

FIGURE 28.1 Genotype, environment and phenotype are all inter-related in developing sustainable agricultural practices; modern technologies gen-

erate huge datasets analyzing all three areas, which need to be interpreted by bioinformatics.
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TABLE 28.1 Summary of current online database resources for crop-related functional genetics.

DB name Current version/date Contents URL and references

Global genetics databases

INSDC
databases:
DDBJEMBL-
EBINCBI

SRA/ENA:updated
dailyGenBank: release 248,
February 2022 (update each 2
months)

The three partner databases in the International
Nucleotide Sequence Database Consortium are
the global repository for nucleotide sequencing
data from all species (Sequence Read Archive/
European Nucleotide Archive). Project metadata
(BioProject and BioSample) and raw sequence
data are mirrored between all three databases.
These databases also give access to the largest
worldwide repository of annotated DNA
sequences (GenBank).

https://www.ddbj.nig.ac.
jp/index-e.html
https://www.ebi.ac.uk/ena/
browser/
https://www.ncbi.nlm.nih.
gov/genbank/
Arita et al. (2020)

wwPDB Updated weekly Worldwide Protein Data Bank. Core archive of
3D structures from proteins, nucleotides, and
complexes relevant to all aspects of biomedicine
and agriculture.

http://www.wwpdb.org
Berman et al. (2003)

Comparative genomics databases

Gramene Release 64, October 2021 Curated open-source integrated database of fully
annotated genes and genomes from 93 plant
species. Incorporates the Plant Reactome pathway
database.

http://www.gramene.org/
Tello-Ruiz et al. (2018)

Ensembl-
Plants

Release 49, December 2020 Provides access, search, and comparison tools for
a range of data types anchored to annotated
reference genomes from 90 plant species.

https://plants.ensembl.org/
index.html Howe et al.
(2020)

Phytozome v13 Provides data access and search tools for mining
93 annotated genomes representing 82 plant
species. Through sequence comparison families of
related genes representing the modern
descendants of ancestral genes are constructed at
key phylogenetic nodes.

https://phytozome.jgi.doe.
gov/pz/portal.html
Goodstein et al. (2012)

PLAZA v5.0, 2021 Comparative genomic database integrating and
annotating sequence data from 39 different plant
genomes, and evolutionary relationships between
them.

https://bioinformatics.psb.
ugent.be/plaza/ Van Bel
et al. (2018)

Taxon-specific databases

CGD 2019 Citrus Genome Database. Access to 11 citrus
genomes, along with details of genes, markers,
quantitative trait loci (QTLs), and genetic maps
from 67 species.

https://www.
citrusgenomedb.org/

CuGenDB December 2019 Cucurbit Genomics Database. Provides tools for
browsing 16 genomes from 10 species, and
comparison between genomes and with RNA-seq
datasets.

http://cucurbitgenomics.
org/ Zheng et al. (2019)

GDR 2019 Genome Database for Rosaceae. Includes
genome, genotype, phenotype, and molecular
marker data for 10 Rosaceae crop species and
wild relatives.

https://www.rosaceae.org/
Jung et al. (2019)

GrainGenes 2020 Gives access to genome data, expressed sequence
tag, germplasm, marker, and QTL information for
wheat, barley, rye, and oat.

https://wheat.pw.usda.gov/
GG3/ Blake et al. (2019)
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typically allows users to carry out studies based on individual genes but not genome-wide analyses) and/or their annota-

tion is still being finalized. In addition, many other types of nongenomic data are extremely important in crop research,

including genetic maps, quantitative trait loci (QTLs), molecular marker data, and population genetic studies. These

types of data are most likely to be found in taxon-specific databases that have been established to serve the specific

needs of researchers working on a particular class of plants, such as cereals, legumes, or forest trees (Table 28.1).

Similar resources have also been developed focusing on specific research initiatives rather than taxons, such as the

URGI platform that supports the diverse projects of INRAE in France (https://urgi.versailles.inra.fr/). Studies targeting

crop genetic improvement should not overlook these databases, to ensure that they take into account the most current

genome annotations and functional data.

TABLE 28.1 (Continued)

DB name Current version/date Contents URL and references

HWG 2020 Hardwood Genomics Project—Open-source
database for genome, transcriptome, and
molecular marker data for forest trees, including
several crop species.

https://www.
hardwoodgenomics.org/
Kremer et al. (2012)

LegumeIP V3, 2020 Genome data from 22 species, RNA-seq data, and
tools for comparative and translational genomics.

http://plantgrn.noble.org/
LegumeIP/gdp/ Li, Dai,
Zhuang, and Zhao (2016)

Biological function-focused databases

plaBiPD
(successor of
GabiPD)

July 2019 Provides searchable and browseable access to
seven crop genomes as well as Arabidopsis
thaliana. Also access to the MapMan/Mercator
plant functional annotation tools, and a list of all
published plant genome sequences.

https://plabipd.de/index.ep
Usadel, Schwacke, Nagel,
and Kersten (2012)

PRGdb 3.0, 2017 Open resource for confirmed and predicted
Pathogen Receptor Genes (PRG), currently with
representatives from 268 plant species.

http://prgdb.org/prgdb/
Osuna-Cruz et al. (2018)

PlantsDB
(PGSB-
PlantsDB)

Database of 12 plant genomes and browsing
tools, along with specific databases of drought
stress genes (DroughtDB) and plant repetitive
elements (PGSB-REdat).

http://pgsb.helmholtz-
muenchen.de/plant/
plantsdb.jsp Spannagl
et al. (2016)

PceRBase 2018 Contains ncRNA sequence data from 28 plant
species and predicts competing endogenous RNA
(ceRNAs) that act as decoys preventing sRNA-
mediated gene regulation.

http://bis.zju.edu.cn/
pcernadb/index.jsp Yuan
et al. (2017)

PLaMoM Curated, searchable database of Plant Mobile
Macromolecules, including mRNAs, small RNAs,
and proteins, known to be transported between
plant cells.

http://www.byanbioinfo.
org/plamom/ Guan et al.
(2017)

Plant DNA
C-values
database

Release 7.1, April 2019 Manually curated database of nuclear DNA
content, currently covering 12,273 plant species,
ranging from algae to higher plants.

https://cvalues.science.
kew.org/ Pellicer and
Leitch (2020)

PlantPAN V 3.0, 2019 Plant Promoter Analysis Navigator contains
transcription factor-binding site information for
seven model and crop plant genomes, and tools
for scanning user-defined promoters.

http://plantpan.itps.ncku.
edu.tw/index.html Chow
et al. (2019)

Plant rDNA
database

Release 3.0, March 2017 Compiles data concerning the number, position,
and structure of ribosomal DNA genes from 2148
plant species, and also telomere sequences where
available.

https://www.
plantrdnadatabase.com/
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A final category of databases is those focused on a specific biological function across plant species. Many of these

address traits that are of particular interest for sustainable agriculture, such as the Pathogen Receptor Genes detailed in

PRGdb (Osuna-Cruz et al., 2018), and the drought-stress-responsive genes reported in PlantsDB (Spannagl et al., 2016).

Others provide insight into cutting-edge areas of plant biological research for which the practical applications are not

yet known, but that may provide crucial future improvements in sustainable crop production, such as the intracellular

movement of macromolecules (Guan et al., 2017) and the activity of competing endogenous RNAs (Yuan et al., 2017).

In summary, an enormous amount and variety of genomic data is already available for crop bioinformatics, and

much of it has not yet been analyzed from the perspective of improving sustainability. Appropriate utilization of these

resources should be a priority for future studies. However, in order to employ these data effectively, we also need to

consider the ways in which loci from individual crop genome sequences are related to field crop populations, by means

of molecular markers and genetic maps.

28.3 Genome mapping

Genetic maps comprised a linear ordering of molecular or morphological markers along “linkage groups.” The alleles

found within a linkage group change depending on frequencies of crossover or recombination during meiosis (Meksem

& Kahl, 2005). As this frequency varies along chromosomes, the genetic map is not proportional to the physical loca-

tion of genes or their separation in base pairs. Instead, genetic mapping is a statistical method that uses Mendelian prin-

ciples of segregation and recombination to correlate genes’ localizations and functions. The “map unit” is the

centiMorgan (cM); 1 cM corresponds to a 1% probability of recombination occurring between two genetic loci within a

linkage group (Schneider, 2005). An ideal genetic map includes as many linkage groups as the haploid chromosome

number of a species. In addition, it is desirable that there is no gap larger than 20 cM between pairs of markers

(de Vienne, 2002). “High-resolution” genetic maps may be generated by screening a large number of genetic markers,

to further reduce the gap sizes.

The first genetic mapping was carried out by Morgan and Sturtevant in 1911 on the gender character of a F2 fruit

fly population based on fragmentation and recombination (Semagn, Bjørnstad, & Ndjiondjop, 2006). There are three

basic principles underlying genetic mapping: (1) recombination is a random process, so the further apart two loci are,

the more often it occurs between them; (2) as a result, neighboring genes on the chromosome are almost always inher-

ited together; (3) therefore if two phenotypic or genetic markers are always coinherited in new generations, their genes

are located close to each other. As genetic distance is a statistical value, a population of related individuals is required

to produce the genetic map. Creating a genetic map requires selection of the most suitable mapping population, DNA

isolation, an appropriate method of screening and scoring a specific set of markers in each isolated DNA sample, and

statistical analysis of the results (Boopathi, 2013).

28.3.1 Molecular marker systems and populations used for genetic mapping

The degree of distinction between the parents of a population to be studied is a primary consideration in genetic map-

ping. To be “informative” in a given population, a genetic marker must be “polymorphic,” revealing different types

(alleles) in their respective parents. Genetic markers are based on differences in DNA, being the inherited molecule; the

genetic code has been revealed and can be interrogated using a variety of molecular tools that act on specific DNA

sequences (e.g., restriction enzymes and polymerases). Molecular markers are used widely in agricultural genetics and

are foundational for modern plant and animal systematics, breeding, and evaluation of gene resources. A large number

of DNA marker types have been developed as molecular markers for use in genetic mapping studies. The first DNA

markers used in agriculture relied on digestion of DNA with restriction enzymes followed by hybridization of the frag-

ments to a radioactive probe to detect “restriction fragment length polymorphisms (RFLP)” (Botstein, White, Skolnick,

& Davis, 1980). Genetic maps using RFLP molecular markers were created by Helentjaris, Slocum, Wright, Schaefer,

and Nienhuis (1986) initially in maize and tomato plants, followed by similar studies in many other crops.

Compared to hybridization, the speed and convenience of the polymerase chain reaction (PCR) technique developed

in the late 1980s led to a proliferation of amplification-based marker types. Many of these use primer sequences that

appear at many sites in a genome, giving multiple potential polymorphic fragments from a single reaction, such as

AFLP (amplified fragment length polymorphism) (Vos et al., 1995), RAPD (random amplified polymorphic DNA)

(Michelmore, Paran, & Kesseli, 1991), SSR (simple sequence repeat) (Akkaya, Bhagwat, & Cregan, 1992), ISSR (inter

simple sequence repeat) (Zietkiewicz, Rafalski, & Labuda, 1994), and SRAP (sequence related amplified polymor-

phism) (Li & Quiros, 2001). Others use nucleotide sequencing data to amplify a specific genetic locus, such as STS
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(sequence tagged site) (Olson, Hood, Cantor, & Botstein, 1989), EST (expressed sequence tag), and SCAR (sequence

characterize amplified region) (Paran & Michelmore, 1993). Still others combine known sequences with one of the

more promiscuous methods mentioned above to obtain the advantages of both, such as CAPS (cleaved amplified poly-

morphic sequence) (Konieczny & Ausubel, 1993), EST-SSR (Cordeiro, Casu, McIntyre, Manners, & Henry, 2001), and

TRAP (target region amplified polymorphism) (Hu & Vick, 2003). Since the development of high-throughput sequenc-

ing platforms, there has been a shift toward single-nucleotide polymorphism (SNP) markers, as these are ubiquitous and

frequent (at least 1 per kbp in most genomes). The most common of these marker types are described in more detail in

Section 28.4.1.

Population selection and development is also crucial for successful genetic mapping. Most mapping populations start

from a single cross between two parents; in order to be informative, these should differ from each other as much as possi-

ble in the trait or traits of interest. From this initial cross, many different kinds of progeny lines, such as F1, F2, RIL

(recombinant inbred lines), BC (backcross), DH (double haploids), and more can be developed (Meksem & Kahl, 2005).

The choice of population structure is generally a trade-off between increasing map resolution—as each generation of prog-

eny allows more recombination events to take place—and the time and expense necessary to produce the lines.

F1 population: The F1 population is the immediate progeny of crossing two suitable parents. As a result, F1 hybrids

should be heterozygous at all loci where the parents differ, assuming that the parental lines were homozygous. For this

reason, and the limited number of recombination events produced in a single generation, they are not used for mapping

in most crops. However, in species for which homozygous parental lines cannot be generated from a species due to

self-incompatibility, inbreeding depression, or prohibitively long generation time (such as some tree crops), heterozy-

gous parental plants are used to derive F1 mapping populations (Zhigunov et al., 2017).

F2 population: F2 plants are the simplest form of segregating population, produced by selfing or crossing the F1
hybrids. Loci that were heterozygous (AB) in both F1 parents segregate in their F2 progeny as AA:AB:BB in the ratio

1:2:1. The increase in the number both of homozygous loci and recombination events make F2 populations more power-

ful than F1 for genetic mapping. However, F2 lines cannot be maintained indefinitely; their heterozygous loci segregate

further in their offspring, meaning that inbred F3 progeny from the same F2 line are not genetically identical to each

other. F2 populations are often the most practical choice for genetic mapping in livestock (Falker-Gieske et al., 2019).

RILs: These lines are formed by inbreeding of selected F2 individuals through multiple generations (down to F6�F9)

using only one seed from each line to continue it in the next generation (single seed descent). Each successive inbred

generation increases the proportion of homozygous loci, reaching .99% homozygosity by the F9 generation. Therefore

a population of RILs includes all the genetic variation present in the F2 population, but as stable lines that will remain

more or less genetically fixed as long as they are inbred. Another advantage of RILs is that additional recombination

events at each generation increase their resolution for linkage analysis. Therefore RILs are the preferred genetic map-

ping population in most inbreeding crop species, with the disadvantage that it can take 3�4 years to produce the lines

(Barh, Khan, & Davies, 2015).

BC: Where the aim is to eliminate many of the negative characteristics of one parent in favor of the other (e.g.,

introgressing a disease resistance gene from a nondomesticated relative into an elite crop variety), it is common to

“backcross” F1 hybrids with the preferred parental line, instead of self or intercrossing within the F1 generation. The

resulting BC1F1 population may either be selfed to generate RILs as above, or repeatedly backcrossed to the same par-

ent to produce BC inbred lines (BILs). Alternatively, a RIL line carrying a desirable trait locus may be backcrossed in

the same way, using genetic markers to select progeny that includes the trait locus. This produces near isogenic lines

(NILs) that are useful for fine-mapping of a specific locus, with a largely constant genetic background (Kooke,

Wijnker, & Keurentjes, 2012).

DH: Doubled haploids are generated by rescue of haploid gametes from seeds, followed by chemically induced

chromosome doubling. As the two chromosomes are identical, this can produce stable, 100% homozygous lines from

F1 hybrids in a single generation, rapidly creating a permanent resource for mapping (Meksem & Kahl, 2005).

However, not all crop species or even varieties of the same species are amenable to the tissue culture needed to produce

DH populations.

Exotic populations: while biparental populations are the backbone of genetic mapping and breeding in crops, they

only include the genetic diversity contained in the two parental lines. Therefore the resulting genetic maps give poor

resolution in regions where there is limited recombination between the parents, and may not be relevant to varieties that

are not closely related to either parent. Therefore in the last decade more complex populations have been developed for

some crops using a larger number of parents, such as MAGIC (multiparent advanced intercross) and NAM (nested asso-

ciation mapping) (Scott et al., 2020). Developing these populations requires considerable investment, but they show

promise for mapping complex multigene traits such as abiotic stress resistance.
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The choice of mapping population also depends on the marker system used. “Dominant” markers (such as the indi-

vidual bands produced by RAPD primers) only show whether an allele is present or absent, so they cannot distinguish

between homozygous and heterozygous loci. “Codominant” markers are usually preferred, as they give a different sig-

nal for each parental allele, both of which are observed in heterozygotes. However, in highly homozygous lines such as

RILs and DH, dominant markers are equally informative (Ferreira, da Silva, da Costa e Silva, & Cruz, 2006).

After determining marker polymorphisms in the chosen population, the final stage of genetic mapping is linkage

analysis. This is a complex statistical process that requires knowledge of the population structure and understanding of

the biology directing genetic recombination (Semagn et al., 2006), in order to calculate recombination rates and map

distances. Therefore although software tools already exist for calculating genetic maps from marker data (Cheema &

Dicks, 2009), there is still a need for bioinformaticians to develop improved models, especially for more complex popu-

lation structures (Meksem & Kahl, 2005).

28.3.2 Genetic mapping, physical mapping, and genome sequencing

The arrangement of genes and DNA markers on a chromosome is demonstrated by both genetic and physical maps.

While recombination frequencies determine the distances between locations on genetic map, physical maps depend on

measurements of the amount of DNA between loci to determine their proximity. For example, methods such as radia-

tion, enzymes, or shear forces are used to break DNA molecules randomly into large fragments, which can be preserved

as bacterial or yeast artificial chromosomes (BACs5 100�350 kb, YACs5 100 kb�2 Mb). These are then screened to

determine which DNA markers co-occur on the same chromosome fragments, while overlapping fragments are com-

pared to determine the marker order. Cytogenetic mapping is another type of physical map that provides direct visuali-

zation of DNA landmarks on microscopic chromosomes, calculating the distance between them. Optical mapping

increases the resolution of this approach, using microscopic observation of specific labeled sequence motifs on linear-

ized DNA fragments (Levy-Sakin & Ebenstein, 2013). Physical mapping is less subject to variation between different

genomic regions, populations, or environments than genetic mapping and typically provides a higher resolution

(Paterson, 2009); however, the molecular techniques involved require specialist equipment and expertise.

The physical map at its highest resolution is a complete genome sequence. Therefore, with the reducing costs of

high-throughput sequencing, in some cases genome sequencing can remove the need for a physical map. However, in

practice both physical and genetic maps are still a valuable resource for understanding the organization of the genome,

as they provide long-range information about genome organization and structure over greater distances than sequencing

reads. Physical and genetic maps can unravel the complexity of highly repetitive or polyploid genomes that are

intractable to sequence assembly, while high-resolution maps provide the scaffold on which contiguous sequences (con-

tigs) are ordered to produce a whole chromosome sequence (O’Rourke, 2014). Maps act as a bridge between breeding

and genome research for map-based cloning and marker-assisted selection (MAS). For example, genome sequences are

an excellent resource for defining new candidate molecular markers to improve mapping resolution and identifying can-

didate genes within a trait locus. On the other hand, comparison of the location and order of markers between different

maps can provide important insights into genome structural rearrangements and evolutionary relationships of even dis-

tant individuals. Furthermore, genetic mapping directly tests the transition of genes from parent to progeny, a core

aspect of crop improvement (Yu & Main, 2015).

In summary, although genome sequencing is greatly increasing our knowledge of the genetics of a broad variety of

species, the complementary information provided by genetic and physical maps remains invaluable for cloning candi-

date genes and developing molecular breeding systems (Varshney et al., 2014). Therefore effective bioinformatic tools

are essential for integrating these different kinds of data.

28.3.3 Comparative mapping

One way in which computational methods have been applied to agriculture is in comparative mapping, using map

details from one species (either genetic or physical, including DNA sequence) to deduce possible gene structure in

another species. This method uses specific knowledge, such as the entirely sequenced gene of a model plant species, to

deduce the possible gene structure in the genome of an “orphan crop” for which DNA-level knowledge is missing

(Paterson, 2009).

The development of DNA markers not only allowed the rapid generation of comprehensive genetic maps of agricul-

tural species but also made interspecies comparisons possible. When conserved molecular markers are mapped across

related species, it is possible to align the chromosomes of those species to create comparative linkage maps. In this
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way, genomic similarities between species are revealed so that genetic information about one species may be extended

to others and evolutionary inferences can be drawn (Boopathi & Boopathi, 2013). Since a comparatively limited number

of chromosomal breaks occurred during the radiation of mammals and of many crop families, gene order is typically

maintained between similar species over large chromosomal segments. DNA sequence homology can detect orthologous

genes, and sets of these genes that share a common linear order (synteny) in two or more organisms are used to classify

preserved genome segments and ancient chromosomal breakpoints. As mapping and sequencing efforts advance, the

detection of smaller homologous chromosome segments is becoming possible, and comprehensive comparative maps

are being established between numerous species. There are now fairly complex gene-based comparative maps between

the genomes of humans, mouse, and rats and also among many mammalian species of agricultural significance (White

& Matise, 2001). Comparative genetic mapping experiments in plants have also been performed on less characterized

members of the Solanaceae, Poaceae, and Brassicaceae families, among others (Schmidt, 2000).

28.3.4 Practical applications of genetic mapping

Knowledge of plant and animal genetic maps has contributed to the production of agricultural crops and animals that

are more nutritious, more sustainable, and more tolerant to drought, pests, and diseases. In the field of plant and animal

breeding, genetic mapping is still the most valuable approach to identifying the genetic factors that underlie particularly

quantitatively inherited traits (Meksem & Kahl, 2005).

Genetic maps are created to reveal how genes are arranged in chromosomes and can provide information about the

chromosome structure and gene evolution of species. However, their most important application is in selection and identi-

fication of genes conferring stress resistance or other important traits such as seed quality and productivity, which can

then be used in breeding through MAS. Labeling genes whose phenotypic characteristics are strongly linked to a molecu-

lar marker allows the producer to make indirect selection among seedlings by DNA screening, to check whether the

marker is present. Although the cost per plant of DNA marker screening is usually higher than making phenotypic obser-

vations, if the phenotype is only expressed in later stages of the plant life cycle or under specific stress conditions, marker

screening may save a lot of time and expense compared to traditional methods, making locus discovery and marker geno-

typing economical (Schneider, 2005). Therefore MAS based on genetic linkage maps shortens the generation time for

breeders, thereby providing the opportunity to accelerate genetic quality improvement for producers. MAS enables the col-

lection of genes in a single individual that provide resistance to diverse diseases and pests, high yield, and quality and

facilitates the transfer of these genes to other individuals based on their associated markers, thus improved plants with

resistance to adverse conditions can be obtained (Hayward, Tollenaere, Dalton-Morgan, & Batley, 2015).

MAS is also indispensable for breeding sustainable crops in countries with limited facilities and resources, because

this technique allows selection without the need for large-scale field or greenhouse tests (Fang, Zhu, Wang, &

Shangguan, 2016). Thus in a central laboratory, breeders can carry out breeding studies using the same technology for a

wide variety of plants and characters. Molecular marker-supported breeding techniques have been widely used in crop

breeding and developing many new crop cultivars and lines. For example, Jena and Mackill (2008) and Shi et al.

(2009) implemented marker-assisted breeding strategies to simultaneously select for excellent crop quality characteris-

tics along with rice blast resistance in rice, and tolerance to mosaic virus in soybean.

The first goal of genetic mapping is to develop molecular markers tightly linked to the trait of interest, and, second,

the long-term goal is to clone genes that control traits based on these maps (Roose, 2007). Map-based cloning is a tech-

nology that is based on DNA markers and genetic relationships. It uses the linkage between target genes and molecular

markers by scanning a genomic library (e.g., a BAC library) for the markers, allowing the cloning of the large frag-

ments containing the target gene. Map-based cloning methods have been successfully used in the isolation and cloning

of excellent agricultural genes for growth, development, and resistance in many species. For instance, salt stress and

insect resistance genes in rice were successfully cloned by Tamura et al. (2014), while the main enzymes in the terpe-

noid metabolic pathway in maize were cloned by Lu et al. (2012). For crops where a high-quality genome sequence is

available, it is possible to accelerate map-based cloning, by identifying candidate genes located close to molecular mar-

kers in silico prior to functional validation in planta.

28.4 DNA marker development and application to genotyping

The production and application of informative genetic maps described in the previous section relies on the ability to

develop polymorphic DNA markers as efficiently as possible. The genome resources mentioned in Section 28.2 provide

an opportunity for researchers to rapidly identify sequence polymorphisms within a crop population using
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bioinformatics, provided that they have access to both a reference genome and sequencing data from individuals

belonging to the population of interest. For less studied crops, markers that do not require prior knowledge of the

genome sequence may be preferable. In this section, we consider the relative advantages and disadvantages of each

marker type from this perspective, followed by the genotyping technologies that are used to screen these markers.

Finally, we give a case study of marker development to map a multigene trait in a complex genome.

28.4.1 DNA marker types, their advantages and disadvantages

28.4.1.1 Restriction fragment length polymorphism

RFLP genotyping technology was initially applied in human genetic research to create a human marker map in the

1970s (Botstein et al., 1980) and later adopted in plant breeding programs (Beckmann & Soller, 1986). It is based on

the genetic variability between germplasm lines at specific restriction endonuclease sites, which results in different

length fragments when genomic DNA is cleaved with these enzymes. Length variations were visualized by separation

of the DNA fragments by gel electrophoresis, and binding a labeled probe to the separated DNA. In plant species a lot

of variation was found in the DNA annealing sites of restriction endonucleases. RFLP markers made it possible for the

first time to identify markers closely linked to single-gene or more complex genetic traits, to transfer these traits into

elite breeding germplasm, and accelerate breeding by identifying plants homozygous or heterozygous for the preferred

genetic allele (Tanksley, Young, Paterson, & Bonierbale, 1989). However, they have since been largely replaced by

subsequent, PCR-based technologies.

28.4.1.2 Random amplified polymorphic DNA

RAPD are markers based on short, arbitrary primers that amplify genomic DNA if two binding sites are located close

to each other (Williams, Kubelik, Livak, Rafalski, & Tingey, 1990). Due to mutations in the primer binding sites, the

primers may not bind in some lines, resulting in nonamplification of the DNA. RAPD markers are a dominant marker

based on the presence and/or absence of genomic amplicons. The bands are separated by electrophoresis and visualized

by DNA staining. RAPD markers are useful for genotyping and fingerprinting of germplasm, because the bands are ran-

domly distributed across the genome (Waugh & Powell, 1992; Welsh & McClelland, 1990).

RAPDs have been successfully used to develop genetic linkage maps and identify markers linked to monogenic

traits in breeding programs. For example, RAPD markers were found closely linked to resistance against

Rhynchosporium secalis in barley (Barua et al., 1993), dwarf and tall coconut palm phenotypes (Rajesh et al., 2013),

and resistance against common bean mosaic virus in common beans (Haley, Afanador, & Kelly, 1994). It was noted

that as RAPD markers are dominant, it was best to use RAPDs that are absent (in repulsion phase) in the favorable

allele, because the absence of a band is then associated with a homozygous allele for the trait of interest, whereas the

presence of a marker in coupling phase for the favorable allele could still be heterozygous. However, RAPDs have been

shown to have a poor reproducibility and results vary between laboratories (Rajesh et al., 2013; Virk, Ford-Lloyd,

Jackson, & Newbury, 1995). Multiple factors can cause this variability in results, such as the short primers and differ-

ences in concentrations of primer and template leading to variable primer binding sites.

28.4.1.3 Amplified fragment length polymorphisms

AFLP technology resembles RFLP technology in that genomic DNA is first fragmented by using restriction enzymes

(Vos et al., 1995). However, the AFLP protocol differs from RFLP by amplifying and visualizing the fragments by

PCR using primers that bind specifically to the restriction site sequences at the ends of the fragments. In this way, gen-

erally 50�100 fragments are amplified and separated on polyacrylamide gels. In barley it was shown that the large

number of amplified fragments per individual sample resulted in the detection of more genetic diversity by AFLP than

by RAPD, SSR, and RFLP marker assays (Russell et al., 1997). AFLP technology is owned by Keygene (Wageningen,

NL) and was patented in Europe in 2000 (Vos & Zabeau, 1992).

Similar to RFLP, AFLP is a useful technology for DNA fingerprinting/genotyping of a species of which the genomic

sequence is unknown or incomplete. In a study with barley, in which a marker map was developed combining RFLP

and AFLP, it was found that AFLP markers seldom interrupted the RFLP clusters but mapped adjacent to them

(Becker, Vos, Kuiper, Salamini, & Heun, 1995). Therefore combining RFLP with AFLP markers enriched the marker

map of barley.
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Furthermore, AFLP is a useful technology to analyze the genetic relationships within a germplasm pool and get

marker data to support “essential derivation” of commercial varieties for variety registration (Vuylsteke, Peleman, &

Van Eijk, 2007).

28.4.1.4 Simple sequence repeats

SSRs, also called microsatellites, are highly repetitive sequence elements with a short repeat unit (1�8 bp) that vary in

length as a result of differences in the number of consecutive repeat units between individuals (Mason, 2015; Tautz,

1989). This variation is thought to be caused by slippage during DNA replication. The variation in microsatellite lengths

is used to study genetic lineage and diversity of germplasm and can also be incorporated into genetic maps.

SSRs are useful markers for breeding programs because at every single SSR locus, multiple length-variant alleles

can be found, they are evenly distributed across the genome and are codominant. To develop SSR markers, a genomic

DNA library first needs to be sequenced and analyzed to detect microsatellites (Edwards, Barker, Daly, Jones, & Karp,

1996). These preparatory steps are time-consuming, but nowadays a lot of sequence information is already available.

Using computational tools such as SciRoKo (Kofler, Schlötterer, & Lelley, 2007), SSRs can readily be identified even

from partial- or low-coverage genome sequence data (Robinson, Love, Batley, Barker, & Edwards, 2004). Once identi-

fied, unique primers are designed based on flanking sequences. SSRs designed in this way have been used to enrich

genetic maps of many crop species, and to assess genetic diversity in orphan crops (Ozturk et al., 2017).

28.4.1.5 Sequence characterized amplified region

SCARs are markers that are based on the specific amplification of a DNA region closely linked to a trait of interest,

requiring prior knowledge of the DNA sequence of that region. Frequently, RAPD and AFLP markers are converted

into SCAR markers by designing unique primers based on the sequence of cloned RAPD or AFLP fragments. Longer

primers (15�30 bp) ensure the specificity of the marker locus. SCAR markers are codominant and highly reproducible,

which is a major improvement over RAPD markers; SCAR markers are therefore preferred for trait selection/introgres-

sion in breeding programs.

For example, two RAPD markers tightly flanking a dominant gene conferring blast resistance in rice, which is

caused by the fungal pathogen Magnaporthe grisea, were converted into SCARs by designing SCAR primers to the

sequenced RAPD amplified product (Naqvi & Chattoo, 1996). Similarly, 8 RAPD markers strongly linked to downy

mildew (Bremia lactucae) resistance genes in lettuce were successfully converted to SCARs by designing 24-mer pri-

mers to the ends of the RAPD products (Paran & Michelmore, 1993). In cowpea, AFLP mapping identified AFLP mar-

kers closely linked to the Rsg1 gene, which confers resistance to Striga gesnerioides, a parasitic weed (Boukar, Kong,

Singh, Murdock, & Ohm, 2004). A dominant AFLP marker that was in coupling phase with Rsg1 was converted into a

codominant SCAR marker. In tobacco, a similar approach was taken in that AFLP mapping was used to identify ampli-

cons associated with blue-mold (Peronospora tabacina) resistance, PVY (Potato Virus Y) susceptibility, and black root

rot (Chalara elegans) resistance (Julio, Verrier, De, & Borne, 2006), which were then sequenced to design primers and

convert them into codominant SCAR markers.

28.4.1.6 Cleaved amplified polymorphic sequences/derived cleaved amplified polymorphic
sequences

CAPS and dCAPS are markers that can detect certain SNP. CAPS markers use PCR primers to amplify a specific locus

containing an SNP within a restriction site, which is detected by the PCR product being cleaved or not depending on

the SNP allele, resulting in different sized bands visible after gel electrophoresis (Baumbusch, Sundal, Hughes, Galau,

& Jakobsen, 2001; Konieczny & Ausubel, 1993). The disadvantage of CAPS markers is that they can only detect SNPs

that affect a restriction enzyme’s ability to cut DNA (Neff, Neff, Chory, & Pepper, 1998). Therefore an alternative

methodology was developed, called dCAPS, which is based on introducing an SNP mutation in one of the primers,

which in combination with a specific SNP results in variation in the ability of a restriction enzyme to cut the amplicon.

The design of the primers and restriction enzyme combinations to detect SNP variants is complex. Therefore bioin-

formaticians have designed online tools to design CAPS/dCAPS markers, such as dCAPS finder 2.0 (Neff, Turk, &

Kalishman, 2002), BlastDigester (Ilic, Berleth, & Provart, 2004), and SNP2CAPS (Thiel, Kota, Grosse, Stein, &

Graner, 2004).
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28.4.2 Shift to single-nucleotide polymorphism and insertion/deletion markers

The markers described earlier were based on restriction digestion and/or PCR amplification followed by separation of

the amplicons/fragments by gel electrophoresis. These gels have to be manually assessed for the marker results.

Therefore these methods take a lot of manual work to genotype breeding lines and can only be applied to a limited

number of lines and for a limited number of markers.

The identification of SNP and short insertions/deletions (INDELs) from sequencing projects opened up the opportunity to

develop a new type of markers, which are no longer dependent on time-consuming and costly gel-based assays (Gupta, Roy,

& Prasad, 2001). Furthermore, SNPs are the most abundant type of markers, which are widely dispersed across all genomes.

Typically, potential SNPs and INDELs are identified from high-throughput sequencing data. Careful bioinformatic analysis

is necessary to eliminate sequencing errors that resemble SNPs/INDELs and select those that are widely represented and

polymorphic within a population. These markers are useful for all kinds of genotyping, marker-assisted breeding (Kim,

Manivannan, Kim, Lee, & Lee, 2019), and fine-mapping for map-based cloning. The high density of SNP markers provides

increased mapping resolution which has greatly contributed to map-based gene discovery (Close et al., 2009).

In the last 20 years technologies for screening molecular markers (genotyping) have been significantly improved in

their throughput and capacity, especially for SNPs. The development of these higher throughput technologies coincided

with an increase in the use of markers in breeding programs. Initially, breeders used markers for single-gene traits, such as

single-gene disease resistance. Later, markers were found to be a useful tool to combine multiple single-gene traits into

one line, such as multiple disease resistance genes. Here, the codominance of SNP markers became a great advantage,

because plants that are homozygous for a trait could be selected in a single generation in a segregating population, saving

one generation in time to fix the trait compared with dominant markers such as AFLP and RAPD. Now, breeders are using

markers for multiple traits, including single- and complex multigenic traits, for most of their breeding populations. The

next step will be full implementation of genomic selection and genomic prediction of phenotypes in breeding programs.

28.4.3 Genotyping technologies and their application in breeding programs

Initially, only large crop breeding programs, such as corn and soybeans, had sufficient funds to adopt the new marker

technologies, which they ran in their own labs. More recently, available marker assays have become a lot more afford-

able and are often provided as a service by specialized companies. This opened the opportunity for breeding programs

with smaller budgets and small companies that do not have a molecular lab to start marker-assisted breeding programs.

Furthermore, most breeding companies are now using molecular markers for quality control of their varieties or breeds.

Parental lines can be verified by unique SNP marker combinations to identify the specific parental germplasm. Seed

production departments of breeding companies also check their F1 hybrid seed for the presence of inbreds (caused by

selfings) or contamination with foreign pollen.

In the following sections, the technological advances in genotyping technologies will be reviewed with respect to

application in breeding programs, especially stacking of traits, and introgression of traits from wild species using a

marker-assisted BC (Section 28.3.1). Attention will be given to the marker efficacy, level of throughput in number of

samples and markers, efficiency in the time to deliver the results, and cost efficiency.

28.4.4 Medium-throughput genotyping technologies

The technologies described here all use PCR reactions modified with fluorescent dyes to detect SNPs. Therefore they

are accessible to laboratories equipped with real-time PCR machines, or standard PCR machines with fluorescence-

capable plate readers. As these assays are usually carried out in a 96-well or 384-well plate format, and fluorescent

dyes are relatively expensive, they are most suitable for medium-throughput screening (e.g., a small number of SNPs

on several hundred individuals).

28.4.4.1 High-resolution melting

High-resolution melting (HRM) technology is based on amplification in a real-time PCR system of short amplicons

(100�200 bp) by specific primers (Simko, 2016; Słomka, Sobalska-Kwapis, Wachulec, Bartosz, & Strapagiel, 2017).

The PCR reaction is done in the presence of a dye such as SYBR Green, which has a low level of fluorescence when

unbound and high fluorescence when bound to dsDNA. After amplification, melting of the DNA amplicon is observed

by measuring the level of fluorescence at incremental temperature increases. Mutations in the amplicon result in its

melting at a slightly higher or lower temperature than the reference sequence, giving an altered HRM profile.
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HRM is a useful technology for screening populations segregating for known gene alleles, for identifying novel

mutations in target genes, and for genotyping of germplasm lines (Simko, 2016). The technology can detect SNPs,

INDELs, and SSRs. In particular the ability to detect novel mutations in known target genes is very useful for screening

mutant populations and genetically diverse germplasm collections for novel alleles.

In another modification of the HRM protocol, GC tails of different length were added to forward primers specifi-

cally binding to a locus containing an SNP to create different melting curves for amplicons from each allele (Wang

et al., 2005). This technology achieved a high call rate (98%) and accuracy (99%).

28.4.4.2 TaqMan—the 50 nuclease assay

The TaqMan SNP genotyping technology is based on two probes and 2 PCR primers (Francisco, Lazaruk, Rhodes, &

Wenz, 2005). The two probes have a higher affinity to bind to the target DNA sequence than the primers and bind spe-

cifically to one or the other SNP allele. Each probe is labeled at the 50 end with different fluorescent reporters and at

the 30 end with a fluorescence quenching molecule. During the polymerization process, the 50 nuclease activity of Taq

polymerase cleaves the 50 reporter dye from the probe, which results in a fluorescent signal. The ratio of one or the

other dye indicates the genotype of the tested sample.

28.4.4.3 Kompetitive allele-specific polymerase chain reaction

Kompetitive allele-specific PCR (KASP) marker technology can identify SNPs and INDELs and is based on two for-

ward primers that bind specifically to either one or the other allelic variant and have either the HEX (hexachloro-fluor-

oscein) or FAM (fluoroscein amidite) fluorescent molecule attached to them (He, Holme, & Anthony, 2014; Semagn,

Babu, Hearne, & Olsen, 2014). The reverse primer is common for both SNP alleles. The reaction is run in a normal

thermal cycler, and the fluorescence readings are done on a fluorescence resonance energy transfer-capable plate reader.

Plate readouts are analyzed by software that can visualize the marker clusters based on the intensity of the HEX and

FAM fluorescent dyes, for example, in three groups for a diploid species: homozygous “AA,” heterozygous “Aa,” and

homozygous “aa” or five groups for autotetraploid species: “AAAA,” “AAAa,” “AAaa,” “Aaaa,” and “aaaa.”

KASP is proprietary to Biosearch Technologies (Hoddesdon, United Kingdom) that also produces SNPline, a modu-

lar high-throughput genotyping system using liquid handling robots and dedicated instruments to fully automate every

step of KASP assays, from DNA extraction to SNP detection and genotype scoring.

28.4.4.4 RNase H2 enzyme-based amplification

The rhAmp marker assay is very similar to the KASP marker assay, because in both methods two SNP allele-specific

forward primers with different fluorescent dyes attached to them bind to either one or the other allele, and a common

reverse primer is required to amplify the amplicon (Broccanello et al., 2018; Integrated DNA Technologies I, 2020).

The difference with rhAmp is that the primers contain a single RNA residue and a 30 blocking moiety. Only when the

primers are perfectly bound to the target DNA, then the RNase H2 enzyme cleaves the blocking moiety from the single

RNA base, thereby allowing the polymerase to amplify the PCR product. This blocking moiety increases the accuracy

of the assay, because it prevents any primer dimers and off-target amplification, reducing noise in the PCR product.

28.4.4.5 Accuracy of single-nucleotide polymorphism genotyping

For all three methods based on differently labeled probes or primers (TaqMan, KASP, rhAmp), it is important that the

different marker clusters can be clearly separated. Especially when genotyping tetraploid species, the cluster groups can

blend into each other making it difficult accurately to determine the genotype of each individual. In a comparative

study, rhAmp and KASP gave a better separation of genotype clusters compared to TaqMan (Ayalew et al., 2019).

In the same study, it was shown that rhAmp had the lowest number of unamplified samples (3%), compared to

KASP (6.5%) and TaqMan (7%). In cases of insufficient fluorescence samples get classed as “invalid.” TaqMan had

the highest number of “invalid” calls (57 out of 2589) followed by KASP (13 out of 2603) and rhAmp (7 out of 2700).

rhAmp had the highest fluorescence signal, which resulted in better separation of the allelic clusters, whereas TaqMan

had the least separation of these groups. rhAmp and KASP were also more affordable assays compared to TaqMan

(Ayalew et al., 2019; Broccanello et al., 2018). KASP requires more DNA (0.9 ng) in the PCR reaction to get a suffi-

cient fluorescent signal to separate the allelic groups, compared to TaqMan and rhAmp (both 0.2 ng).
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28.4.5 High-throughput genotyping technologies

The recent developments on SNP markers have focused on increasing throughput while reducing cost and time through

further automation. On the one hand, microarray chips were developed that could run a large number of SNP marker

assays simultaneously on one chip. These chips are great for genotyping in detail a relatively small number of samples.

This strategy is therefore very suitable for high-resolution genetic mapping and identifying QTLs and markers associ-

ated to traits. On the other hand, for breeding applications, there is a clear need for genotyping technologies that can

vary the SNPs that are assayed and handle large numbers of samples with a relatively small number of markers. For

this purpose, a variety of flexible platforms have been developed that work largely by automating and miniaturizing the

PCR-based SNP genotyping reactions described in Section 28.4.4.

28.4.5.1 Diversity arrays technology

In the original DArT protocol, the DNA is cut using a restriction enzymes selected to have target sites in low copy

regions, and therefore likely to be close to active genes, and adapters are ligated to these fragment ends (Jaccoud, Peng,

Feinstein, & Kilian, 2001). Amplification is done with primers with selective overhangs, similar to AFLP technology.

The amplified fragments are then cloned, further amplified, and added to a DNA microarray. This array could then be

used to identify contrasts between two genotype samples by doing the same DNA restriction and PCR steps, but label-

ing the fragments of one genotype sample with a fluorescent green dye and the other with a fluorescent red dye.

DArT is proprietary technology belonging to Diversity Arrays Technology PL (Australia), which have now switched

from using microarrays to screen DArT markers to sequencing-based genotyping, DArTseq (Edet, Gorafi, Nasuda, &

Tsujimoto, 2018). An advantage of both systems is that no prior knowledge of the genomic DNA sequence is required.

28.4.5.2 High-throughput (HTP) fixed single-nucleotide polymorphism microarrays

Fixed SNP microarray chips have the advantage in that they can analyze thousands or even millions of SNP markers

for a set of samples at high throughput (Thompson, 2014). Several companies now provide SNP array technologies.

Illumina’s BeadArray technology is based on beads coated with specific oligos which are placed in microwells.

Initially, SNP detection was done by the GoldenGate assay, which is based on amplification by allele-specific fluores-

cently labeled primers followed by measuring fluorescence intensity (Shen et al., 2005). The BeadArray chip was

replaced by Illumina’s higher density Infinium chip, which can run 700K SNP assays for 24 samples on one chip and is

based on 50-mer oligos and a two-color detection assay (Steemers & Gunderson, 2007).

Affymetrix offers both conventional SNP microarrays and the high-throughput Axiom technology, which similar to

the Infinium chip combines multiple samples on one chip and is based on a two-color assay of 30-mer probes

(Matsuzaki et al., 2004). Axiom arrays have two formats, either genotyping 384 samples with 50K SNPs or 96 samples

with 650K SNPs, which equals 4.8 or 62.4 million SNP data points per chip. This is a 25-fold increase in the number of

SNP data points compared to single sample SNP chips.

For breeding purposes, the extremely high number of SNPs per sample on microarrays is useful for genome-wide

association study (GWAS), diversity analysis, and genomic selection. However, using these array chips in breeding pro-

grams is expensive, because of the high design and production cost of the chips. Furthermore, arrays are inflexible once

they are designed. If new more relevant SNP marker information becomes available, then a new chip needs to be

designed to include these novel SNPs.

28.4.5.3 Fluidigm

Fluidigm’s dynamic array, which is marketed under the name Juno, has fully automated the mixing of sample and assay

on a nanofluidic platform, which is called an integrated fluidic circuit (IFC). The equipment has also automated the

thermal cycling of the SNP assays and harvesting of the product (Fluidigm, San Francisco, United States). The IFC is

then scanned on Fluidigm’s Biomark or EP1 scanner to collect the SNP marker data. The IFCs come in different sizes

of samples3 SNP assays: 483 48, 963 96, and 1923 24. KASP, TaqMan, or Fluidigm’s own “SNP-type” assays can

be run on the dynamic array.

The dynamic array has call rates greater than 99.5% with a call accuracy of 99.8% (Wang et al., 2009). Each run

takes about 3 h to generate 9216 SNP data points (on a 963 96 IFC), which makes it possible to generate 18,432 SNP

data points when two runs are done in 1 day. On the IFC, only 6.5 nL reaction volume is mixed into each reaction well

of an individual SNP assay. These low reaction volumes make the dynamic array more cost-effective than running the

same assays on a PCR machine.
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28.4.5.4 Array tape

The principle of array tapes is to decrease reaction volumes to reduce the cost of SNP assays and increase throughput

to enhance capacity (Zec et al., 2018). This is achieved by running SNP assays in very small volume droplets on a tape

that runs through a fully automated device that dispenses the DNA sample and reaction liquids, runs the thermal

cycling, and detects and analyzes the SNP data.

Biosearch Technologies’ array tape is a good example of this technology. It is similar to SNPline, except that reac-

tions are carried out in microwells located on a flexible tape, rather than conventional PCR plates. The tape is handled

by a device that is fully automated from setting up the reaction mixes until analysis of the SNP results

(LGC_Biosearch_Technologies, 2020). This device can handle 400 arrays of 384 wells per day to deliver 153,600 SNP

data points. The number of data points is less than current microarrays, which can handle more than 1 million SNPs,

but the system is flexible for which SNP assays are run compared to a fixed microarray. Like Fluidigm, the system also

uses only small reagent volumes, as 800 μL is required to run 200 plates of 384 wells, which is equivalent to about

10 nL per individual SNP assay.

28.4.5.5 OpenArray

Applied Biosystems’ OpenArray is a semiflexible microwell array, because the customer needs to order the SNP assays

of their choice in advance (Broccanello, Gerace, & Stevanato, 2020; Thompson, 2014). The microplates are then

prepared by the supplier. Each array can run 3072 TaqMan SNP assays with a volume of 33 nL per reaction, with a

capacity to produce 70,000 SNP data points per day. The OpenArray DLP Real-Time qPCR platform gives the addi-

tional advantage to quantify the DNA, which is useful for applications such as pathogen detection and quantification

(van Doorn et al., 2007).

28.4.5.6 iPLEX Gold assay

The iPLEX Gold assay, which is provided by the US company Sequenom, is a high-throughput marker assay technol-

ogy based on a single-base extension from a specific primer pair (Gabriel, Ziaugra, & Tabbaa, 2009; Perkel, 2008).

Depending on the SNP, the sequence is extended by four terminator bases that differ in molecular weight (12 Da differ-

ence in weight). A mass spectrometer is used to detect the differences in molecular weight using two 384-position

matrix-assisted laser desorption/ionization target plates. In total, 10 plates can be processed per day, which equals more

than 138,000 SNPs.

The advantage of this technology is high-throughput and automation. Also, it is highly sensitive and can detect very

small quantities of DNA, as demonstrated on ancient human DNA samples (Mendisco et al., 2011).

28.4.5.7 Genotyping-by-sequencing

While all the methods described earlier require advance knowledge of SNP-containing sequences, genotyping-by-

sequencing (GBS) exploits high-throughput DNA sequencing platforms both to screen known SNPs and discover new

ones. GBS is a reduced-representation sequencing method (Elshire et al., 2011) that streamlines the construction of

libraries from an earlier GBS-type methodology, named Restriction Association DNA sequencing (RADseq) (Baird

et al., 2008). GBS has gained popularity due to the continuously reducing cost of sequencing, especially with the

Illumina next-generation sequencing platform. Since then it has developed into a useful methodology that is able to dis-

cover a large number of genome-wide SNPs, and genotype germplasm (Peterson, Dong, Horbach, & Fu, 2014). GBS

can be applied without prior genome sequence information and is therefore useful for crops and plant species with no

genomic sequence data.

The GBS methodology is based on creating a reduced representation of the genome by cutting the genomic DNA

with restriction enzymes (Peterson et al., 2014; Poland & Rife, 2012). Enzyme-specific adapters are then ligated to the

fragments, followed by a PCR amplification of the fragments, which are barcoded per sample to enable multiplexing

and pooled into a library. The library is sequenced, and the sequence reads are assembled and aligned with each other

and/or a reference genome. Software packages such as Samtools (Li et al., 2009) are used to identify variant locations

from the alignments, which are stored in Variant Call Format (VCF) files. The VCF files are then mined for SNPs.

The whole process takes up to 2 months to complete the discovery of novel SNPs and genotype 300 samples, with a

cost of $20,000�$30,000 for the sequencing (Peterson et al., 2014). GBS is a good methodology to generate large num-

bers of SNPs, which enables QTL mapping and GWAS to identify markers closely associated with a trait locus
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(Siddique et al., 2019), or even gene discovery through high-density marker maps (Paulsmeyer, Brown, & Juvik, 2018),

although the other methods described earlier remain more cost-effective for routine screening of known SNPs.

28.4.6 Increased automation and throughput while reducing cost per data point

Genotyping assays such as RFLP, RAPD, AFLP, SSR, and SCAR were based on marker types that were present at rela-

tive low-frequency throughout genomes. Furthermore, these early marker assays were laborious, and therefore more

costly per sample, as the detection was based on DNA separation on gels (Table 28.2). They are not readily automated,

although pipetting robots can be used for some steps.

The discovery of SNP markers was a major breakthrough for genetic research and breeding, because SNPs are very

frequent, codominant by nature, and evenly dispersed throughout genomes allowing for the identification of markers

closely linked to traits of interest. SNP marker assays such as CAPS/dCAPS were still based on DNA separation on

gels and could only use SNPs located in restriction sites. The development of protocols using fluorophore-tagged PCR

probes and primers made it possible to detect SNPs by contrasting fluorescence intensities. This could now be applied

in 96-well up to 1536-well plate formats to speed up SNP detection. Since then, the SNP assay capacity was further

increased either through DNA microarrays with capacity to detect very large numbers of SNPs (up to 2.6 million on the

Axiom platform) but only on a relatively small number of samples, or through the development of flexible microwell

arrays where the user is able to select different SNP3 sample combinations in each run and that can handle larger num-

bers of samples simultaneously, which is more suitable for breeding programs. These technologies are summarized and

compared in Table 28.3. High-throughput SNP technologies greatly reduce the cost of genotyping per data point; how-

ever, they do require substantial investment in specialist equipment, and/or to produce the individual SNP assay

reagents.

With the reducing cost of sequencing, it is now much more affordable to sequence a reduced representation of the

genome, which is what has been achieved both by the GBS protocol and by DArTseq. Both discover novel SNPs and

genotype samples in the same experiment, with no prior genome sequence data required. However, they do require

additional bioinformatic expertise in order to correctly identify SNPs within the sequence data.

28.4.7 Single-nucleotide polymorphism genotyping for sustainable agriculture in a complex
genome—bread wheat

Bread wheat (Triticum aestivum L.) is one of the world’s most important crops in terms of calories contributed to the

human diet. However, it is a challenging crop for both researchers and breeders owing to its large (1C5 16 Gb), hexa-

ploid, and highly repeat-rich genome. In the light of this, considerable efforts have been invested over the last 15 years,

most significantly in the framework of the IWGSC (International Wheat Genome Sequencing Consortium, http://www.

wheatgenome.org) to produce a high-quality reference genome assembly for the cultivar “Chinese Spring” (Appels

et al., 2018). These efforts have culminated in the IWGSC RefSeq v2.0, which is currently available for download

under a Data Access Agreement. The IWGSC RefSeq v1.0 and annotation v1.1 are already available for open access

through URGI (https://wheat-urgi.versailles.inra.fr/) along with marker and phenomic data (Alaux et al., 2018). An

important challenge for bioinformaticians is to mine this large amount of available information for specific data that is

valuable for wheat breeders, such as molecular markers. As described above, SNPs are arguably the most readily vali-

dated markers in many crops. One of the major environmental problems affecting the sustainability of wheat production

is drought, therefore SNPs associated with drought tolerance would be of great value.

Although considerable research has been directed toward drought stress in wheat, identifying informative loci is not

trivial. For example, a search of the NCBI databases using the terms “drought” and “Triticum[Organism]” (https://

www.ncbi.nlm.nih.gov/search/all/, searched on 04.12.2020) identifies 518 SRA datasets (predominantly RNA-seq stud-

ies in T. aestivum), over 117,700 nucleotide records (mostly mRNA transcripts assembled from the abovementioned

experiments) but only 21 genes that are annotated as having a role in drought stress. This reflects the complexity of the

drought stress response, where many genetic loci are involved but the contribution of each varies considerably depend-

ing on the environmental conditions and genetic background (Tardieu, 2012).

The first draft assembly of the bread wheat genome, generated from the cultivar “Chinese Spring” using 454

sequencing, was released as long ago as 2012 (Brenchley et al., 2012). Although highly fragmented and at low average

sequence coverage (53 ), this allowed assembly of many protein-coding genes and identification of SNPs distinguish-

ing between the three subgenomes of hexaploid wheat (A, B, and D). Subsequently, improved assemblies were con-

structed from specific sequencing of individually flow-sorted chromosomes (Lucas et al., 2012; Mayer et al., 2014), and
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TABLE 28.2 Summary of low-throughput genetic markers.

Marker type Assay type Genomic

sequence

information

required?

Dominant/

codominant

Detection

method

Sample3marker

capacity

Reaction

volume

(5cost)

(μL)

Remarks References

Restriction
fragment length
polymorphism
(RFLP)

Restriction
enzyme
and probe

No Codominant Gel
electrophoresis
and radioactive
probe

Limited by lanes on
gel

50 Beckmann and
Soller (1986),
Haanstra et al.
(1999)

Random
amplified
polymorphic
DNA (RAPD)

Polymerase
chain
reaction
(PCR)

No Dominant Gel
electrophoresis
and DNA
binding dye

Limited by PCR
machine capacity
and/or lanes on gel

25 Marker assay is
highly sensitive to
changes in
experimental
conditions

Virk et al. (1995),
Eujayl, Baum,
Powell, Erskine,
and Pehu (1998),
Joobeur, Periam,
de Vicente, King,
and Arús (2000)

Amplified
fragment length
polymorphisms
(AFLP)

Restriction
enzyme
and PCR

No Dominant/
Codominanta

Gel
electrophoresis
and silver
staining or
radioactive
labeling

11 Most bands are
monoallelic
(absence/
presence).
Biallelic bands
occur at low
frequency

Vuylsteke et al.
(2007), Vuylsteke
et al. (1999)

Simple
sequence
repeat (SSR)

PCR Yes Codominant Gel
electrophoresis
and DNA
binding dye

25 Multiallelic at a
single locus due to
SSR amplicon
length variation

Mason (2015),
Robinson et al.
(2004), Varshney
et al. (2007),
Hwang et al.
(2009)

Sequence
characterize
amplified
region (SCAR)

PCR Yes Codominant Gel
electrophoresis
and radioactive
labeling

10 RAPD and AFLP
markers are often
converted into
SCAR markers for
increased
reproduceability
and codominance

Paran and
Michelmore (1993)

Cleaved
amplified
polymorphic
sequence
(CAPS)/dCAPS

PCR and
restriction
enzyme

Yes Codominant Gel
electrophoresis
and DNA
binding dye

30 Optimization of
PCR amplification
required for each
individual CAPS
marker

Baumbusch et al.
(2001), Neff et al.
(1998)

aAFLP bands can be scored codominantly based on intensity of the bands. However, there is a risk of wrong interpretation.



TABLE 28.3 Summary of medium- and high-throughput genotyping technologies.

Technology Marker types Detection

method

Automation level Sample3marker

capacity

Reaction

volume

(5cost)

Cost Remarks References

HRM—high-
resolution
melting

Single-
nucleotide
polymorphism
(SNP), INDEL,
simple
sequence
repeat (SSR)

Real-time
polymerase
chain
reaction
(PCR) and
fluorescence

Pipetting robot
could be used.
Thermal cycling and
fluorescence
detection
automated.

Limited by real-time
PCR capacity

20 μL $0.012—
$0.014 per
data point

AA, Aa, aa
genotypes
generally have
different melting
curves.

Simko
(2016),
Słomka et al.
(2017),
Galuszynski
and Potts
(2020)

TaqMan—
the 50

nuclease
assay

SNP, less than
6 bp INDEL

Real-time
PCR and
fluorescence

5 μL $0.41 per
SNP data
point (2018
data)

Francisco
et al. (2005),
Ayalew et al.
(2019)

KASP—
kompetitive
allele-
specific PCR

SNP, INDEL PCR and
fluorescence

Option to use LGC’s
SNPLine, which
automates all steps
from DNA
extraction to marker
detection.

Limited by PCR
capacity.SNPline’s
capacity: 145.000
data points per day,
ideal for many
samples and few
SNPs

5 μL $0.15 per
SNP data
point (2018
data)

Even though KASP
is run as an
uniplex; it can be
run across multiple
plates (from 96- to
1536-well) with
different samples/
SNP primer
combinations.

Semagn
et al. (2014),
Ayalew et al.
(2019)

rhAmp—
RNase H2
enzyme-
based
amplification

SNP, INDEL Real-time
PCR and
fluorescence

Pipetting robot
could be used.
thermal cycling and
fluorescence
detection
automated.

Limited by real-time
PCR capacity

5 μL $0.12 per
SNP data
point (2018
data)

rhAmp gave a
better separation of
the homozygous
and heterozygous
genotype clusters
compared to KASP
and TaqMan.

Broccanello
et al. (2018),
Ayalew et al.
(2019)

DArT—
diversity
arrays
technology

Polymorphic
restriction
fragments,
some SNPs

DArTarray:
Fluorescence-
labeled DNA
microarray
DArTseq:
Sequencing

Automated
fluorescence
detection/
sequencing

Can detect variation
for a large number
of DNA fragments
for a relatively small
number of samples.

5 μL $0.10 per
data point

Jaccoud
et al. (2001)

(Continued )



TABLE 28.3 (Continued)

Technology Marker types Detection

method

Automation level Sample3marker

capacity

Reaction

volume

(5cost)

Cost Remarks References

BeadArray SNP Microarray
and
fluorescence
detection

Automated
fluorescence
detection and
scoring of genotype.

In 1 day: 2 array
matrices with 96
sample31536 SNP
loci5 295.000 data
points

17 nL Shen et al.
(2005),
Steemers and
Gunderson
(2007)

Infinium
chip

SNP Microarray
and
fluorescence
detection

Automated robotic
pipetting, array
hybridization and
fluorescence
detection

700.000 SNP
loci3 24 samples
per chip

1.1 nL $0.001 per
SNP data
point

Steemers and
Gunderson
(2007)

Axiom SNP Microarray
and
fluorescence
detection

1500�2.6 million
SNP markers per
array with 24�96
arrays per plate

0.1 nL $0.000025
per SNP
data point

Matsuzaki
et al. (2004)

Fluidigm Flexible SNP
assay

Two-color
fluorescence
detection

Automated robotic
pipetting and
sample and reaction
liquid mixing on the
IFC

Several different
IFC’s, but largest
can handle 96
samples3 96
markers5 9216
data points

6.5 nL Yu et al.
(2020)

Array Tape Flexible SNP
assay

Fluorescence
detection

All processes from
mixing the samples
and reaction liquids,
thermal cycling to
detection of the
SNP’s is fully
automated

Totally flexible on
combinations of
sample3 SNP
markers. In 1 day
this equipment can
run 400 arrays of
384
wells5 153,600
SNP data points

10 nL Zec et al.
(2018)

OpenArray Flexible SNP
assay

Fluorescence
detection

Automated robotic
pipetting; in each of
the 48 subarrays the
sample is
automatically
divided over 64
individual SNP
assays through
microholes.

48 samples3 64
SNP
markers5 3072
SNP data points

33 nL Dependency on
using TaqMan
assays.

Broccanello,
Gerace, and
Stevanato
(2020), van
Doorn et al.
(2007)



iPLEX Gold Flexible SNP
assay

Mass
spectrometer

The thermal
amplification and
SNP detection in the
mass-spec is one
fully automated
workflow.

Flexible on
sample3marker
combinations;
Capacity of 138,000
SNP’s per day

0.07 nL Perkel
(2008),
Gabriel et al.
(2009)

GBS—
genotyping-
by-
sequencing

All sequence
polymorphisms

DNA
sequencing

Pipetting robot
could be used.
Sequencing
reactions and data
collection are
automated.

Limited by
sequencing library
cost and platform
capacity, it can
theoretically identify
all SNPs present in
sample

NA Per-sample
cost of
sequence
library
preparation
is limiting
factor

GBS discovers new
SNPs and
genotypes the
samples
simultaneously.
Bioinformatics
support is
important to
analyze the
sequence data.

Peterson
et al. (2014),
Poland and
Rife (2012)



new SNPs were identified through resequencing of multiple bread wheat varieties (Allen et al., 2012) and its wild rela-

tives (Akpinar, Lucas, Vrána, Doležel, & Budak, 2015). The fragmentary nature of the draft genomes meant that com-

parative genetic mapping from fully sequenced model grass species such as Brachypodium distachyon was essential to

determine the gene order (Lucas et al., 2013) and new pipelines were developed to identify SNPs from alleles that could

vary from 1 to 6 copies between individuals (Akpinar, Lucas, & Budak, 2017). Over 850,000 SNPs discovered in these

studies were then used to construct a large-scale Axiom genotyping array (Winfield et al., 2016). The SNPs that were

observed to be most informative (present and polymorphic in a wide variety of germplasm) were then incorporated into

a smaller “Wheat Breeders” microarray (35,000 SNPs) that is more efficient for high-throughput genotyping (Allen

et al., 2017). This array has been validated using over 6000 cultivated wheat varieties and wild relatives. Its utility for

trait mapping has been demonstrated both in segregating bread wheat populations (Hussain, Lucas, Ozturk, & Budak,

2017) and in an exotic population of RILs produced by crossing tetraploid Durum wheat cultivars with wild relatives

(Lucas, Salantur, Yazar, & Budak, 2017). In these studies, once the SNP genotyping analysis pipelines were adapted to

the germplasm being used, genetic maps were constructed and QTLs mapped for complex traits such as tolerance to

salt stress, osmotic stress, yield, and antioxidant production.

In summary, the last 10 years of genome research in bread wheat has generated an enormous quantity of sequencing data

from which many different genetic markers and high-throughput genotyping tools have been developed. Bioinformatics

played an essential role at every step of this process, mining and integrating many different kinds of data in order to deter-

mine functional differences that can be used to improve sustainability of wheat production, for example, through MAS.

Furthermore, this case study illustrates that even when genomic data is limited or incomplete—as in many other agricultur-

ally important species—valuable biological information can be obtained through methods such as comparative mapping.

However, much of this data remains in the academic domain; there remains a need for computational analyses that stream-

line the translation of these findings into tools that can be applied in the field.

28.5 Genome-wide association studies

The causal correlation between genetic polymorphism and the phenotypical variations found between individuals is of

basic biological importance. Advancing knowledge of both the specific loci underlying a phenotype and the genetic

design of a function increases the capacity to predict genetic factors underlying essential agronomic traits such as

growth rate and yield for plants. While genetic mapping (Section 28.3) aims to uncover such genotype�phenotype rela-

tionships in a carefully constructed mapping population with known heredity, association mapping explores the diver-

sity created in nature by hundreds of generations of natural selection, or obtained through random mutagenesis. The

concept is to find statistical correlations (association) between genetic changes and phenotypes that reoccur in diverse,

distantly related individuals. Using an appropriate statistical framework, phenotypes are linked back to the underlying

genetic loci to define QTLs. From this viewpoint, GWAS is considered an effective and complementary method to

genetic mapping, to connect the genotype�phenotype map (Korte & Farlow, 2013).

28.5.1 Using single-nucleotide polymorphism markers for genome-wide association studies

The fundamental approach in GWAS is to estimate the association between each genotyped marker and phenotype(s)

that have been identified among multiple individuals. Molecular markers are reliable tools for detecting population

structure in a collection of genotypes. However, the ability to detect population structure and genotype�phenotype

associations depends on using a large number of molecular markers distributed throughout the whole genome.

Therefore SNP markers are widely used due to the advent of HTP genotyping methods (described in Section 28.3) in

both plant and animal genomes (Hiremath et al., 2012; Rimbert et al., 2018). SNPs are advantageous for GWAS due to

their wide distribution in the genome, codominant transmission, chromosome-specific location, and high reproducibility

(Kujur et al., 2015). Therefore the initial phase of GWAS often includes SNP discovery and capture using HTP

sequencing, such as the GBS approach described in Section 28.4.5.7 (Elbasyoni et al., 2018), or similar methods such

as DArTseq or double-digest RADseq (Helmstetter, Oztolan-Erol, Lucas, & Buggs, 2020). All of these GBS-like meth-

ods are based on “reduced-representation” sequencing, in which the genome is cut with restriction enzymes and

sequencing is performed starting from chosen restriction sites (Thompson, 2014). Restriction sites are relatively well

dispersed throughout the genome, so this provides a random sampling of tens of thousands of sequence tags. Not all

restriction sites are conserved between any pair of individuals, so in principle it is also possible to score the presence/

absence of specific restriction sites, similar to RFLP/AFLP markers. For GWAS however, it is usually SNPs that are

correlated with phenotypes or traits based on the GWAS design.

474 SECTION | III Data mining, markers discovery



GWAS is usually carried out on a “diversity panel” consisting of germplasm selected to represent as much of the

genetic variation present in a natural population as possible. Therefore SNPs in the panel are mutations that may have

occurred thousands of generations ago and spread by natural selection or chance. When a second SNP is formed close

enough to a previously existing SNP that recombination between them is rare (which may be more than tens of thou-

sands of base pairs), these two variant alleles are often passed on to individuals in the next generation. This noncoinci-

dental association of two alleles is defined as linkage disequilibrium (LD). If the presence of a specific SNP is

genetically linked to, for example, increased susceptibility to a disease, a statistically significant association between

the disease and that SNP (directly related) and several nearby SNPs (indirectly related by LD) is observed. Therefore

each individual in the diversity panel is both genotyped and phenotyped for the trait(s) of interest, and statistical corre-

lations between SNPs and phenotypes calculated within the panel, using single-locus or multilocal tests (Bush &

Moore, 2012). GWAS results are typically obtained in a shorter time compared to traditional genetic mapping methods,

as the study is carried out on an already existing natural population. However, false-positive results can arise due to

unknown population structure and kinship within the diversity panel (Sun et al., 2016; Turner et al., 2017). Therefore it

is of great importance to develop statistical methods and bioinformatic programs that effectively model the population

structure and relationships between individuals in association mapping studies (Mangini et al., 2018; Zhou et al., 2017).

28.5.2 Genome-wide association studies’ design and analysis

GWAS experiments are genetic mapping studies used to identify markers associated with desired traits based on the

principle of LD between allelic variants in genetically highly diverse natural populations and the trait of interest

(Mangini et al., 2018; Warmerdam et al., 2018). Compared to these populations, biparental genetic linkage mapping

populations (see Section 2.2) have lower resolution due to the relatively small number of generations for recombination

and segregation (Collard, Jahufer, Brouwer, & Pang, 2005; Nadeem et al., 2018). Association mapping populations are

not required to be created, saving time compared to traditional mapping methods (Turner et al., 2017). The successful

application of GWAS relies on study design, genotyping technologies and statistical concepts for analysis, copying,

interpretation, and tracking of association results (Bush & Moore, 2012).

A typical genome-wide association study consists of four stages. These are the selection of the population, DNA iso-

lation and genotyping, statistical evaluation of the relationship between the phenotypes and SNPs that exceed a thresh-

old value, and finally, the repetition of the defined relationship in independent population samples to verify the

association or to examine the function experimentally. Standard methods or designs are required for an efficient

GWAS. In crops, GWAS often uses a diversity panel as described above, whereas in livestock a case�control design

may be more appropriate, in which cases are ascertained based on the trait of interest (Cardon & Bell, 2001). The case

is the group exhibiting a desired trait, while the control group does not include the trait from the case group. The advan-

tages of this design are that cases are readily obtained and can be efficiently genotyped and compared with control

populations. The selection of controls is a critical step because any systematic difference in allele frequency between

cases and controls can only be interpreted in relation to the trait of interest, but it could also result from independent

processes such as evolutionary background, sex differences, and domestication practices (Cardon & Bell, 2001).

Choosing sample numbers and selection of samples for each group is very important for GWAS analysis. The number

of samples varies depending on the type of study, the characteristics of the groups, and factors such as location. Also,

samples in the same group must be homogeneous in terms of the specified traits.

Population structure is the result of selection and mixing in a population, leading to a high level of observed LD

between physically unlinked markers (Rostoks et al., 2006) and can be used to infer relationships between individuals

within a population and between different populations. It also gives an insight into the evolutionary relationships of

individuals in a population. Various approaches have been proposed in association mapping studies to estimate a popu-

lation structure, including distance-based and model-based methods. Generally, genetic analysis is a measure of popula-

tion substructure (Bush & Moore, 2012). Population structures within the GWAS population are analyzed to avoid

stratification and are subjected to principal component analysis to minimize effects within the data. Also, the

STRUCTURE program was developed to determine the population structure and to subgroup individuals using the

Bayesian approach (Pritchard, Stephens, & Donnelly, 2000).

When quantitative traits are assessed in GWAS analysis, logistic regression can be used for the analysis of characteristics.

Programs such as TASSEL can be used to establish relationships between quantitative phenotypic characters and genotype

(Bradbury et al., 2007; Thornsberry et al., 2001). TASSEL incorporates tools to normalize the results according to known or

inferred population structure, and perform analyses according to generalized linear model (GLM) and mixed linear model

(MLM) models. In a case�control GWAS design for a binary trait, a feature analysis using the GLM is carried out and

Concepts and applications of bioinformatics for sustainable agriculture Chapter | 28 475



analysis of variance is performed to find statistically significant associations (Bush & Moore, 2012). For a study of multiple

quantitative traits in a diversity panel, MLM is more appropriate (Lucas et al., 2017).

One application of modern phenotyping technologies to sustainable crop development is to combine image-based

“phenomics” with GWAS. In this approach, photographs of the plants are taken at regular intervals in a phenotyping

platform, and image-based traits (i-traits) extracted by automated image analysis. GWAS analysis combined with i-

traits obtained from images enables physiological and morphological traits to be phenotyped more frequently without

harming or perturbing the plants, and some i-traits were shown to be well correlated with field drought tolerance in rice

(Guo et al., 2018).

28.5.3 Applications of genome-wide association studies to plant and animal breeding

Since the first association mapping study reported for an agriculture species, carried out in maize (Bar-Hen, Charcosset,

Bourgoin, & Guiard, 1995), GWAS experiments have been carried out on many plants, particularly to evaluate agronomic

characters that depend on many genes (Xiao et al., 2018). GWASs are now routinely applied in a range of model organisms

including Arabidopsis (Atwell et al., 2010) and mouse (Flint & Eskin, 2012), and to nonmodel systems including crops

(Huang et al., 2012; Ranc et al., 2012; Wang et al., 2012) and cattle (Olsen et al., 2011). Table 28.4 summarizes some of the

most recent applications of GWAS to study agronomically important traits for both plants and animals.

TABLE 28.4 Examples of GWAS conducted on different plant and animal species in recent years.

Species Target traits Outcomes References

Plant Mung
bean

Salt stress A total of 5288 single-nucleotide polymorphism
(SNP) markers obtained through genotyping-by-
sequencing were used to mine alleles associated
with salt stress tolerance.

Breria et al. (2020)

Rice Cold tolerance Five genetic loci at the booting stage and eight
genetic loci at the seedling stage related to cold
tolerance have been identified.

Xiao et al. (2018)

Drought
tolerance

Identified 69 image-based trait (i-traits) locus
associations by both genome-wide association
studies (GWAS) and linkage analysis of a
recombinant inbred line population. The relevance
of i-traits to drought tolerance in the field.

Guo et al. (2018)

Salinity
tolerance

At the reproductive stage under salt stress, SNPs
associated with a number of phenotypic traits and
several related genetic loci were identified.1200
candidate genes have been identified from many
functional categories, including cation transporters
and transcription factors with a known role in
salinity tolerance.

Kumar et al. (2015), Patishtan,
Hartley, Fonseca de Carvalho,
and Maathuis (2018)

Resistance to
rice blast
(Magnaporthe
grisea)

Using both field and growth chamber screenings,
reported 14 marker�trait associations for blast
resistance. A total of 11 accessions were discovered
showing high resistance in both field and controlled
conditions.

Volante et al. (2020)

Alfalfa Salt tolerance Identified 27 SNP markers associated with salt
tolerance. Mapping of SNP markers against the
reference Medicago truncatula genome revealed
multiple putative candidate genes based on their
functional annotations.

Medina, Hawkins, Liu, Peel,
and Yu (2020)

Barley
and

Yield traits A quantitative trait loci on chr.4H associated with
powdery mildew and Ramularia resistance was

Tsai et al. (2020)

(Continued )
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28.6 Emerging strategies for breeding and genetics

Bioinformatics emerged as a tool to facilitate biological discoveries more than a decade ago. With the advancement of

the Human Genome Project, the ability to relate sequencing data with biological process evidence has improved enor-

mously, but many gaps in our knowledge still remain. It is therefore more necessary than ever to be able to collect,

manage, store, evaluate, and interpret data. Although a relatively new field of study, bioinformatics is advancing as

quickly as any sector of biotechnology (Xue, Zhao, Liang, Hou, & Wang, 2008).

In human genetics, bioinformatics is widely used in medicine to determine the genetic details of different diseases.

The field of agriculture has also taken advantage of these studies as microorganisms play a significant role in agricul-

ture, and bioinformatics can analyze complete genome information of these species. Agriculture has since gained from

the sequencing of many genomes of plants and livestock. Bioinformatics techniques play an essential role in converting

raw sequence data into structures of the genes found in these organisms. These tools often allow the functions of vari-

ous genes and factors influencing these genes to be predicted. The knowledge generated about these the genes helps

scientists develop improved crop species, for example, with drought, herbicide, and pesticide tolerance (Bhattacharyya,

Goswami, & Bhattacharyya, 2016). Similarly, in livestock, specific genes may be mutated to increase meat and milk

development. Certain genome modifications could also be introduced to make them immune to disease (Murray &

Anderson, 2000). In this section, we summarize emerging approaches to improving agriculturally important traits that

are facilitated by bioinformatics.

28.6.1 Gene expression regulation by noncoding RNA

Although a large proportion of DNA, which is the genetic material in living things, can be transcribed into RNA, a very

small amount (approximately 1.5% depending on species) of the genome is used in functional protein synthesis.

TABLE 28.4 (Continued)

Species Target traits Outcomes References

winter
wheat

identified in spring barley.For winter wheat, two
SNPs on chr.6A and one SNP on chr.1B were
significantly associated with moisture quality trait,
while one SNP on chr.5B associated with starch
content in seeds.

Cotton Drought
resistance

Determined 390 genetic loci by GWAS using 56
morphological and 63 texture i-traits.

Li et al. (2020)

Animal Cattle
dog

Deafness One important genome-wide association and 14
indicative (chromosome-wide) associations of
bilaterally deaf Australian cattle dogs were reported
using GWAS.

Hayward et al. (2020)

Pig Fatty acid
composition
Meat and
carcass traits

Information was provided on mutual genetic
regulation of the composition of fatty acids and
other economic characteristics in pork. The variant
effect estimation revealed that 15 high effect
variants for back fat thickness, meat�fat ratio, and
carcass length traits were among the statistically
significant associated variants.

Zhang et al. (2019), Falker-
Gieske et al. (2019)

Cattle Disease traits Reported six significant associations and 20
candidate genes of cattle health

Freebern et al. (2020)

Buffalo Milk yield Four significant regions were identified associated
with milk yield.

El-Halawany et al. (2017)

Sheep Coat color The genomic region, candidate gene, and genetic
variants associated with the coat color phenotype in
Chinese Tan Sheep were identified an ovine 600K
SNP BeadChip.

Gebreselassie et al. (2020)
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Parts that are not translated into protein and expressed as noncoding RNA (ncRNA/noncoding RNA) have until recently

been considered of little importance (Wijnhoven, Michael, & Watson, 2007) and largely ignored in many cases.

However, in recent studies, it has been revealed that there are many types of ncRNAs that play a role in important bio-

logical events such as the regulation of gene expression (Morris & Mattick, 2014). There are three types of ncRNAs

that can activate RNAi: endogenous micro-RNA (miRNA/miR), exogenous small interfering RNA (siRNA), and piwi-

interacting RNA (piRNA) in germ cells. Although plants do not contain piRNAs, the third largest class of small RNA

found in animals, they have expanded their repertoire of endogenous siRNAs, some of which fulfill similar molecular

and developmental functions to piRNAs in animals (Chen, 2012; Ku & Lin, 2014). These RNAs have important roles

in posttranscriptional gene regulation. Messenger RNAs, which are the direct products of protein-coding genes, can

reduce (by inhibition of translation) or occasionally increase their activity on binding to these RNAs. RNAi-inducing

ncRNAs are encoded by genes that are transcribed from DNA but not translated into protein (Gupta, 2014).

The most well-studied of these RNAi molecules are miRNAs, which are versatile regulators of gene expression in

both plants and animals (Yang, Farmer, Agyekum, & Hirschi, 2015). Starting with the transcription of DNA in the nucleus

via RNA polymerase II enzyme, miRNAs are 21�24 nucleotide-long ncRNAs that are processed from a longer mRNA-

like primary transcript (pri-miRNA) via a hairpin-structured intermediate (pre-miRNA) (Cech & Steitz, 2014; Morris &

Mattick, 2014). The first study investigating miRNAs was conducted by Lee, Feinbaum, and Ambros (1993) on

Caenorhabditis elegans, a round worm. This nematode was screened for gene content and it was observed that a gene

named Lin-4 does not encode any protein but reduced the expression of a target gene. With the discovery of miRNAs in

other organisms in the early 2000s, it was understood that the miRNA-based transcriptional regulation mechanism has a

general and important role in the developmental process and it has become a focus of attention for scientists, industry, and

the private sector in recent years. As more sequencing data have become available, the number of newly discovered

miRNAs has increased significantly (Kozomara, Birgaoanu, & Griffiths-Jones, 2019), with the aid of bioinformatic tools

to predict miRNAs and their targets in both plants and animals (Dai, Zhuang, & Zhao, 2018; Lucas & Budak, 2012).

It is known that miRNAs control the expression levels of genes related to important sustainability traits such as

growth and stress tolerance in plants, acting as endogenous gene regulators (Han et al., 2014). This regulation is imple-

mented through posttranscriptional degradation, translation inhibition (Rogers & Chen, 2013), methylation (Chellappan

et al., 2010; Wu et al., 2010), or histone modification (Chuang & Jones, 2007). In addition to regulating endogenous

genes, miRNA and other small RNAs also help preserve genome integrity by suppressing genetic material such as trans-

posons, retrotransposons, and viruses (Tomari et al., 2004). It is known that miRNAs play an active role in diverse bio-

logical processes, including organ development (Aukerman & Sakai, 2003), hormone signaling (Mallory, Bartel, &

Bartel, 2005), defense against pathogens (Navarro et al., 2006), and response to abiotic stress (Sunkar, Chinnusamy,

Zhu, & Zhu, 2007). These abiotic stresses include salinity (Covarrubias & Reyes, 2010), drought (Eldem et al., 2012;

Li, Qin, Duan, Yin, & Xia, 2011), cold (Zhou, Wang, Sutoh, Zhu, & Zhang, 2008), and heavy metals (Huang, Peng,

Qiu, & Yang, 2009). For example, it has been observed that the expression of zma-miR169 in maize decreases during

drought (with ABA and PEG application) and increases first and then decreases during salinity stress (NaCl application)

(Luan et al., 2015). In rice plants, miR319 has been shown to play a role in cold tolerance by targeting the TEOSINTE

BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor (Yang et al., 2013). In a study conducted on tomato plants,

it was found that the expression of miRNAs targeting genes that provide abiotic stress adaptation and disease resistance

decreased following treatment with abscisic acid (ABA), a signal molecule that activates the stress response (Cheng

et al., 2016). These results show that the miRNA-mediated stress responses can be regulated by external ABA treat-

ment. All such studies show that miRNA-based RNAi technology is an effective tool in many areas targeted by plant

biotechnology. The future development of genomic tools and techniques for the detection of new miRNAs in different

agricultural species will help us to better understand miRNA-mediated gene regulation during diverse abiotic stresses

(Shafi & Zahoor, 2019).

Given their importance, it is not surprising that multiple bioinformatic databases and tools have been developed

focusing on the functions of miRNAs in crop plants, including PASmiR, a complete repository of mirRNA pathways

for controlling abiotic stress reactions in the plant stress physiology community (Zhang et al., 2013); PmiRExAt, an

online database resource that provides a plant miRNA atlas; and WMP, a resource that offers data on abiotic stress-

responsive miRNAs in wheat (Remita et al., 2016). Furthermore, the high conservation of miRNAs between related spe-

cies means that cross-species studies are possible, for example, a miRNA microarray developed for barley was used to

identify drought-related miRNAs in wild emmer wheat (Kantar, Lucas, & Budak, 2011).

In animals, miRNAs play a role in many important cellular processes such as cell proliferation, differentiation, and

apoptosis (Liu, Song, Chen, & Yu, 2009; Peng, Zhao, Shen, Mao, & Xu, 2015), and most miRNA research has focused

on elucidating the mechanisms of cancer in humans. In animals, a total of 4312 experimentally validated miRNAs from
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different species have been identified so far (Huang et al., 2020). There are also miRNA profiling studies in economi-

cally important livestock, and it has been reported that miRNAs are effective in tissue and organ development, shaping

the immune response and metabolic events. In addition, there are studies showing that SNPs found within miRNA

genes are associated with phenotypic differences between animals, yield traits, and susceptibility to diseases (Jevsinek

Skok et al., 2013). For example, studies on miRNAs in cattle focus on adipose tissue, skeletal muscle, oocyte develop-

ment, early embryonic development, milk yield, and mastitis (Wenguang, Jianghong, Jinquan, & Yashizawa, 2007). By

comparing the miRNA profiles of different stages of lactation in goats, miRNA identification was performed in mam-

mary gland, milk, and colostrum (Hou et al., 2017; Mobuchon et al., 2015; Shao et al., 2014). There are also miRNA

studies on bone and cartilage development and glycogen metabolism in horses (Desjardin et al., 2014; Gim et al.,

2014). Over 800 miRNAs have been identified in studies in chickens, and some were reported to influence embryonic

development, skeletal muscle, and adipose tissue development (Xu, Wang, Du, & Li, 2006). In pigs, miRNAs related to

the reproductive system, skeletal muscle, fat development, and immune system have been identified (Wenguang et al.,

2007). Many economically important yield characteristics in farm animals are under the influence of many genes and

are quantitative. Studies on miRNAs in cattle, sheep, goats, horses, chickens, and pigs show that these molecules can

regulate multiple genes simultaneously, thereby offering an effective way to modify economically important yield char-

acteristics. However, the relationships between these miRNAs, their target genes, and yield traits should be elucidated

more clearly, in order to be able to apply them in breeding programs.

28.6.2 Translation of “omics” data to agriculture

The main challenge facing by today’s molecular biology community is to interpret the wealth of data generated by

genome sequencing projects. Previously, molecular biology studies were performed purely in the experimental labora-

tory, but the huge increase in the availability of data generated in this genomic era makes computational biology essen-

tial to the research process. With the emergence of new tools and databases in molecular biology, we are now able to

conduct research not only at the genome level but also at the proteome, transcriptome, and metabolome levels. The

challenges facing the bioinformatic field today include the intelligent and efficient storage of the large amount of data

produced, and the provision of easy, reliable, and user-friendly access to this data. Therefore streamlined computer tools

should be developed to allow for the extraction of meaningful biological information (Untergasser et al., 2007). Many

bioinformatic resources and tools are currently available; while some are integrated packages available from commer-

cial vendors, the large majority are developed for specific tasks by open-source projects such as Bioconductor, BioPerl,

and BioPython and are available free of charge from repositories such as GitHub and CPAN.

Bioinformatics can be used to collect and store plant genetic resources, to produce stronger, disease- and insect-resistant

crops, and to improve the quality of livestock, making them healthier, more resistant to disease, and more efficient. It is used

in three areas of molecular biology research: molecular sequence analysis, molecular structure analysis, and molecular func-

tion analysis. Bioinformatic tools are required to study system-wide applications such as genomics (genotyping), epigenomics

(histone/DNA methylation), transcriptomics (differential gene expression), proteomics (protein turnover and interactions),

and metabolomics. HTP genotyping platforms used to screen variations such as SNPs, INDELs, and SSRs (see Section 28.3)

can be combined with different omics technologies to generate genetic maps, QTLs, differential gene expression QTLs

(eQTLs), differential methylation QTLs (mQTLs), GWAS, and diversity analysis and to develop novel molecular markers.

Many of these applications are at the cutting edge of current knowledge of molecular and cell biology, and bioinformatic

resources focusing on them constitute a toolbox for breeders (Shafi & Zahoor, 2019).

28.6.3 Bioinformatic resources for sustainable crop and livestock production

As noted in Section 28.2, many databases exist to collate data relevant to sustainable crop production. For example, the

following are specifically focused on biotic and abiotic stress responses:

1. Plant Stress Gene Database: information on genes that are active in plant stress conditions (Prabha, Ghosh, &

Singh, 2012).

2. Stress-responsive Transcription Factor Database: a comprehensive collection of Arabidopsis thaliana and Oryza

sativa L. biotic and abiotic stress-responsive genes that can recognize potential locations for transcription factor-

binding sites in their promoters (Shameer et al., 2009).

3. The Global Pest and Disease Database: online exotic pest information archive designed to support Animal and

Plant Health Inspection Service programs. The database incorporates information from various sources into a single
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repository pertaining to pest taxonomy, identification, biology, distribution, hosts, significance, detection, and con-

trol (https://www.gpdd.info/).

4. Plant Environmental Stress Transcript Database: for transcripts with annotated tentative orthologs from crop abiotic

stress transcripts (Balaji, Crouch, Petite, & Hoisington, 2006).

5. PhytAMP: a database of plant natural antimicrobial peptides (Hammami, Ben Hamida, Vergoten, & Fliss, 2009).

In a similar way, livestock animal genomics has the aim of identifying the genetic and molecular origin of all animal

biological processes, so that new livestock races may be developed efficiently and with minimal costs. Animals with

stress-resistance traits are of particular importance, combined with good reproduction and breeding characteristics.

Genomics data can help design estimation processes for animal health and also potentially be part of the breeding deci-

sion management system (Wickham, 2013). As with crops, the main objectives of animal bioinformatics are to make all

sequence data available to the public through various data repositories; make clear ontological definitions of genes, pro-

teins, and phenotypes available; and demonstrate interactions between animals and other organisms in nature. Database

development and management of animal genetic resources is a necessary task to characterize, use, and protect these

irreplaceable resources (Mitra & Acharya, 2003). Generally, a database of animal genetic resources is kept on a region/

country basis, storing information about the breeds of various animal and poultry species in the region. It also stores

data on pedigrees of various livestock species, breeds present on breeding farms, and documents physical, production,

and reproductive characteristics of each breed. Socioeconomic information on farmers raising the breed is also an

important component of these databases. Various databases of animal genetic resources are available; for example, the

FAO hosts DAD-IS, the Domestic Animal Diversity Information System (http://www.fao.org/animal-genetics/breed-

database/dad-is/en/). A database on genetic characterization of animal genetic resources is also being developed. This

method avoids many methodological barriers in the analyses of animal genetic knowledge and thus provides a forum to

turn findings for animal breeding studies into predictive models (Baurley, Perbangsa, Subagyo, & Pardamean, 2013).

As with crops a number of species-specific bioinformatic resources have been developed for farm animals, such

as The Goat and Sheep EST Database (GoSh) (Caprera et al., 2007), The Pig Genome Database (PiGenome) (Lim

et al., 2009), Sheep QTL/Associations Data Summary (Sheep QTLdb) (Hu, Park, & Reecy, 2016), Resource for

Chicken Gene Expression (Chickspress) (McCarthy et al., 2019), and The Bovine Genome Database (BGD) (Elsik

et al., 2016).

28.7 Conclusion and future prospects

With the many challenges facing agriculture in the 21st century—growing world population, resource limitation, emerg-

ing pests and pathogens, and climate change—it is clear that effective deployment of the genetic resources provided in

the natural world is essential. For example, leading agricultural scientists have recently proposed a “5G” strategy to sus-

tain future breeding programs: genome assembly, germplasm characterization, gene function identification, genomic

selection, and gene editing (Varshney et al., 2020). Bioinformatics plays an essential role in all of these technologies,

and while this chapter highlights many excellent resources already available, considerable work remains to be done.

Three areas in particular that require urgent development are:

1. Genomic data resources for locally adapted and orphan crop and livestock species to be created, and brought up to

the same standard as those for elite crops (Section 28.2).

2. HTP genotyping technologies (Section 28.4) remain prohibitively expensive for lower income countries, making it

difficult for the development of local crops to compete with global varieties. Bioinformatic tools and strategies to

transfer knowledge from better characterized germplasm, and optimize genotyping protocols to reduce costs, could

help to redress this imbalance.

3. There remains a huge knowledge gap in identifying gene function from sequences, and in the characterizing genetic

diversity in many crop or livestock populations. Studies at a population level such as GWAS (Section 28.5) collect

data on phenotype as well as genotype, but only a minority can be directly linked to specific genes. Future bioinfor-

matic resources will need to find ways to integrate indirect phenotyping data with pan-genome databases to generate

functional predictions that can be tested experimentally.

In summary, although a relatively young discipline, bioinformatics has contributed greatly to agricultural science in

the last two decades. Modern computing resources have allowed increasingly detailed studies of agricultural biology at

the molecular level; however, many more novel tools and techniques will be needed to secure sustainable food produc-

tion in the coming years.
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29.1 Introduction

Genomics is the investigation of the genome of a life form, which is the entirety of all qualities of any person.

Genomics requires the investigation of the entirety of the nucleotide successions, including primary qualities, adminis-

trative groupings, and noncoding DNA fragments, in the chromosomes of a creature. It requires assurance of the whole

DNA succession of a creature, which includes around 3 billion nucleotides. The establishment for sequencing of nucleo-

tides was laid by Fred Sanger and by Allan Maxam and Walter Gilbert. Food parts connect with our body at framework,

organ, cell, and atomic levels, contingent upon their retention, bioavailability, digestion, and bioadequacy. Currently,

nutritional and well-being research is focused on advancing wellbeing by delaying sickness onset and improving perfor-

mance. Significantly, the helpful activity of a specific food segment at the atomic level does not cause a pernicious

impact at some other level. Unraveling the atomic transaction among food and well-being requires consequently com-

prehensive methodologies because nourishing the improvement of certain well-being angles should not be undermined

by the weakening of others. At the end of the day, in sustenance, we need to get everything right. Endless examinations

are accessible which report the impact of different food parts on well-being, yet agreement as to the advantageous or

impeding impacts of even a solitary segment is slippery, for different reasons, predominantly because they come up

short on the framework’s science approach. Applying the frameworks science approach, nutrigenomics tries to build up

dietary marks that are the trademark result of an individual’s supplement climate quality collaboration. In this way,

sicknesses with a hereditary inclination can prompt fluctuated sorts of dietary marks, which can be analyzed at different

levels, for example, cell culture, tissue culture, and entire life forms. The investigation of genomics is isolated into the

accompanying two areas: structural genomics (SG) and functional genomics.

29.2 Structural genomics

SG is a global exertion to decide the three-dimensional (3D) states of extremely significant organic macromolecules,

with an essential spotlight on proteins. A significant auxiliary objective is to diminish the normal expense of structure

assurance through high-throughput (HT) strategies for protein creation and structure assurance. In the United States the

National Institutes of Health started pilot SG ventures at nine focussing through the Protein Structure Initiative (PSI),

starting in 2000. As the PSI venture moves from its pilot stage to full creation this year, the all-out subsidizing at four

huge scope habitats and six particular places is required to be roughly $60 million yearly (The French-Italian Public

Consortium for Grapevine Genome Characterization, 2007). Significant assets have likewise been spent globally, with

SG ventures in Japan, Canada, Israel, and Europe in progress since the last part of the 1990s. With more than 5 years of

information from SG ventures around the world, this is a perfect chance to analyze their effect and to assess how much

advancement has been made toward the significant objectives. Likewise, with another enormous scope, objective-based
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activities, it is critical to set up target, quantitative proportions of achievement. We plan to quantify the natural signifi-

cance and trouble of tackling macromolecular structures, and we depend on a few intermediaries to appraise these.

Albeit each new trial structure adds to our vault of primary information, the most underlying researcher would concur

with those novel structures (e.g., the main high-goal structures of ribosomal subunits are particularly important). For

instance, the principal protein structure in a family might be utilized to get capacity and system, gather the overlap of

other relatives, make definite near models of the most comparable proteins, or distinguish already uncharacterized

developmental connections. The oddity is not restricted to new families: the structure of a formerly settled protein in

alternate compliance or with an alternate restricting accomplice could give understanding into its practical instruments.

The thought may likewise be given to the size, intricacy, or nature of a structure, as assessments of its trouble. Over the

long haul a structure’s effect on the field might be roughly assessed by the quantity of in this way distributed papers

that refer to the first reference. SG is a moderately new part of the underlying science that alludes to the investigation

of protein structures on a genome scale. Investigation of the atomic structure of proteins depends on the data got from

genomics examination, that is, the investigation of the entirety of the qualities of a cell, tissue, or living being, at the

DNA (genotype), courier RNA (mRNA; transcriptome), or protein (proteome) levels. A blend of exploratory, bioinfor-

matics, and displaying approaches will be used to describe the structures of all proteins in a particular objective set,

such as all proteins encoded by a particular genome, agents from a particular protein overlap or useful family, or even

entire pathways or networks. Consequently, the improvement of HT strategies for protein structure assurance was

needed to quicken progress, corresponding to that made by the genome sequencing focuses, utilizing generally X-beam

crystallography and nuclear magnetic resonance (NMR) to empower thinking regarding tens to hundreds to thousands

of structures as opposed to each, in turn, by customary techniques. Regularly the lone accessible data for a given objec-

tive at the beginning of an SG venture is the genomic arrangement of potential coding areas like open reading frame

(ORFs), are part of a reading frame that contain no stop codon, purported “speculative proteins.” Hence, SG is for the

most part a disclosure-based way to deal with investigating the 3D structures of quality items, where, when all is said

in done, they might be restricted to no information on the real capacity of the objective protein and regularly no depend-

able structure forecast can be produced using the essential succession. A general objective of SG is to reason work

dependent on underlying comparability to describe proteins, fusing any data from endogenous ligands, to propose

testable speculations on its particular capacity in the cell, which assists the scientist in understanding macromolecular

hardware and edifices. Three helpful segments include cloning of proteins for underlying examinations, experimental

techniques, computational strategies, and data investigation.

29.3 Application of structural genomics

29.3.1 To determine each single protein structure encrypted by the genome

The quantity of protein families is far more modest than the number of proteins, zeroing in the structure assurance

endeavors on a couple of individuals from every family will give structure layouts suitable to the exact displaying of

most relatives. The assignment is as a rule cultivated by coordinated focuses in the United States and around the world;

each middle has the abilities for bioinformatics target choice, cloning of articulation vectors, HT protein cleansing, and

structure assurance, either by crystallography at synchrotron sources or utilizing atomic attractive reverberation (NMR)

techniques. As a feature of the PSI in the United States, a 5-year pilot stage for the undertaking has quite recently been

finished with more than 1000 structures decided. The creation stage (PSI-2) began in 2005. In this stage a few commu-

nities will zero in on the creation of 200 structures for every year while others will handle more troublesome issues

identifying with the assurance of the structure of eukaryotic multiarea proteins and film proteins. Since all things con-

sidered, 10,000 novel structures should be addressed to give critical inclusion of all genome successions, various long

stretches of work stay for the undertaking to finish its underlying points. Be that as it may, in light of progress to date,

the possibilities seem phenomenal for critical development of genome inclusion, just as gaining ground on more trou-

blesome primary issues. Underlying genomics endeavors have generally centered on producing single protein structures

of special and different targets. In any case a solitary structure for a given objective is frequently deficient to immov-

ably dole out the capacity or to drive drug disclosure. As a component of the Seattle Structural Genomics Center for

Infectious Disease, we try to grow the focal point of primary genomics by explaining troupes of structures that inspect

little atom protein cooperation to choose irresistible illness targets. In this part, we talk about two applications for little

atom libraries in underlying genomics: fair section screening, to give the motivation to lead improvement, and focused

on, information-based screening, to affirm or address the practical explanation of a given quality item (Pires et al.,

2004). This move-in accentuation brings about a primary genomics exertion that is more drawn in with the irresistible
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sickness research network, and one that produces structures of more prominent utility to analysts intrigued by both pro-

tein capacity and inhibitor improvement. We likewise portray explicit strategies for directing HT piece screening in an

underlying genomics setting by X-beam crystallography.

29.3.2 Identification of three-dimensional structure and folding of novel protein functions

It decides the structures of all the protein crease families encoded by the qualities of living creatures. If effective, this

will permit the structures, everything being equal, or quality items to be controlled by homology to proteins where the

area overlay structure has been settled. Information on a protein’s structure and its homology to different proteins give

experiences into the capacity of the protein and its functions inside natural frameworks. This information may permit us

to regulate a protein’s movement with inhibitor particles or activator atoms and by hereditary designing. All such con-

ceivable outcomes depend on a comprehension of the protein’s physical, synthetic, and mathematical properties, derived

from its subatomic structure.

29.3.3 Gene and protein interactions: the role of protein structure prediction in structural genomics

It decides the structures of all the protein crease families encoded by the qualities of living creatures. On the off chance

that fruitful, this will permit the structures, all things considered, or quality items to be controlled by homology to pro-

teins where the area overlay structure has been settled. Information on a protein’s structure and its homology to differ-

ent proteins give bits of knowledge into the capacity of the protein and its parts inside organic frameworks. This

information may permit us to adjust a protein’s movement with inhibitor atoms or activator particles and by hereditary

designing. All such potential outcomes depend on a comprehension of the protein’s physical, compound, and mathemat-

ical properties, concluded from its atomic structure. Underlying genomics means fundamentally describing most protein

arrangements by a proficient blend of trial and forecast. This point will be accomplished via a cautious choice of target

proteins and their structure assurance by X-beam crystallography or NMR spectroscopy. There is an assortment of tar-

get determination plans, going from zeroing in on just novel folds to choosing all proteins in a model genome. A

model-driven view necessitates that objectives be chosen to such an extent that the greater part of the excess arrange-

ments can be demonstrated with helpful precision by near displaying. Indeed, even with underlying genomics, the struc-

ture of the vast majority of the proteins will be demonstrated, not dictated by test. As examined over, the exactness of

near models and correspondingly the assortment of their applications decline strongly beneath the 30% grouping per-

sonality cutoff, fundamentally because of a fast expansion in arrangement mistakes. In this manner, we should decide

protein structures so the vast majority of the excess groupings are identified within any event one known structure at

higher than 30% arrangement character. It was as of late assessed that this cutoff requires at least 16,000 focuses to

cover 90% of all protein area families, including those of film proteins. These 16,000 structures will permit the demon-

strating of a particularly bigger number of proteins. For instance, New York Structural Genomics Research Consortium

estimated the effect of its structures by recording the number and nature of the comparing models for perceptibly

related proteins in the nonrepetitive grouping information base. Overall, 100 protein arrangements with no earlier pri-

mary portrayal could be demonstrated in any event at the overlay level. This huge influence of structure assurance by

protein structure displaying outlines and legitimizes the reason for primary genomics. Once more structure forecast will

add to primary genomics severally. Enormous scope all over again forecast can direct objective choice by zeroing in

trial structure assurance on proteins liable to embrace novel folds. Once more strategies should likewise be valuable in

supplementing near displaying techniques by building parts of proteins not present in format structures. What is more,

new techniques enhanced by restrictions from cross-connecting or different trials can give models to proteins not

promptly agreeable to X-beam crystallographic or NMR investigation. At long last, enormous scope all over again dis-

playing may permit coarse structure-based bits of knowledge into protein capacity of countless proteins well ahead of

time of tentatively decided structures.

29.4 Dynamic expression of functional genomics

Functional genomics includes the expression of dynamic interactions of genes. It plans to relate the aggregate and geno-

type on genome level and incorporates cycles, for example, record, interpretation, protein�protein association, and epi-

genetic guideline. This includes far-reaching examination to get qualities, their practical jobs, and variable degrees of

protein articulation. The practical genomics arose because of the difficulties presented by complete genome successions.

To comprehend this cycle, it stands crucial toward the understanding of physio-biochemical capacity of each quality-
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building elements. However, illustrations next to molecular and metabolite levels can give understanding not just into

the conceivable capacity of individual quality yet besides the participation that happens among qualities and quality

items to create a characterized organic result. The innovation, engaged with characterizing useful genomics, is DNA or

oligonucleotide microarray innovation for deciding mRNA, 2D gels, and mass spectroscopy and different techniques

for dissecting various proteins and GC�Ms or fluid chromatography�mass spectrometry (LC�Ms) for distinguishing

and evaluating various metabolites in a cell. HT techniques for forward and turn around hereditary qualities are likewise

basic to utilitarian genomics. Useful genomics lies on quality articulation, profiling (mRNA) in protein articulation,

invert hereditary qualities, the age of focused changes in qualities of revenue other than forwarding transformation rate,

the age of arbitrary changes in the genome for attractive freaks and bioinformatics. These rules help in giving the most

extreme data of a specific living being. These aid in understanding the organic cycle at the atomic level and help to dis-

tinguish novel qualities directing this cycle. To comprehend the quality capacity, it is alluring to recognize qualities and

to comprehend its appearance at the entire genome level. There are numerous prokaryotic and eukaryotic creatures, the

genomes of which are completely sequenced. The current revelation is the planning of entire arrangements of qualities

present in the human genome. It is conceivable to allot capacities to novel qualities and proteins and to comprehend

organic cycles at the atomic level. The coordinated comprehension of the control of quality articulation and information

on sign transduction, cell flagging, and generally cell work are dynamic instruments to contemplate the guideline of

quality articulation in some random cell type. In yeast cells, records related to various stages of the cell cycle structure

are of discrete groups. These examinations permitted grouping labels encoding proteins of obscure capacity to be allo-

cated to putative classes dependent on their bunching with qualities of known capacity. Here, part of practical genomics

will be to test those tedious capacities and apply them to determine complex natural cycles (Fig. 29.1).

29.5 Functional genomics approaches

1. Transcriptomics: Transcriptomics considers measure quality articulation at the record or RNA level, including both

mRNA and ncRNAs quality articulation in a cell. Transcriptomic examinations cover the progression of passing

data from DNA to RNA. As opposed to DNA, there is certainly not a solitary transcriptome yet one for every cell.

What is more, it might change in various conditions.

2. Proteomics: Proteomics approaches center around which proteins are communicated in a natural framework yet may

likewise incorporate investigations of protein structure. Proteomics research centers around protein recognizable

proof, evaluation, movement, security, restriction, and capacity, which assume basic parts in cell flagging occasions

(Wilkins et al., 1996). In the most recent decade, incredible advances have been accomplished in rice proteomics,

which gives extensive previews on the comprehension of rice improvement, stress resilience, organelle, and protein

FIGURE 29.1 Functional genomics.
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post-translational modification (PTM). Proteomics concentrates in rice have been performed generally utilizing gel-

based (1DE, 2DE, and 2DIGE) and sans gel (LC�Ms/MS or MudPIT) approaches, and all the more as of late iso-

baric tags for relative and absolute quantitation (iTRAQ), for protein quantitation dependent on Ms/MS. Kim, Kim,

Cho, Kim, and Kim, (2014) explored and summed up the advancement in rice proteomics concentrates from 2010 to

2013, with a significant spotlight on rice under assorted abiotic and biotic pressure conditions. All the more as of

late and iTRAQ-marking-based quantitative proteomics, system was utilized to explore the proteomes under high

temperature in various rice cultivars. The outcomes indicated that high-temperature stress initiated little warmth

stun proteins, expansions, and lipid moves proteins in high-temperature-safe cultivars. Polyethene glycol�mimicked

dry season responsiveness in a period subordinate way in root showed that a large portion of the differentially com-

municated proteins gave off an impression of being associated with bioenergy and digestion (Agrawal, Devanur, &

Li, 2016). By utilizing polypeptides advanced and phosphorized by IMAC, 201 phosphopeptides indicating pistil-

explicit articulation were distinguished. Protein phosphorylation is one of the most well-known posttranslational

changes. It was estimated that the guideline of protein phosphorylation assumes a significant part in the develop-

ment and advancement of plants. There are more than 1400 qualities that encode protein kinases and 300 qualities

that encode phosphatases in rice. A mix of PolyMAC and TiO2 advances have effectively recognized 2000 phos-

phoproteins from developing shame and early-stage tissues, which will enormously encourage the investigations of

the turn of events and fertilization of rice disgrace (Wang, Ying, Hu, & Zhang, 2014). To additionally create proteo-

mics and coordinate the accessible information, a few data sets of proteomics have been established a rice metaindi-

cator of explicit phosphorylation locales (http://bioinformatics.fafu.edu.cn/PhosphoRice; (Que et al., 2012)), Oryza

PG-DB, a rice proteome information based on shotgun proteogenomics (http://oryzapg.iab.keio.ac.jp/; (Helmy,

Tomita, & Ishihama, 2011)), and PRIN and anticipated rice interactome network (http://bis.zju.edu.cn/prin/; (Gu,

Zhu, Jiao, Meng, & Chen, 2011)). Future proteomics examination should additionally refine normal and solid strate-

gies for test readiness, including tissue reaping and protein extraction, to deliberately research the subcellular areas

and posttranslational alterations of proteins and explain their natural capacities. With the advancement of neutralizer

immune-protein innovation, the manufacture of protein microarrays can assist with understanding the HT recogniz-

able proof of the useful proteins specifically natural cycles.

3. Metabolomics: It is the investigation of all metabolites in a natural framework and keeping in mind that these are

regularly not coded for in the genome, they are delivered during cell, tissue, or living being digestion. The utiliza-

tion of metabolomics in the fields of pharmacology and toxicology has prompted some achievement.

Notwithstanding, most explorations in these fields have been directed on research facility creatures that are heredi-

tarily and healthfully more homogenous than people. All the more as of late, endeavors are being had to consider

the effect of supplements on the metabolome; however, such investigations must be performed on people, which

makes it harder to detail a test plan that yields important information. In this manner the utilization of metabolomics

to sustenance research is more confounded. Since metabolomics is the science that breaks down metabolites that are

the final results that rely upon the genomics, transcriptomics, and proteomics of an individual, the metabolome

speaks to the result of the supplement quality climate cooperation. Nonetheless, the examination of the little atoms

that include a metabolome is no simple undertaking. Plants can create the same number of as 0.2�1 million metabo-

lites. As of late, with the improvement of metabolomics scientific innovations, especially the development in meta-

bolic profiling dependent on mass spectra and attractive reverberation imaging, the examination fields of

metabolomics have been ceaselessly extended (Saito et al., 2013). Progress has been made in the use of plant meta-

bolomics to the metabolite identification (MetID) of useful qualities, dismemberment of metabolic pathways, and

hereditary investigation of normal varieties through the mix with other omics advancements. Conventional LC�Ms

incorporates focused on and untargeted metabolomics. A foundation of metabolomics dependent on a wide range of

untargeted metabolomic investigation has been set up, which can measure more than 800 known and obscure meta-

bolites within 30 minutes (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2014). The metabolomic examination

of tests from 210 Recombinant inbred lines (RILs) got from a cross between two first-class indicia rice assortments,

Zhenshan 97 and Minghui 63, and identified roughly 1000 metabolites, which were set out to more than 2800 meta-

bolic quantitative trait locus (QTL) (Gong et al., 2013). Genome-wide affiliation study was utilized to distinguish a

few many loci/destinations that control normal varieties in metabolite substances (Chen et al., 2014), and they clari-

fied more than 160 new metabolites, including flavonoids, nutrients, and terpenes.

4. Interactomics: Interactomics is of specific pertinence to farming frameworks, especially in getting the illness.

Interactomics is the investigation of the atomic communications between and includes have microbe collaborations.

5. Nutrigenomics: Nutrigenomics adds to exactness nourishment by disentangling the instruments of individual-to-

individual and populace contrasts in light of food introductions. Multiomic inconstancies in plants and designing of
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food creation are the “input” capacities prompting fluctuation in healthful results. Nutrigenomics (or “healthful

genomics”) centers on seeing how diet influences quality articulation. Nutrigenomics is an examination field partic-

ularly which relies upon the new improvement of cutting-edge innovations that permit us to handle a lot of informa-

tion identifying with quality variations. These alleged “-omics” advances genomics, proteomics, metabolomics, and

transcriptomics, which permit us to recognize and gauge various kinds of atoms at the same time.

29.6 Developing genomic technologies for enhancing food crops security

Understanding the quality capacity and cooperation has the option to build up a connection between the living being’s

genome and its aggregate. Various procedures that are broadly used to comprehend the quality/protein work incorporate

RNA impedance (RNAi), mutagenesis, mass spectrometry, genome explanation, etc. The vast majority of the useful

genomic explores are done on model types of plants/creatures/people since model life forms offer a savvy approach to

follow the legacy of qualities through numerous ages in a moderately brief time frame. Similar genomics approaches

can be additionally used to comprehend the greater genomes dependent on the information got from model creatures.

Genomics is a broad methodology that has been designed to upscale the foreseeing facilities, communications of quali-

ties, and function of genomics. The same depicted in previous research studies that stages of genome sequencing head-

way have been made possible to completely grouping countless plant genomes. A blast of quality grouping data has

represented a significant test of distinguishing qualities and deciding their capacity. The genomics period presently took

imperative changes in a practical genomics for handling of a few key inquiries concerning employed at various stages

along with tissues explicitness. Be that as it may, coordination and investigation of the genomic information is the

greatest test nowadays. Some of the online workers are dealing with the utilization of quality bioinformatics sequencing

(Lohse, Lang, & Boyd, 2014)). The HT sequence-nucleotide polymorphism sequencing exhibits intended in genome-

wide affiliation of QTL considers (Chen et al., 2014). The practical utilization is one of the significant utilities for

changes in the quality guideline (Mieulet, Diévart, Droc, Lanau, & Guiderdoni, 2013). A few converse hereditary quali-

ties apparatuses, for example, mutagenesis in the transposons, T-DNA, impedance of RNAi and focusing on incited

nearby sores in genomes (TILLING), and empower analysts to contemplate explicit qualities (Chen et al., 2014). The

presentation of transposable labeling Ac�Ds elements in a maize framework extends extraordinary occasions to connect

qualities through work with making portraying alleles of freak. Also, infection-prompted quality quieting has been con-

sidered a fast and practical useful examination instrument for species yield (Stratmann & Hind, 2011). Plowing (focus-

ing on initiated nearby injuries in genomes) is another generally acknowledged opposite hereditary methodology that is

at present being utilized to screen the populace for transformations in objective qualities. On the other hand, sequential

examination of quality articulation serial analysis of gene expression (SAGE), massively parallel signature sequencing

(MPSS), and microarrays are accessible during the plant harvesting for the profile of RNA (mRNA) concurrent expecta-

tion to follow the action of countless qualities. Notwithstanding, the previously revealed atomic techniques, biochemical

apparatuses, for example, proteomics and metabolomics are likewise assuming a significant part to follow the quality

profiling of protein and expression of metabolites (Gupta, Langridge, & Mir, 2010). The International Rice Functional

Genomics Steering Committee held in 2020 expected toward the organization of rice-based practical genomics research.

The major centers are the way to recognize the elements in the genome of rice quality for expanding creation toward

focusing on food security complexity (Zhang et al., 2008). A forecast of quality capacity based on practical genomics

choices to expand food creation and quality nutritional value in significant assortments of foods. Manipulation in the

methodologies facilitates the distinguishing proof in the account of important qualities governing characteristic related

to agronomics through a financial incentive (Singh, Gupta, & Rai, 2013). Through ceaseless advancement in the per-

spective of genomics devices, reproducers could build up modern assortments lenient associated with various kinds of

stresses, including biotic and abiotic. As of late, in wheat assortments of Ug99 stem rustproof was created for TILLING

utilization (Kim et al., 2014). Accessibility of new genomics coordinated stages long for improving new assortments

dependable and productive.

29.7 Application of high-throughput genomics technologies in nutrition research

It decides the structures of all the protein crease families encoded by the qualities of living creatures. On the off chance

that fruitful, this will permit the structures, all things considered, or quality items to be controlled by homology to pro-

teins where the area overlay structure has been settled. Information on a protein’s structure and its homology to differ-

ent proteins give bits of knowledge into the capacity of the protein and its parts inside organic frameworks. This

information may permit us to adjust a protein’s movement with inhibitor atoms or activator particles and by hereditary
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designing. All such potential outcomes depend on a comprehension of the protein’s physical, compound, and mathemat-

ical properties, concluded from its atomic structure. Underlying genomics means fundamentally describing most protein

arrangements by a proficient blend of trial and forecast. This point will be accomplished via a cautious choice of target

proteins and their structure assurance by X-beam crystallography or NMR spectroscopy. There is an assortment of tar-

get determination plans , going from zeroing in on just novel folds to choosing all proteins in a model genome. A

model-driven view necessitates that objectives be chosen to such an extent that the greater part of the excess arrange-

ments can be demonstrated with helpful precision by near displaying. Indeed, even with underlying genomics, the struc-

ture of the vast majority of the proteins will be demonstrated, not dictated by test. As examined over, the exactness of

near models and correspondingly the assortment of their applications decline strongly beneath the 30% grouping per-

sonality cutoff, fundamentally because of a fast expansion in arrangement mistakes. In this manner, we should decide

protein structures so the vast majority of the excess groupings are identified within any event one known structure at

higher than 30% arrangement character. It was as of late assessed that this cutoff requires at least 16,000 focuses to

cover 90% of all protein area families, including those of film proteins. These 16,000 structures will permit the demon-

strating of a particularly bigger number of proteins. For instance, New York Structural Genomics Research Consortium

estimated the effect of its structures by recording the number and nature of the comparing models for perceptibly

related proteins in the nonrepetitive grouping information base. Overall, 100 protein arrangements with no earlier pri-

mary portrayal could be demonstrated in any event at the overlay level. This huge influence of structure assurance by

protein structure displaying outlines and legitimizes the reason for primary genomics. One more structure forecast will

be added to primary genomics severally. Enormous scope all over again forecast can direct objective choice by zeroing

in trial structure assurance on proteins liable to embrace novel folds. One more strategy should likewise be valuable in

supplementing near displaying techniques by building parts of proteins not present in format structures. What is more,

new techniques enhanced by restrictions from cross-connecting or different trials can give models to proteins not

promptly agreeable to X-beam crystallographic or NMR investigation. At long last, enormous scope all over again dis-

playing may permit coarse structure-based bits of knowledge into protein capacity of countless proteins well ahead of

time of tentatively decided structures.

References

Agrawal, S., Devanur, N.R., & Li, L. (2016, June). An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objec-

tives. In Conference on Learning Theory (pp. 4-18). PMLR.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully

connected crfs. arXiv preprint arXiv:1412.7062.

Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., & Dai, H. (2013). An advanced Ni�Fe layered double hydroxide electrocatalyst for water

oxidation. Journal of the American Chemical Society, 135(23), 8452�8455.

Gu, H., Zhu, P., Jiao, Y., Meng, Y., & Chen, M. (2011). PRIN: a predicted rice interactome network. BMC bioinformatics, 12(1), 1�13.

Gupta, P. K., Langridge, P., & Mir, R. R. (2010). Marker-assisted wheat breeding: present status and future possibilities. Molecular Breeding, 26(2),

145�161.

Helmy, M., Tomita, M., & Ishihama, Y. (2011). OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC plant biology, 11(1),

1�9.

Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9

ribonucleoproteins. Genome research, 24(6), 1012�1019.

Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is more better? Using metadata to explore dose�response relationships in stroke rehabilitation.

Stroke, 45(7), 2053�2058.
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Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology, 97, 1391�1396, CrossRefGoogle Scholar.

Schnable, J. C., Springer, N. M., & Freeling, M. (2011). Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing

gene loss. Proceedings of the National Academy of Sciences of the United States of America, 108, 4069�4074, CrossRefGoogle Scholar.

Sharpe, A. G., Parkin, I. A. P., Keith, D. J., & Lydiate, D. J. (1995). frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape

(Brassica napus). Genome/National Research Council Canada5Genome/Conseil National de Recherches Canada, 38, 1112�1121,

CrossRefGoogle Scholar.
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30.1 Introduction to transcriptomics

30.1.1 Transcriptome

The collection of all the coding information present in a cell called transcriptome describes the functional identity of

the genome. It is a very complex entity to study, and its composition is easily affected by several environmental, physi-

cal, chemical, and other stresses. The impact of these factors on the transcriptome gives us a better idea about the gene

regulatory events in a cell (Lowe, Shirley, Bleackley, Dolan, & Shafee, 2017). Transcriptomics is the study of transcrip-

tome data that includes collecting raw data, data processing and analysis, obtaining meaningful information, and apply-

ing the knowledge gained for the transformative betterment.

There is a lot of information to be obtained through transcriptomics, which can be utilized for more applications.

These include gene expression cycles of a cell in a tissue, protein expression changes in response to a stimulus, and

how a drug can alter gene expression. Such studies can be used for finding treatments and cures for diseases, help iden-

tifying drought-resistant genes, counter drug-resistant microbes, and many other similar applications.

30.2 Markers

A marker is a unique reference sequence and acts as the identity of a gene or species condition, disease state, species

identification, and quantification. Over the years, markers are at the center of many techniques like mapping, trait asso-

ciation, diversity and evolutionary analysis, and marker-assisted breeding for crop variety improvement (Hayward,

Tollenaere, Dalton-Morgan, & Batley, 2015). In addition, protein markers are already being used in molecular diagnos-

tics and understand protein expression in a cell. Markers can be broadly classified into four types: phenotypic, biochem-

ical, cytological, and molecular.

30.2.1 Phenotypic markers

Phenotypic markers usually are not the gene of interest themselves but are a sequence near to them, usually tightly

linked to the gene of interest, so the presence of the marker can be used to confirm the presence of the gene of interest,

or vice versa. In this case the gene of interest usually plays a role in the phenotype of an organism (Prasenjit, Anirudha,

Gautam, Jaya, & Sonam, 2017). Though these markers are readily available and their effects are visible, they lack a

diversity of traits, suffer from Mendelian limitations, are easily influenced by environmental factors leading to false

results, and using them in breeding experiments is labor-intensive and time taking.
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30.2.2 Biochemical markers

Biochemical markers are functional markers which are fully characterized from the gene sequence to the protein func-

tion. However, they can be identified through highly accurate assays and are known to increase selection efficiency for

traits with low inheritability (Lande & Thompson, 1990). Nevertheless, very few genes have been functionally

(Andersen & Lübberstedt, 2003) characterized, and only a few of them can actually be used as markers and may also

require expensive technology and assays for identification.

30.2.3 Cytological markers

Cytological markers correspond to variations in chromosomes, which can be a variation in chromosomal number, size,

order, position, or banding pattern. They also help distinguish between heterochromatin and euchromatin. These include

the G-banding (Giemsa staining), Q-banding (Quinacrine hydrochloride staining), and R-banding (inverted G-banding)

(Nadeem et al., 2017). Thus they are beneficial in genetic mapping and the identification of linkage groups. But they

are very limited in count and variety, and the results produced require expertise to understand.

30.2.4 Molecular markers

Molecular markers are DNA-based ones. They provide much higher throughput and unparalleled precision than other

markers. Any DNA sequence stretch can be used as a marker as long as it is unique and has no off-target sites. They

are proven to be accurate, easy to reproduce the results generated, and are plentiful. However, the expensive nature and

its preciseness turn out to be the limitations of these categories of markers.

30.3 Markers in plants

Markers play an essential role in the selective breeding of plants (marker-assisted selection). They are used to improve

traits that are considered desirable and to remove undesirable traits from plants (Jiang, 2013). In addition, transcrip-

tomics plays an important role, as cDNA is made from transcriptome and used to obtain the exonic region of the DNA,

to be used as markers (Adhikari et al., 2017). Some of the techniques used for the identification of these markers are

listed in Table 30.1.

TABLE 30.1 Techniques used for identification of markers.

RFLP—restriction fragment length polymorphism (Botstein, White, Skolnick, & Davis, 1980)
AFLP—amplified-fragment length polymorphism (Vos et al., 1995)
CAPS or PCR�RFLP—cleaved amplified polymorphic sequences or polymerase chain reaction�restriction fragment length polymorphism
(Konieczny & Ausubel, 1993)
DArT—diversity array technology (Konieczny & Ausubel, 1993)
SSCP—single-strand conformation polymorphism (Hayashi & Yandell, 1993; Hayashi, 1992; Paran & Michelmore, 1993)
F-SSCP—fluorescence-based PCR-SSCP (Hayashi, 1992; Makino et al., 1992)
ISSR—inter-simple sequence repeats (Meyer, Mitchell, Freedman, & Vilgalys, 1993; Zietkiewicz, Rafalski, & Labuda, 1994)
MP-PCR—microsatellite-primed polymerase chain reaction (Weising, Nybom, Pfenninger, Wolff, & Meyer, 1994)
Microsatellites or SSRs (simple sequence repeats) or STRs (short tandem repeats) or SSLPs (simple sequence length polymorphisms)
(Hamada & Kakunaga, 1982; Litt & Luty, 1989; Tautz, Trick, & Dover, 1986)
Minisatellites or DAMD (directed amplification of minisatellite DNA) or VNTRs (variable number of tandem repeats) (Jeffreys, Wilson, &
Thein, 1985; Jeffreys, Neumann, & Wilson, 1990)
RAPD—randomly amplified polymorphic DNA (Williams, Pande, Nair, Mohan, & Bennett, 1991)
RAMP—randomly amplified microsatellite polymorphisms (Williams et al., 1991)
SCAR—sequence characterized amplified regions (McDermott et al., 1994; Paran & Michelmore, 1993)
SRAP—sequence-related amplified polymorphism (Li & Quiros, 2001)
SNPs—single-nucleotide polymorphisms (Brookes, 1999; Cho et al., 1999)
SPAR—single-primer amplification reaction (Gupta, Chyi, Romero-Severson, & Owen, 1994)
SCoT—start codon targeted polymorphism (Gupta et al., 1994)
TRAP—targeted region amplification polymorphism (Jinguo & Vick, 2003; Xiaohua, Deyuan, & Zhenhui, 2004)
Sequencing (Behjati & Tarpey, 2013; Mardis, 2008; Mardis, 2013; Maxam & Gilbert, 1977; Pareek, Smoczynski, & Tretyn, 2011)
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30.4 Expressed sequence tags and simple sequence repeats

ESTs stand for expressed sequence tags. They are short polynucleotides made from a single RNA molecule (Lowe

et al., 2017) and are generated during RNA sequencing (RNA-Seq). RNA is converted into cDNA by the use of reverse

transcriptase (RTase) (Goff, 1990) and then sequenced (Marra, Hillier, & Waterston, 1998). For using ESTs, we do not

need any prior knowledge of the organism from which they are made, and thus they can be used with a wider variety of

organisms. In addition, EST libraries are used to provide information on sequence for microarrays; for example, a

GeneChip for barley (Hordeum vulgare) was compiled from about 350,000 ESTs (Close et al., 2004).

SSRs stand for simple sequence repeats, also known as microsatellites. SSR markers are made from EST datasets

(Feng et al., 2016) and are used as markers for germplasm analysis, among other uses (Powell et al., 1996). When com-

pared to other molecular marker techniques like RAPD (Bardakci, 2001; Hadrys, Balick, & Schierwater, 1992) (random

amplified polymorphic DNA) and AFLP (Bachem et al., 1996; Mueller & Wolfenbarger, 1999; Vos et al., 1995)

(amplified fragment length polymorphism), SSRs proved to be the most reproducible technique (Jones et al., 1997).

They are considered one of the best markers due to their immense application in identifying genotypes, construction of

genomic maps, and marker�trait association (Kujur et al., 2013).

30.5 Tools for generating transcriptomic data

30.5.1 Serial analysis of gene expression technology

SAGE stands for serial analysis of gene expression. We can use this technology to obtain the global gene expression

profile of a cell or a tissue or use it to find genes that are differentially expressed between a pair or a group of cells

(Velculescu, Zhang, Vogelstein, & Kinzler, 1995; Yamamoto, Wakatsuki, Hada, & Ryo, 2001). In this method, short

reads of 8�12 bp of cDNA are produced and then assembled to obtain sequence data (Velculescu et al., 1995;

Yamamoto et al., 2001). In some variations of SAGE, like the longSAGE (Wei et al., 2004) or Robust-Long-SAGE

(Gowda, Jantasuriyarat, Dean, & Wang, 2004) methods, reads can be 17 bp or longer (Hu & Polyak, 2006). The amount

of reads for a particular sequence is directly proportional to the level of gene expressions (Velculescu, Vogelstein, &

Kinzler, 2000).

30.5.2 Microarrays

Microarrays allow the analysis of hundreds or even thousands of parameters, all at once (DeRisi et al., 1996; Lockhart

et al., 1996; Schena, Shalon, Davis, & Brown, 1995; Schena et al., 1996; Schena, 1996). This allows the technology to

extract high throughput gene expression data and, with high precision, better than previous methods and technologies

(Grunstein & Hogness, 1975; Southern, 2000). In this method the mRNA is converted into cDNA and then hybridized

with labeled probes, all done on a chip. The binding of the probe to the target gives a signal, which is recorded by a

computer. The signals between multiple samples are analyzed to obtain differential gene expression profiles

(Kaliyappan, Palanisamy, Govindarajan, & Duraiyan, 2012; Murphy, 2002; Stears, Martinsky, & Schena, 2003).

30.5.3 RNA sequencing

RNA sequencing or RNA-Seq is a sequencing technique based on the NGS (next-generation sequencing) principles.

They are used to study the transcriptome, which is a very dynamic entity (Marguerat & Bähler, 2010). Since then, it

has been the gold standard for RNA sequencing, to predict and annotate genes, and to study transcriptional and

posttranscriptional gene regulation (Haas & Zody, 2010; Marguerat & Bähler, 2010). RNAseq has quickly replaced

chip-based technologies like microarrays as the preferred technique for studying the differential expression of genes in

different environments due to easier use and more reliable and reproducible results (Haas & Zody, 2010; Hiremath

et al., 2011; Tarazona, Garcı́a-Alcalde, Dopazo, Ferrer, & Conesa, 2011).

Basic protocol followed for marker identification (Mudalkar, Golla, Ghatty, & Reddy, 2014) are as follows:

1. Plant source: multiple samples of the plant source with the desired traits are collected.

2. RNA extraction: total RNA is extracted from the samples.

3. cDNA library construction: cDNA library is made using RTase and RNaseH enzymes.

4. cDNA sequencing: sequencing can be done using any method.

5. Sequence assembly: the FASTQ reads generated through sequencing are quality-checked and assembled.
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6. Data analysis: the best transcripts are chosen, with the highest number of exons, longest open reading frames, and

highest confidence score.

7. Gene and pathway annotation: the transcripts are searched in existing databases using BLASTx, and the annotations

were given for the sequence with the highest similarity.

8. Sequence similarity: we try to find similar sequences in related organism’s transcriptome or proteome.

9. Marker prediction: if all criteria are met and the sequence is unique, they can be used as markers and help predict

traits (Fig. 30.1).

30.6 Why transcriptomic markers?

Genomics has been used in crops for quite some time. Genomic markers have the potential to improve crops signifi-

cantly (Malmberg et al., 2018). Many tools have been created, but only a small number of them have seen proper use,

because plant varieties have significantly different genome sizes and ploidy. In addition, they have a high diversity in

single-nucleotide polymorphism (SNP) frequency (Kaliyappan et al., 2012; Murphy, 2002; Stears et al., 2003). Due to

this, we need to develop different markers for every variety of even the same crop, which makes the process unfeasible

and very expensive. On the contrary, GBS-t (genotyping-by-sequencing through transcriptomics) is emerging to be a

cost-effective, high throughput, and most importantly, broadly applicable system (Fu & Yang, 2017; Kim et al., 2016;

Malmberg et al., 2018). Generally, systems like the GBS-t and RNA-Seq have been used for plants for which a refer-

ence genome is available to align the reads and annotate them (Fu & Yang, 2017; Kim et al., 2016), novel pipelines

like the GB-eaSy (Wickland, Battu, Hudson, Diers, & Hudson, 2017), UGbS-Flex (Qi et al., 2018), and more have been

developed for transcriptomic sequencing when such genomic data are not available.

Plants display the highest variance in genomic size (number of chromosomes can range from 2 to more than 600),

ploidy (1 to more than 20), and genetic diversity (haplophase genome differs by over 2500 folds, that to just in angios-

perms) (Bennett, 2008; Mohammadi & Prasanna, 2003). This means the DNA sequence of each plant is highly variable,

leading to a problem when using genetic markers developed for one plant in a different plant (Dong, Liu, Yu, Wang, &

Zhou, 2012; Ouborg, Piquot, & Van Groenendael, 1999). Since we are dealing with the transcriptome, any changes due

to silent/synonymous SNPs are eliminated, leading to a broader scope of marker development. Thus SNPs contribute to

a significant fraction of genomic polymorphism seen in plants. There have been several types of research confirming

this, some of which we will look into next.

In a study conducted with the maize plant (Zea mays), scientists (Azodi, Pardo, VanBuren, de Los Campos, & Shiu,

2020) developed genetic and transcriptome-based markers. They ran benchmarks for accuracy of trait predictions for

both and found out that transcriptome data�based markers give us a better link between traits (Seo et al., 2016). They

can better capture data, which is not easily possible when using DNA sequence�based markers. The reason for that

could be that a change in DNA sequence does not necessarily mean a difference in protein (and thus the trait) due to

the degenerate nature of the genetic code (Seo et al., 2016). According to the study, genetic markers could identify only

1 out of 14 benchmark flowering-time genes, while transcriptome-based markers identified 5 out of the 14 (Azodi

et al., 2020). It gives transcriptome- or proteome-based markers an edge over DNA markers in trait prediction. It proves

that the edge transcriptome- or proteome-based markers have over DNA markers in trait prediction.

Genetic markers are particular, sometimes to a fault. They cannot be used for species other than those designed for

(Eckert, Samis, & Lougheed, 2008; Elshire et al., 2011; Selkoe & Toonen, 2006). But in the case of transcriptome mar-

kers, a study (Stokes et al., 2010) found that markers made for a dicot crop can be used for monocot crops as well.

They looked at markers made for Arabidopsis thaliana (dicot), corresponding to increased vegetative biomass and

increased yield of consumable grains. They then used those markers to see if they could also help in predicting or
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FIGURE 30.1 A simple pipeline for marker identification from the RNA-Seq raw data. RNA-Seq, RNA sequencing.

506 SECTION | III Data mining, markers discovery



selecting maize (monocot) plants. They found that the markers were valid for maize as well. The study indicates the

superior nature of transcriptomic markers over genetic markers.

In yet another study a selection of crops with different ploidy levels, genetic polymorphism, and breeding methods

was taken. This included perennial ryegrass, which is an outbreeding diploid (2n5 2x5 14) forage grass; Phalaris,

which is an outbreeding allotetraploid (2n5 4x5 28) forage grass; lentils, an inbreeding diploid (2n5 2x5 14) legume;

and canola, a partially outbreeding allotetraploid (2n5 4x5 38) oilseed. The transcriptomes of samples from each of

the selected crops were sequenced using the following GBS-t pipeline (Malmberg et al., 2018):

The obtained sequences were compared to existing data on these plants and cross-examined within the species sam-

ples. Both outbreeding and inbreeding crops were selected at allotetraploid and diploid levels to validate the method.

The pipeline generated 89,738 to 231,977 SNPs, with good genomic coverage (c.3 million sequence reads for every

sample). For perennial ryegrass, 83 samples with high diversity were selected, resulting in 139,772 SNP loci in a total

of 11,787 reference transcriptome contigs (Fig. 30.2).

For lentils, 182 samples were taken, presenting 38 ancestral genotypes. A total of 231,977 SNPs were identified cor-

responding to 30,573 contigs, out of which 85% (25,897) were placed uniformly in the 7 chromosomes of the lentil

plant. For Phalaris, 285 samples were taken from a breeding program, representing key genotypes. A total of 89,738

sites were selected. For canola, 575 different lines were taken. They consisted of spring lines from Australia and winter

lines from discrete geographical locations. As a result, 76,270 SNPs were identified, which were shared between both

types.

The identified transcriptomic markers for each crop were usable with other varieties of the crops. The study

(Malmberg et al., 2018) then concludes the GBS-t analysis as a widely applicable system, which is relevant for various

crops, given the choice of sequence analysis software is appropriate. It also proved to be a relatively more straightfor-

ward and automated system, with superior cost-effectiveness and data usability.

30.7 How are markers developed/selected?

Sesame (Sesamum indicum L.) is one of the oldest and most crucial seed crops for oil production. The seed contains

approximately 45%�58% oil. Illumina paired-end technology was used to sequence sesame transcriptomes. The

acquired reads were assembled to obtain 86,222 unigenes with a mean size of 629 bp. Out of these, 46,584 had similari-

ties with proteins from Swiss-Prot and NCBI NR databases. Upon investigation in the KEGG database, 22,003 of these

unigenes were places in 119 pathways. On searching through BLASTx, 15,460 of the total unigenes showed homology

to Arabidopsis genes (TAIR database, version 10). Thus a total of 7702 unigenes were made into EST�SSR markers.

The rubber tree (Hevea brasiliensis Muell. Arg.) is a significant tree for the commercial production of rubber. The

main component of the tree is the bark. As important as it is, there is a severe lack of transcriptome data for the bark.

FIGURE 30.2 An overview of the GBS-t

pipeline. GBS-t, Genotyping-by-sequencing

through transcriptomics.
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A study was done in 2012, which also generated transcriptomic markers for trait prediction (Li, Deng, Qin, Liu, &

Men, 2012). They used Illumina paired-end sequencing to generate over 30 million reads. On performing de novo

assembly, they identified 22,756 unigenes with a mean length of 485 base pairs. They were then run against the Swiss-

Prot and NCBI NR databases, and they got 12,558 and 16,520 hits, respectively. They also identified 39,257 ESTs of

SSR (EST�SSRs). Out of these, 110 markers were selected to predict higher bark metabolism for the trees.

30.8 What has been done

In the 1990s, some of the earliest works in the transcriptome were done (Piétu et al., 1999; Velculescu et al., 1997).

Sanger sequencing (Stranneheim & Lundeberg, 2012; Valencia, Pervaiz, Husami, Qian, & Zhang, 2013) principles,

SAGE technology was developed to sequence the transcriptome (Velculescu et al., 1995). Soon after, microarray tech-

nology became popular and played a crucial role in transcriptomic studies (Ben-Dor, Shamir, & Yakhini, 1999; Girke

et al., 2000; Reymond, Weber, Damond, & Farmer, 2000; Schena et al., 1995; Schena et al., 1996). Microarray became

a better technology for the characterization of gene expression due to its higher throughput (Kavsan et al., 2007; Kim,

2003).

Chickpea (Cicer arietinum L.) is a significant crop in Africa and Asia, where water scarcity and droughts are a per-

petual threat. There has been improved crop yield, but not much, due to high stress on the crops, both biotic and abiotic.

To improve, researchers used NGS methods Illumina/Solexa and Roche/454 to sequence the transcriptome. They com-

pared the chickpea transcriptome with the transcriptome of Medicago truncatula, a model legume plant closely associ-

ated with chickpea and a degree of resistance to drought. The researchers identified 728 SSRs, 387 orthologous

sequences, conserved 495 SNPs, and 2088 intronic markers (Hiremath et al., 2011). As the similarity was found to be

with a drought-resistant plant, these similar regions must contribute toward the trait. Therefore these in silico predicted

markers can be used for marker-assisted breeding to produce chickpea varieties suitable to be grown in these regions,

which will reduce the drought-induced stress on the plants and result in a better yield of the crop.

European ash (Fraxinus excelsior) is a significant source of wood in Europe and is traditionally used as the material

of choice for various tools. But a good portion of the trees in cultivation is susceptible to a fungal pathogen, the

Hymenoscyphus fraxineus, causing the ash dieback disease. The disease is chronic and is characterized by crown die-

back and leaf loss. To reduce the loss of crops a group of researchers identified transcriptomic markers (Harper et al.,

2016), which were closely associated with deterioration in the canopy of the infected trees.

To identify these markers, they sequenced the transcriptome using 100 bp Illumina HiSeq reads, which were aligned

to 41,521 known unigenes, and CLC Transcript Discovery plugin (Schauser, 2019) gene models were constructed.

mRNA-Seq reads were mapped from a group of 182 diverse trees, and 470,494 SNPs were identified. After eliminating

SNPs with low allele frequency and low transcript abundance mean, 32,441 GEMs (gene expression markers) were

deemed suitable for use as markers.

Using these markers, in a group of unrelated trees, they successfully predicted the tree samples that were more sus-

ceptible to canopy damage. Thus eliminating such plants at an early stage would result in much higher crop yield, and

reduce the loss of crops, thus increasing the supply and making it more profitable.

30.9 Future prospects

With the massive amounts of transcriptomic data we have and the more significant amount generated in this RNA-Seq

era, the future for the improvement of crops is brighter than ever (Egan, Schlueter, & Spooner, 2012; Flanagan &

Jones, 2019; Hamilton & Robin, 2012; Zhuang, Zhang, Hou, Wang, & Xiong, 2014). Some highlights of what we can

achieve in the future with a wider variety of crops and with better accuracy and precision:

� improved drought tolerance for crops (Cattivelli et al., 2008; Degenkolbe et al., 2013; Frova, Villa, Sari-Gorla,

Krajewski, & Di Fonzo, 1999; Mir, Zaman-Allah, Sreenivasulu, Trethowan, & Varshney, 2012; Sprenger et al.,

2018; Tuinstra, Ejeta, & Goldsbrough, 1998);
� selection of better crops through marker-assisted breeding (Collard & Mackill, 2008; Collard, Jahufer, Brouwer, &

Pang, 2005; Jiang, 2016; Ribaut & Hoisington, 1998);
� improving crop yield (Gouda et al., 2020; Ribaut, Jiang, Gonzalez-de-Leon, Edmeades, & Hoisington, 1997; Steele

et al., 2013; Stuber, Edwards, & Wendel, 1987; Stuber, Polacco, & Senior, 1999);
� better resistance to plant pathogens and diseases (Bent et al., 1994; Melchinger, 1990; Miah et al., 2013; Yang et al.,

2012; Young, 1996);
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� better herbicide tolerance by selecting plants with genes for herbicide tolerance (Grover et al., 2020; Marshall et al.,

1992; Milligan, Daly, Parry, Lazzeri, & Jepson, 2001; Sari-Gorla et al., 1997);
� improved salt tolerance (Ashraf & Foolad, 2013; Ashraf, 2009; Foolad & Jones, 1993; Ganie, Wani, Henry, &

Hensel, 2021; Luo et al., 2017);
� better production and higher yield of medicinal drug (Graham et al., 2010; Jelodar, Bhatt, Profile, Mohamed, &

Chan, 2014; Zhang et al., 2018);
� reduced susceptibility to pests (Haley, Afanador, & Kelly, 1994; Lefebvre & Chèvre, 1995; Levi et al., 2013; Mori

et al., 2011);
� improved tolerance to being submerged in cases of floods, etc. Lefebvre and Chèvre (1995; Haley et al., 1994; Levi

et al., 2013; Mori et al., 2011);
� higher production and yield of secondary plant metabolites (Ahmad, Shahzad, Sharma, & Parveen, 2018; Chavan

et al., 2014; Piątczak, Kuźma, Sitarek, & Wysokińska, 2015);
� better quality food grains (Hari et al., 2011; Heffner, Jannink, Iwata, Souza, & Sorrells, 2011; Jairin et al., 2009;

Luo et al., 2014; Sukumaran et al., 2012); and
� improved quality of bark for wood extraction (Fady et al., 2003; Grattapaglia, Bertolucci, Penchel, & Sederoff,

1996; Lenz et al., 2017; Thavamanikumar et al., 2014; Williams & Neale, 1992).

Other than these, there are many more distinct prospects for using transcriptomic markers in agricultural crop

improvement.
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Lefebvre, V., & Chèvre, A. M. (1995). Agronomie, 15, 3.

Lenz, P. R. N., Beaulieu, J., Mansfield, S. D., Clément, S., Desponts, M., & Bousquet, J. (2017). BMC Genomics, 18, 335.

Levi, A., Thies, J. A., Wechter, W. P., Harrison, H. F., Simmons, A. M., Reddy, U. K., . . . Fei, Z. (2013). Genetic Resources and Crop Evolution, 60,

427.

Li, D., Deng, Z., Qin, B., Liu, X., & Men, Z. (2012). BMC Genomics, 13, 1.

Li, G., & Quiros, C. F. (2001). TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik, 103, 455.

Litt, M., & Luty, J. A. (1989). American Journal of Human Genetics, 44, 397.

Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., . . . Brown, E. L. (1996). Nature Biotechnology, 14, 1675.

510 SECTION | III Data mining, markers discovery

http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref29
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref30
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref31
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref32
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref33
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref34
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref35
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref36
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref37
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref38
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref39
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref40
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref41
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref42
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref43
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref44
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref45
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref46
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref47
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref48
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref49
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref50
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref51
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref52
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref53
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref54
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref55
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref56
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref57
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref58
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref59
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref60
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref61
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref62
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref63
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref64
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref65
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref66
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref67
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref68
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref69
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref70
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref71
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref72
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref73
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref74
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref75
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref76
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref77
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref77


Lowe, R., Shirley, N., Bleackley, M., Dolan, S., & Shafee, T. (2017). PLoS Computational Biology, 13, e1005457.

Luo, M., Zhao, Y., Zhang, R., Xing, J., Duan, M., Li, J., . . . Zhao, J. (2017). BMC Plant Biology, 17, 140.

Luo, Y., Zakaria, S., Basyah, B., Ma, T., Li, Z., Yang, J., & Yin, Z. (2014). Rice, 7, 33.

Makino, A., Sakashita, H., Hidema, J., Mae, T., Ojima, K., & Osmond, B. (1992). Plant Physiology, 100, 1737.

Malmberg, M. M., Pembleton, L. W., Baillie, R. C., Drayton, M. C., Sudheesh, S., Kaur, S., . . . Cogan, N. O. I. (2018). Plant Biotechnology Journal,

16, 877.

Mardis, E. R. (2008). Annual Review of Genomics and Human Genetics, 9, 387.

Mardis, E. R. (2013). Annual Review of Analytical Chemistry., 6, 287.

Marguerat, S., & Bähler, J. (2010). RNA-seq: From technology to biology (Vol. 67, pp. 569�579). Springer.

Marra, M. A., Hillier, L., & Waterston, R. H. (1998). Trends in Genetics: TIG, 14, 4.

Marshall, L. C., Somers, D. A., Dotray, P. D., Gengenbach, B. G., Wyse, D. L., & Gronwald, J. W. (1992). TAG. Theoretical and Applied Genetics.

Theoretische und Angewandte Genetik, 83, 435.

Maxam, A. M., & Gilbert, W. (1977). Proceedings of the National Academy of Sciences of the United States of America, 74, 560.

McDermott, J. M., Brandle, U., Dutly, F., Haemmerli, U. A., Keller, S., Muller, K. E., & Wolfe, M. S. (1994). Genetic variation in powdery mildew

of barley: Development of RAPD, SCAR, and VNTR markers, 84, 1316�1321.

Melchinger, A. E. (1990). Use of molecular markers in breeding for oligogenic disease resistance. Plant Breeding, 104, 1�19.

Meyer, W., Mitchell, T. G., Freedman, E. Z., & Vilgalys, R. (1993). Journal of Clinical Microbiology, 31.

Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Islam, N. K., & Latif, M. A. (2013). A review of microsatellite markers and their

applications in rice breeding programs to improve blast disease resistance. International Journal of Molecular Sciences, 14, 22499�22528.

Milligan, A. S., Daly, A., Parry, M. A. J., Lazzeri, P. A., & Jepson, I. (2001). Molecular Breeding, 7, 301.

Mir, R. R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., & Varshney, R. K. (2012). Integrated genomics, physiology and breeding approaches

for improving drought tolerance in crops (Vol. 125, pp. 625�645). Springer Verlag.

Mohammadi, S. A., & Prasanna, B. M. (2003). Crop Science, 43, 1235.

Mori, K., Sakamoto, Y., Mukojima, N., Tamiya, S., Nakao, T., Ishii, T., & Hosaka, K. (2011). Euphytica, 180, 347.

Mudalkar, S., Golla, R., Ghatty, S., & Reddy, A. R. (2014). Plant Molecular Biology, 84, 159.

Mueller, U. G., & Wolfenbarger, L. L. R. (1999). AFLP genotyping and fingerprinting (Vol. 14, pp. 389�394). Elsevier Ltd.

Murphy, D. (2002). Gene expression studies using microarrays: Principles, problems, and prospects (Vol. 26, pp. 256�270). American Physiological

Society.
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Qi, P., Gimode, D., Saha, D., Schröder, S., Chakraborty, D., Wang, X., . . . Devos, K. M. (2018). BMC Plant Biology, 18.

Reymond, P., Weber, H., Damond, M., & Farmer, E. E. (2000). The Plant Cell, 12, 707.

Ribaut, J. M., & Hoisington, D. (1998). Trends in Plant Science, 3, 236.

Ribaut, J. M., Jiang, C., Gonzalez-de-Leon, D., Edmeades, G. O., & Hoisington, D. A. (1997). TAG. Theoretical and Applied Genetics. Theoretische

und Angewandte Genetik, 94, 887.

Sari-Gorla, M., Krajewski, P., Binelli, G., Frova, C., Taramino, G., & Villa, M. (1997). Molecular Breeding, 3, 481.

Schauser, L. (2019). De novo transcriptome assembly using QIAGEN CLC Genomics Workbench. https://digitalinsights.qiagen.com/news/blog/dis-

covery/de-novo-transcript-assembly-using-clc-genomics-workbench/ (Accessed on 01 March 2022).

Schena, M. (1996). Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 18, 427.

Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Science, 270, 467.

Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., & Davis, R. W. (1996). Proceedings of the National Academy of Sciences of the United

States of America., 93, 10614.

Selkoe, K. A., & Toonen, R. J. (2006). Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers, 9, 615�629.

Seo, M., Kim, K., Yoon, J., Jeong, J. Y., Lee, H. J., Cho, S., & Kim, H. (2016). Scientific Reports., 6, 24375.

Southern, E. M. (2000). Blotting at 25, 25, 585�588.

Sprenger, H., Erban, A., Seddig, S., Rudack, K., Thalhammer, A., Le, M. Q., . . . Hincha, D. K. (2018). Plant Biotechnology Journal, 16, 939.

Stears, R. L., Martinsky, T., & Schena, M. (2003). Trends in Microarray Analysis, 9, 140�145.

Steele, K. A., Price, A. H., Witcombe, J. R., Shrestha, R., Singh, B. N., Gibbons, J. M., & Virk, D. S. (2013). TAG. Theoretical and Applied Genetics.

Theoretische und Angewandte Genetik, 126, 101.

Bioinformatics approach for whole transcriptomics-based marker prediction in agricultural crops Chapter | 30 511

http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref78
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref79
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref80
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref81
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref82
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref83
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref84
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref85
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref86
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref87
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref88
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref89
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref90
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref91
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref92
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref93
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref94
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref95
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref96
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref97
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref98
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref99
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref100
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref101
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref102
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref103
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref103
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref104
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref104
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref105
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref106
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref107
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref108
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref108
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref109
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref110
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref111
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref111
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref112
https://digitalinsights.qiagen.com/news/blog/discovery/de-novo-transcript-assembly-using-clc-genomics-workbench/
https://digitalinsights.qiagen.com/news/blog/discovery/de-novo-transcript-assembly-using-clc-genomics-workbench/
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref113
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref114
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref115
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref115
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref116
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref116
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref117
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref118
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref118
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref119
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref119
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref120
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref120
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref121
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref121


Stokes, D., Fraser, F., Morgan, C., O’Neill, C. M., Dreos, R., Magusin, A., . . . Bancroft, I. (2010). Molecular Breeding., 26, 91.

Stranneheim, H., & Lundeberg, J. (2012). Biotechnology Journal, 7, 1063.

Stuber, C. W., Edwards, M. D., & Wendel, J. F. (1987). Crop Science, 27, 639.

Stuber, C. W., Polacco, M., & Senior, M. L. (1999). Crop Science, 1571�1583.

Sukumaran, S., Xiang, W., Bean, S. R., Pedersen, J. F., Kresovich, S., Tuinstra, M. R., . . . Yu, J. (2012). Plant Genome, 5, plantgenome2012.07.0016.

Tarazona, S., Garcı́a-Alcalde, F., Dopazo, J., Ferrer, A., & Conesa, A. (2011). Genome Research, 21, 2213.

Tautz, D., Trick, M., & Dover, G. A. (1986). Nature, 322, 652.

Thavamanikumar, S., McManus, L. J., Ades, P. K., Bossinger, G., Stackpole, D. J., Kerr, R., . . . Tibbits, J. F. G. (2014). Tree Genetics and Genomes,

10, 1661.

Tuinstra, M. R., Ejeta, G., & Goldsbrough, P. (1998). Crop Science, 38, 835.

Valencia, C. A., Pervaiz, M. A., Husami, A., Qian, Y., & Zhang, K. (2013). Next generation sequencing technologies in medical genetics (pp. 3�11).

New York, NY: Springer.

Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Science, 270, 484.

Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E., . . . Kinzler, K. W. (1997). Cell, 88, 243.

Velculescu, V. E., Vogelstein, B., & Kinzler, K. W. (2000). Analysing uncharted transcriptomes with SAGE. Trends in Genetics, 16, 423�425.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., . . . Zabeau, M. (1995). Nucleic Acids Research, 23, 4407.

Wei, C. L., Ng, P., Chiu, K. P., Wong, C. H., Ang, C. C., Lipovich, L., . . . Ruan, Y. (2004). Proceedings of the National Academy of Sciences of the

United States of America., 101, 11701.

Weising, K., Nybom, H., Pfenninger, M., Wolff, K., & Meyer, W. (1994). DNA Fingerprinting in Plants and Fungi (1st ed.). CRC Press.

Wickland, D. P., Battu, G., Hudson, K. A., Diers, B. W., & Hudson, M. E. (2017). BMC Bioinformatics, 18.

Williams, C. G., & Neale, D. B. (1992). Canadian Journal of Forest Research. Journal Canadien de la Recherche Forestiere, 22, 1009.

Williams, M. N. V., Pande, N., Nair, S., Mohan, M., & Bennett, J. (1991). TAG. Theoretical and Applied Genetics. Theoretische und Angewandte

Genetik, 82, 489.

Xiaohua, D., Deyuan, W., & Zhenhui, G. (2004). Molecular Plant Breeding5Fen zi zhi wu yu Zhong, 2, 740.

Yamamoto, M., Wakatsuki, T., Hada, A., & Ryo, A. (2001). Journal of Immunological Methods, 250, 45.

Yang, H., Tao, Y., Zheng, Z., Li, C., Sweetingham, M. W., & Howieson, J. G. (2012). BMC Genomics, 13, 318.

Young, N. D. (1996). QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology, 34, 479�501.

Zhang, T., Bai, G., Han, Y., Xu, J., Gong, S., Li, Y., . . . Liu, C. (2018). Phytomedicine: International Journal of Phytotherapy and

Phytopharmacology, 44, 204.

Zhuang, J., Zhang, J., Hou, X. L., Wang, F., & Xiong, A. S. (2014). Critical Reviews in Plant Sciences, 33, 225.

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genomics, 20, 176.

512 SECTION | III Data mining, markers discovery

http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref122
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref122
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref123
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref124
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref125
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref125
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref126
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref126
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref127
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref128
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref129
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref129
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref129
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref130
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/otherref0005
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/otherref0005
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/otherref0005
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref131
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref132
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref132
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref133
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref133
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref134
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref134
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref135
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref135
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref135
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/otherref0005
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref136
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref137
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref138
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref138
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref139
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref139
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref140
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref141
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref142
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref142
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref143
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref143
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref143
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref144
http://refhub.elsevier.com/B978-0-323-89778-5.00015-5/sbref145


Chapter 31

Computational approaches toward
single-nucleotide polymorphism
discovery and its applications in plant
breeding

Dileep Kumar1, Ranjana Gautam1, Veda P. Pandey1, Anurag Yadav2, Upendra N. Dwivedi1,3, Rumana Ahmad4

and Kusum Yadav1

1Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India, 2College of Basic Sciences and Humanities, Sardarkrushinagar

Agricultural University Dantiwada, Palanpur, Gujarat, India, 3Institute for Development of Advanced Computing, ONGC Center for Advanced

Studies, University of Lucknow, Lucknow, Uttar Pradesh, India, 4Department of Biochemistry, Era University, Lucknow, Uttar Pradesh, India

31.1 Introduction

In plant breeding the extent of genetic diversity is the prerequisite for developing/improving a new crop variety.

Conventional plant breeding approach requires more than 12 years for the development of a crop variety; this long dura-

tion of time can be reduced by utilizing marker-assisted plant breeding that involves molecular marker techniques. In

marker-assisted plant breeding the desired phenotypic trait is selected by identification of molecular markers which is

derived from same region of genome where trait controlling gene is located (Jiang, 2013). Marker-based approaches

have been extensively applied in crop improvement programs (Brookes, 1999; Hirschhorn & Daly, 2005; Rebbeck,

Spitz, & Wu, 2004) such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism

(AFLP), microsatellites or simple sequence repeats (SSRs), and single-nucleotide polymorphism (SNP) (Arif et al.,

2010). Depending on detection method and throughput, molecular markers are divided into (1) low-throughput,

hybridization-based markers such as restriction fragment length polymorphisms (RFLPs) (Botstein, White, Skolnick, &

Davis, 1980); (2) medium-throughput, polymerase-chain reaction (PCR)-based markers that include RAPD (Welsh &

McClelland, 1990), AFLP (Vos et al., 1995), SSRs (Jacob et al., 1991); (3) high-throughput (HTP) sequence-based mar-

kers, namely, SNPs (Wang et al., 1998). The use of these markers associated with crop yield has been applied to various

crops such as rice (Oryza sativa) (Mackill, Nguyen, & Zhang, 1999), corn (Zea mays) (Ortiz, 2010), wheat (Triticum

aestivum) (Suwarno, Pixley, Palacios-Rojas, Kaeppler, & Babu, 2015), and tomatoes (Lycopersicon esculentum)

(Landjeva, Korzun, & Börner, 2007).

In the late 1980s, RFLPs were the most popular molecular markers widely used in plant molecular genetics because

they were reproducible and codominant (Lander & Botsteins, 1989). However, RFLP detection was an expensive, labor-

and time-consuming unautomated process, which made this marker eventually obsolete. The invention of PCR technology

and its application for the rapid detection of polymorphisms led to the new-generation PCR-based markers at the begin-

ning of the 1990s. RAPD, AFLP, and SSR markers are such PCR-based markers that have been used by the research com-

munity in various plant systems. RAPDs are dominant markers that detect polymorphic loci in various genome regions

(Williams, Kubelik, Livak, Rafalski, & Tingey, 1990). However, they are anonymous with a very low reproducibility level

due to the nonspecific binding of short, random primers. Although AFLPs are also considered anonymous, their reproduc-

ibility and sensitivity level is higher owing to the longer 11 and 13 selective primers and the presence of discriminatory

nucleotides at the 30 end of each primer. Consequently, AFLP markers are still popular in molecular genetics research in

crops with little to zero reference genome sequence availability (Zhang, Guo, Liu, Tang, & Chen, 2011). However, AFLP
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markers are not widely used in molecular breeding due to the lengthy and laborious detection method. On the other hand,

the SSR markers are considered “markers of choice” for plant genome study (Powell, Machray, & Provan, 1996), as they

are free from drawbacks of the abovementioned DNA markers. SSRs are not anonymous, highly reproducible, with high

allelic polymorphism, and amenable to automation. Despite the detection cost remaining high, SSR markers had pervaded

all plant molecular genetics and breeding areas in the late 1990s and the beginning of the 21st century.

SNPs comprise the most extensive set of sequence variants in most organisms (Kruglyak, 1997). First discovered in

the human genome, SNPs emerged as the new-generation molecular markers, which have been proved to be universal

and the most abundant forms of genetic variation among individuals of the same species. SNP refers to individual

nucleotide base difference between two DNA sequences. These markers are abundant, ubiquitous, and amenable to

high- and ultra-HTP automation (Foster et al., 2010). SNPs are classified according to nucleotide substitution as either

transition (C/T or G/A) or transversions (C/G, A/T, C/A, or T/G). Although the presence of multiallelic SNPs is not

exceptional, the SNPs are usually biallelic (two alternative bases occur) and require a minimum of 1% frequency in the

population (Wang et al., 1998). As a nucleotide base is the smallest unit of inheritance, SNPs provide the ultimate form

of the molecular genetic marker and the potential number of such markers is enormous in even closely related geno-

types within a given species (Rafalski, 2002). The SNPs may aid in changing the genomic sequence, either in the cod-

ing (exons), intergenic, or noncoding (introns) region (Ahmad, Valentovic, & Rankin, 2018; Erwin et al., 2014). Being

binary or codominant status, they can efficiently discriminate between homozygous and heterozygous alleles. SNPs are

being utilized for biallelic mapping in diploid genomes and this has been established means for the creation of SNP-

based maps to virtually any organism (Cho et al., 1999). The availability of various bioinformatics tools to retrieve and

analyze big data (coming from genomics and transcriptomics) has discovered SNPs more efficient and fast (Kim, Kang,

& Kim, 2020; Xu et al., 2017). Accordingly, SNP markers have been extensively utilized for different plant genetics

and plant breeding applications for crop improvement in the last decade (Weckwerth, Ghatak, Bellaire, Chaturvedi, &

Varshney, 2020).

Thus this chapter describes various computational approaches for SNP discovery in plants. Various databases and tools

for SNP analysis, SNP genotyping, and their applications in plant breeding and crop improvement have also been discussed.

31.2 Single-nucleotide polymorphism discovery

Next-generation sequencing (NGS) is extensively used for DNA-sequencing, transcriptome sequencing, disease map-

ping, quantifying expression levels through RNA-sequencing, and population genetic studies (Metzker, 2010). With the

advent of ever-increasing throughput in NGS, SNP mining in plants did not remain limited hence; de novo and

reference-based SNP mining are now feasible for numerous plant species. NGS-derived SNPs are reported in humans

(Altshuler et al., 2000), Drosophila (Berger et al., 2001), wheat (Allen et al., 2011; Trebbi et al., 2011), eggplant

(Barchi et al., 2011), rice (Feltus et al., 2004; McNally et al., 2009; Yamamoto et al. 2010), Arabidopsis (Jander et al.,

2002; Zhang & Borevitz, 2009), barley (Close et al., 2009; Waugh, Jannink, Muehlbauer, & Ramsay, 2009) sorghum

(Nelson et al., 2011), cotton (Byers, Harker, Yourstone, Maughan, & Udall, 2012), common beans (Cortés, Chavarro, &

Blair, 2011), soybean (Hyten et al., 2010), potato (Hamilton et al., 2011), flax (Fu & Peterson, 2012), Aegilops tauschii

(You et al., 2011), alfalfa (Han et al., 2011), oat (Oliver et al., 2011), and maize (Jones et al., 2009), to name a few.

SNP mining using NGS is readily accomplished in small plant genomes for which useful reference genomes are avail-

able such as rice and Arabidopsis (Ossowski et al., 2008; Yamamoto et al., 2010). However, SNP mining in plants with-

out a reference genome sequence requires NGS data and, therefore, in such cases, several challenges persist. For

instance, wheat (Allen et al., 2011; Trebbi et al., 2011), barley (Close et al., 2009; Waugh et al., 2009), oat (Oliver

et al., 2011), beans (Cortés et al., 2011), and many others crops require SNP discovery via NGS.

SNP mining could be performed via two types of strategies: reference sequence strategy (Fig. 31.1) and de novo

sequence strategy (Fig. 31.2). SNP mining from various NGS data encompasses the following steps: (1) grouping

sequence reads according to their sequence similarity to identify reads covering the same part of the genome or having

the same transcript origin, (2) aligning the reads, and (3) identifying and classifying sequence variants as potential

polymorphisms.

31.2.1 Reference-based single-nucleotide polymorphism mining

The DNA and cDNA data generated from fully sequenced species can be used as the reference genome and reference

transcriptome. Genome sequences of humans, animals, microbial species, and many plant species are examples of the

ever-increasing reference groups, increasing research utilization for reference-based SNP mining. The HTP NGS

514 SECTION | III Data mining, markers discovery



platform’s availability alleviated the slow sequencing process and exponentially increased data for the reference group.

The reference sets can also be applied to a sequence that maps to a partially completed genome. When the reference

sequence data of a species are available, a homology search tool must map the new sequence reads to the reference set.

A global alignment tool or local alignment tool could be used. For example, the basic local sequence alignment tool

(BLAST), sequence search and alignment by hashing algorithm (SSAHA) can perform this task (Ning, Cox, &

Mullikin, 2001). Recently, several tools of sequence alignment such as Harvest (Treangen, Ondov, Koren, & Phillippy,

2014), TopHat 2 (Kim et al., 2016), Chain Cleaner (Suarez, Langer, Ladde, & Hiller, 2017), Kart (Lin & Hsu, 2017),

and MUMmer4 (Marçais et al., 2018), are used for alignment of sequences. Another group of reference data can be gen-

erated from the PCR product, where primers are designed for a specified sequence region. Special tools such as Short

Oligonucleotide Alignment Program (SOAP) (Li, Ruan, & Durbin, 2008), Mapping and Assembly with Qualities

(MAQ) are used for mapping the reference data (Li, Li, Kristiansen, & Wang, 2008).

When transcriptome data are involved, it is easiest to map the data against a unigene set, resulting in an ungapped

alignment. When such a dataset is not available, it can be mapped to genomic data using a spliced alignment tools like

BLAT (Kent et al., 2002) or Spidey (Wheelan, Church, & Ostell, 2001), STAR (Dobin & Gingeras, 2016), ASGAL

(Denti et al., 2018) SplicedFamAlign (Jammali, Aguilar, Kuitche, & Ouangraoua, 2019). The newly mapped data are

aligned with the reference sequence. Pairwise or multiple alignments can evaluate base constitution on each position

and the consequent SNP identification. Software tools such as Phrap (http://www.pharp.org) and CAP3 (Huang &

Madan, 1999) are widely used for assembling the sequences to contigs. Multiple reads represent the sequence variants

at each position. More sequence reads available in a species represent a specific genomic region with increased chances

of finding a polymorphism. A sequence variant (allele) can also be distinguished from a sequencing error when multiple

reads confirm it. The higher the number of reads per allele, the higher is the probability of it being a true polymor-

phism. The generalized workflow for SNP discovery based on reference sequence is shown in Fig. 31.1. As depicted in

Fig. 31.1, SNP mining can be roughly divided into two phases, that is, wet lab work and dry lab work (bioinformatics

analysis). The two phases are elaborated in the following sections.

FIGURE 31.1 Workflow of SNP discovery and thereby its analysis through the reference-based strategy. This is the generalized workflow for

computational SNP discovery and can be applied for SNP discovery in any plant that has deposited a reference genome/unigene/transcriptome data-

base. SNP, Single-nucleotide polymorphisms.
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31.2.1.1 Sample preprocessing and DNA or RNA extraction

In the case of plants, it is necessary to handle the sample with proper care. The samples could be used for the DNA

and/or RNA isolation using a specific protocol. After separation from the plants the peel tissues may be frozen in liquid

nitrogen on the day of collection and stored at 2 80�C for further DNA or RNA extraction; otherwise, tissue can be

used directly after peeling on the day of separation. The tissue could be ground to a fine powder in liquid nitrogen and

the genomic DNA is isolated using an improved tab method (Doyle & Doyle, 1987) or by using any commercially

available DNA extraction kit. Similarly, for RNA isolation, tissue could also be ground to a fine powder in liquid nitro-

gen and the total RNA could be isolated by using CTAB protocol (Chang, Puryear, & Cairney, 1993) or TRIzol

Reagent (Rio, Ares, Hannon, & Nilsen, 2010) or by commercially available RNA extraction kit. The RNA sample’ con-

centrations can be estimated by using RNA high sensitivity Assay kit such as QubitRNA high sensitivity assay kit (Life

Technologies, CA, the United States) and the RNA Nano 6000 assay kit can evaluate RNA integrity. DNA/RNA purity

and quantity can be estimated with the NanodropBiospectrophotometer (Eppendorf, Germany).

31.2.1.2 Library preparation

The genomic libraries and cDNA libraries are constructed for DNA and RNA samples, respectively. RNA/DNA sam-

ples are extracted from fragmented sample tissue/cells. Through reverse transcription, RNA is converted to cDNA.

DNA fragments are converted to the library by ligation with sequencing adapters containing specific sequences

designed to interact with the NGS platform. The size of target DNA fragments in the final library is a key parameter

for NGS library construction. Three approaches are available to fragment nucleic acid chains: physical, enzymatic, and

chemical. DNA fragmentation is typically done by physical methods (acoustic shearing and sonication) or enzymatic

methods (nonspecific endonuclease). The applications also determine the size of an RNA-Seq library.

Scientists typically do fundamental gene expression analysis using single-end 100 base reads. In most instances the

RNA is fragmented before conversion into cDNA, which is typically done using controlled heated digestion of the

FIGURE 31.2 Workflow of SNP discovery and thereby its analysis through the de novo�based strategy. The generalized workflow from computa-

tional SNP discovery and can be applied for SNP discovery in plants that do not have deposited databases of reference genome/unigene/transcriptome.

Thus it requires the creation of Mock reference from the same raw sequence reads. SNP, Single-nucleotide polymorphisms.
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RNA with RNase in the presence of a divalent metal cation (magnesium or zinc) (Forconi & Herschlag, 2009). Once

the starting DNA has been fragmented, the fragment ends are blunted and 50 ends are phosphorylated using a mixture

of three enzymes: T4 polynucleotide kinase, T4 DNA polymerase, and Klenow large fragment. Next, the 30 ends are A-

tailed using either Taq polymerase or Klenow fragment. During the adapter ligation the optimal adapter: fragment ratio

is 10:1, calculated based on copy number or molarity. Too much adapter favors the formation of adapter dimers that

can be difficult to separate and dominate in the subsequent PCR amplification.

For mRNA sequencing libraries, methods have been developed based on cDNA synthesis using random primers,

oligo-dT primers, or by attaching adapters to mRNA fragments followed by some form of amplification. The mRNA

can be primed by random oligomers or by an anchored oligo-dT to generate first-strand cDNA and it is converted into

ds cDNA via PCR. The controlled heated digestion of RNA works well for 6�12 samples because this is a rapid pro-

cess (5�10 min) but prone to overfragmentation if not well controlled (Forconi & Herschlag, 2009). Therefore it is dif-

ficult to use in an HTP platform. The NEBNext DNA fragmentase enzyme mix (New England Biolabs, United

Kingdom) is available that can cleave ds cDNA molecules to overcome these problems, which provides more uniform

libraries when processing numerous samples. Both molecular fragments are ligated into a suitable sequencing vector

molecule for the next-generation platform (Head et al., 2014).

31.2.1.3 Next-generation sequencing

The constructed libraries are clonally amplified for sequencing. The sequencer utilizes these libraries separately of

DNA and cDNA for genome and transcriptome sequencing, respectively (Berglund, Kiialainen, & Syvänen, 2011). This

machine generates a considerable amount of nucleic acid sequence called raw sequence data. Illumina, Roche/454 Life

Sciences, Life Technologies/Applied Biosystems SOLiD, Life Technologies/Ion Torrent, and Helicos BioSciences are

commonly used platforms next-generation platforms (Petersen & Coleman, 2020).

31.2.1.4 Quality control and alignment to the reference genome

All raw data obtained are further processed through filtering parameters. After removing reads containing adapter or

ploy-N and low-quality reads from raw data, high-quality clean data collected in FASTQ format are used for reference-

based assembly. In reference-based assembly, reads are assembled and align simultaneously. The alignment generates

the map file, which is used for SNP calling. Reference-based assembly requires that the organism must have a

suitable reference genome. The assembly tools are Trinity (Grabherr et al., 2011) IDBA-UD (Peng et al., 2013), Oases

(Schulz, Zerbino, Vingron, & Birney, 2012), Trans-abyss (Simpson et al., 2009), etc.

31.2.1.5 Single-nucleotide polymorphism calling

The SNP calling aims to determine where positions there are polymorphisms or where positions at least one of the bases

differ from a reference sequence; the latter is also sometimes referred to as variant calling or SNP. The accuracy of the

alignment has a crucial role in variant detection. Incorrectly aligned reads may lead to errors in SNP and genotype call-

ing, so alignment algorithms need to be able to cope with sequencing errors and potentially real differences between the

reference genome and the sequenced genome that are due to polymorphisms. SNP caller such as ComB (Souaiaia,

Frazier, & Chen, 2011), HaploSNPer (Tang, Leunissen, Voorrips, van der Linden, & Vosman, 2008), QualitySNP

(Tang, Vosman, Voorrips, van der Linden, & Leunissen, 2006), SNP-PHAGE (Matukumalli et al., 2006), GTAK

(McKenna et al., 2010), SNiPlay (Dereeper et al., 2011), SNiPlay3 (Dereeper et al., 2015), GBS-SNP-CROP (Melo,

Bartaula, & Hale, 2016), UGbS-Flex (Qi et al., 2018), GB-eaSy (Wickland, Battu, Hudson, Diers, & Hudson, 2017),

Fast-GBS (Torkamaneh, Laroche, Bastien, Abed, & Belzile, 2017), freebayes (Bian et al., 2018) SOAPsnp (Li et al.,

2009), SAMtools (Li, 2011) can be utilized for the mining of SNPs from the map file.

31.2.2 De novo single-nucleotide polymorphism discovery

In de novo sequence data the grouping of the sequence data that belong to the same region of the genome, special

assembly tools are employed to split up the input datasets that are not assembled as contigs. When the number of reads

becomes too large, then the process consumes time. Specialized tools like d2cluster (Burke, Davison, & Hide, 1999),

Teraclu and TGICL (Pertea et al., 2003) have been developed to perform initial segregation of sequence fragments into

homologous groups, which are further decomposed into clusters of unique origin. After the clustering step, each cluster

needs to be processed to align all reads within the cluster. All nucleotides from different reads simultaneously on the

gene or genome are aligned and can be easily compared. If some fragments cannot be properly aligned, they do not

Computational approaches toward single-nucleotide polymorphism discovery Chapter | 31 517



belong to a single cluster and are split into a second cluster. After individual reads have been clustered into aligned

homologous groups, the final step of polymorphism identification is finding variations in the alignment file and apply-

ing a scoring scheme.

The generalized workflow for de novo�based SNP discovery is shown in Fig. 31.2. These two phases of de novo

SNP discovery are described in detail in the following sections.

Sample preprocessing and DNA or RNA extraction, library preparation, and sequencing steps are the same as

described earlier for the reference-based approach (Sections 31.2.1.1�31.2.1.3 and 31.2.1.5).

31.2.2.1 Quality control and de novo assembly

The quality control of raw reads is done as described in Section 31.2.1.4. In a de novo genome or transcriptome assem-

bly and annotation project, the raw nucleotide sequence is assembled as completely as possible and then annotated with

a nonredundant database (NR database). This assembled genome or transcriptome can be used as a reference for map-

ping or alignment. The assembly of raw sequence reads into contigs can be performed using assembler tools such as

Velvet (Zerbino, 2010) SPAdes (Bankevich et al., 2012), Trinity (Grabherr et al., 2011), IDBA-Tran (Peng et al., 2013),

Oases (Schulz et al., 2012), SOAPdenovo (Xie et al., 2014), trans-abyss (Simpson et al., 2009), Multiple-k (Surget-

Groba & Montoya-Burgos, 2010; Martin et al., 2010), BinPacker (Liu, Yu, Jiang, & Li, 2016; Liu, Wu, Li, &

Boerwinkle, 2016; Liu, Li, et al., 2016), TransLiG (Liu, Yu, Mu, & Li, 2019), etc.

31.2.2.2 Alignment or mapping of high-quality raw read to the mock reference genome

The high-quality raw read is mapped against the newly generated reference of genome or transcriptome. Read mapping

aligns the reads on reference genomes. The alignment tools such as TopHat (Trapnel et al., 2009), Read-Split-Run (Bai,

et al., 2016), and bowtie (Langmead, 2010) can take input of reference genome and a set of high-quality raw reads.

These tools can align each read set on the reference genome, reading the mismatches and indels of some short frag-

ments on the two ends of the reads. The mapping tools such as TopHat (Trapnell, Pachter, & Salzberg, 2009), Bowtie

(Langmead, 2010), WIT (Kumar, Agarwal, & Ranvijay, 2019), SRmapper (Gontarz, Berger, & Wong,2013), SRPRISM

(Morgulis & Agarwala, 2020), HISEA (Khiste & Ilie, 2017), HISAT2 (Kim, Paggi, Park, Bennett, & Salzberg, 2019),

BWA (Li & Durbin, 2009), Bowtie 2 (Langmead & Salzberg, 2012), BarraCUDA (Klus & Lam, 2012), RazerS 3

(Weese, Holtgrewe, & Reinert, 2012) are used for the generation of the map file. The generated map file is being uti-

lized for the calling of SNPs by using SNP caller tools. Some commonly used SNP discovery tools such as sequence

alignment, reference-based sequence assembly, de novo assembly, and SNP calling are listed in Table 31.1.

31.3 Single-nucleotide polymorphism annotation

It is a crucial step to transform newly discovered SNPs into meaningful information. These meaningful annotations of

SNPs provide pivotal information such as the affected genes, the variant’ effects at the protein products level, and the

minor allele frequency. The output from the variant discovery tools or pipelines is a huge variant calling format (VCF)

file containing hundreds of thousands of rows. The VCF file contains both SNPs and small insertions and deletions

(INDELs). These VCF files are being annotated using several variant identification tools, such as ANNOVAR (Wang

et al., 2010), SnpEff (Cingolani et al., 2012), AnnTools (Makarov et al., 2012), and PolyPhen (Thusberg, Olatubosun,

& Vihinen, 2011). A dbNSFP tool is a combination of many programs such as SIFT, Polyphen2, LRT, PhyloP, and

MutationTaster into a single database for annotation and filtering purposes (Liu, Jian, & Boerwinkle, 2011). Recently,

dbNSFP has upgraded to include more databases and tools, that is, FATHMM, Mutation Assessor, and others, and also

provides the ability to annotate splice-site variants as well (Liu, Li, et al., 2016; Liu, Wu, et al., 2016; Liu, Yu, et al.,

2016). Many developed tools can annotate lists of genes regarding their biological product role and filter the consider-

able variant lists. However, such tools require advanced computational skills for both the installation process and their

usage (Hart et al., 2016). There are web services available to annotate the SNPs. For instance, GoGene is a web service

that can annotate the gene for an SNP using the gene ontology (GO) and Medical Subject Headings (MeSH) vocabular-

ies (Plake, Royer, Winnenburg, Hakenberg, & Schroeder, 2009). Var2GO is the first web tool that permits to upload a

complete raw variants file, annotate both the variants and the related genes, and interactively filter them, obtaining a

reduced file with all the needed information (Granata, Sangiovanni, Maiorano, Miele, & Guarracino, 2016). There are

also some command-line tools such as AnnoKey (Park, Nguyen-Dumont, Kang, Verspoor, & Pope, 2014) SNP2GO

(Szkiba, Kapun, von Haeseler, & Gallach, 2014), which have been used to annotate the SNP variants. There are some

more command-line tools like GEMINI (Paila, Chapman, Kirchner, & Quinlan, 2013), KGGSEQ (Li et al., 2012),
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TABLE 31.1 List of single-nucleotide polymorphism (SNP) discovery tools, namely, sequence alignment, reference-

based sequence assembly, de novo assembly, and SNP calling.

Process Tool References

Sequence alignment TopHat 2 Kim et al. (2016)

GSAlign Lin and Hsu (2020)

AVID Bray, Dubchak, and Pachter (2003)

BLAST Altschul, Gish, Miller, Myers, and Lipman (1990)

BBBWT Lippert (2005)

BALT Kent et al. (2002)

BLASTZ Schwartz et al. (2003)

Cgaln Nakato and Gotoh (2010)

Chain Cleaner Suarez et al. (2017)

Harvest Treangen et al. (2014)

LAGAN Brudno et al. (2003)

LAST Kiełbasa, Wan, Sato, Horton, and Frith (2011)

MAGIC Swidan, Rocha, Shmoish, and Pinter (2006)

MUMmer4 Marçais et al. (2018)

Minimap2 Li (2018)

MAQ Li, Ruan, et al. (2008), Li, Li, et al. (2008)

HISTAT Kim, Langmead, and Salzberg (2015)

HPG Aligner Tárraga et al. (2014)

Segemehl Hoffmann et al. (2009)

SSAHA Ning et al. (2001)

Kart Lin and Hsu (2017)

STAR Dobin et al. (2013)

SpliceMap Au, Jiang, Lin, Xing, and Wong (2010)

MapSplice Wang, Li, and Hakonarson (2010)

GSNAP Wu and Nacu (2010)

Reference-based sequence
assembly

Scallop Shao and Kingsford (2017)

TransComb Liu, Li, et al. (2016), Liu, Yu, et al. (2016), Liu, Wu, et al. (2016)

StringTie Pertea et al. (2015)

RaGoo Alonge et al. (2019)

RGAAT Liu et al. (2018)

RECORD Buza, Wilczynski, and Dojer (2015)

Cufflinks Trapnell et al. (2010)

Bayesember Maretty, Sibbesen, and Krogh (2014)

IsoInfer Feng, Li, and Jiang (2011)

IsoLasso Li, Feng, and Jiang (2011)

iReckon Mezlini et al. (2013)

CEM Li, Gui, Kwan, Bao, and Sham (2012)

CIDANE Canzar, Andreotti, Weese, Reinert, and Klau (2016)

(Continued )
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Plink/SEQ (Plink/SEQ Home Page), which are more focused on variant rather than gene annotation, and all exclusively

usable from the command-line interface.

31.4 Single-nucleotide polymorphism database

The rapid development in HTP genotyping has opened up new avenues in genetics while at the same time producing

immense data handling issues and efficient data storage and manipulation of SNP genotypes, and access by multiple

users are the major issues. Therefore many of the databases have been developed to address some of the issues

TABLE 31.1 (Continued)

Process Tool References

De novo assembly BinPacker Liu, Li, et al. (2016), Liu, Yu, et al. (2016), Liu, Wu, et al. (2016)

Bridger Chang et al. (2015)

Trinity Grabherr et al. (2011)

IDBA-Tran Peng et al. (2013)

SOAPdenovo-Trans Xie et al. (2014)

ABySS Simpson et al. (2009)

Oases Schulz et al. (2012)

Velvet Zerbino (2010)

SNP calling VarSome Kopanos et al. (2019)

GATK McKenna et al. (2010)

BreakDancer Chen et al. (2009)

SOAP Li et al. (2008)

VarScan Koboldt et al. (2009)

Samtools Li (2011)

SnpEff Cingolani et al. (2012)

CoVaCS Chiara et al. (2018)

AMLVaran Wünsch, Banck, Müller-Tidow, and Dugas (2020)

Platypus Rimmer et al. (2014)

SNVer Wei, Wang, Hu, Lyon, and Hakonarson (2011)

VarDict Lai et al. (2016)

LoFreq Wilm et al. (2012)

QCALL Le and Durbin (2011)

Dindel Albers et al. (2011)

Atlas-SNP2 Challis et al. (2012)

CRISP Bansal (2010)

SeqEM Martin et al. (2010)

SLIDERII Malhis and Jones (2010)

SNP-o-matic Manske and Kwiatkowski (2009)

SOAP2 Li et al. (2009)

mrsFASTultra Hach et al. (2014)
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(Fong et al., 2010; Mitha et al., 2011; Orro, Guffanti, Salvi, Macciardi, & Milanesi, 2008) while focusing on major

SNP databases available for plants. In recent times a wide range of online and freely accessible databases are devised to

recognize SNPs in genomic sequences. The lack of genomic databases designed to host crop SNP array data may con-

tribute to the poor data availability after publication. Hence, the National Center for Biotechnology Information (NCBI)

hosts the generic database dbSNP. However, researchers who work on nonhuman species have not significantly adopted

this, and recently, NCBI decided to phase out support for nonhuman organisms. Crop research communities maintain

SNP data in specialized databases, such as Panzea for maize (Zhao et al., 2006) and Triticeae toolbox for small grain

crops (Blake et al., 2016). Some common SNP databases specific to plants are listed in Table 31.2.

31.5 Single-nucleotide polymorphism genotyping

There are numbers of methods available for genotyping of SNP but all of them are not equally useful. SNP genotyping

relies on the ability to distinguish a single-base match from a single-base mismatch. There are many methods such as

TABLE 31.2 Some common single-nucleotide polymorphism (SNP) databases specific to plants.

SNP database Organism References

dbSNP Commonly for all organisms but this has not been significantly adopted
by researchers who work on nonhuman species

https://www.ncbi.nlm.nih.gov/snp/

Panzea Maize Zhao et al. (2006)

Triticeae toolbox Small grain crops Blake et al. (2016)

GrainGenes Small grain crops Matthews, Carollo, Lazo, and
Anderson (2003)

SorGSD Sorghum Luo et al. (2016)

CropSNPdb Wheat and brassica SNPs array data Scheben et al. (2019)

POLYMORPH
website

Arabidopsis thaliana http://polymorph.weigelworld.org/
cgi-bin/retrieve_snp.cgi

SNiPlay Currently database of 4 Vitis projects and one Coffea project Dereeper et al. (2011)

AutoSNPdb Currently containing database barley, brassica, rice, and wheat Duran et al. (2009)

The maritime pine
SNP database

Contains information of SNPs in the ESTs in pine trees Le Dantec et al. (2004)

ESTree DB SNP report of peach tree and almond Lazzari et al. (2005, 2008)

PlantMarkers
database

For both plants and animals Rudd, Schoof, and Mayer (2005)

TreeSNPs For plants Clément, Fillon, Bousquet, and
Beaulieu (2010)

The BGI-RIS
database

For rice Zhao et al. (2004)

IRIS For rice Bruskiewich et al. (2003)

Orygenes DB For rice Droc, Perin, Fromentin, and
Larmande (2009)

EUSNPDB Eucalyptus

QualitySNP For plants Tang et al. (2006)

PoMaMo For potato http://www.gabipd.org/projects/
Pomamo

TAED Comparative genomics data of plants http://www.bioinfo.no/tools/TAED

Plant genome
central

For plant http://www.ncbi.nlm.nih.gov/
genomes/plants/plantlist.html
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minisequencing, electrophoresis and fluorescence detection, molecular beacons, array hybridization, fluorescence detec-

tion, MALDI-TOF MS, fluorescence polarization, pyrosequencing, microarrays, and fluorescence detection and invasive

cleavage, allele-specific PCR. Technological advancements have made SNP genotyping efficient as well as automated.

The SNP genotyping can be broadly classified into two groups, gel- and nongel-based assays.

31.5.1 Gel-based single-nucleotide polymorphism genotyping

There are three gel-based methods available for SNP genotyping.

31.5.1.1 Cleaved amplified polymorphic sequence markers

The first one is the RFLP assay, in which SNP can be detected by RFLP of PCR products whenever the presence of

SNP eliminates the restriction site for a particular restriction enzyme. After the digestion of the PCR product, it is sub-

jected to RFLP to detect the differences in patterns that will be due to SNP and such markers are called cleaved ampli-

fied polymorphic sequence (CAPS) markers (Fig. 31.3).

31.5.1.2 Single-stranded conformation polymorphism

The second method of gel-based SNP genotyping is single-stranded conformation polymorphism (SSCP) is based on

the DNA conformation (Fig. 31.4).

The third method of gel-based SNP genotyping is allele-specific amplification. It is based on distinguishing between

two DNA targets differing at one nucleotide position by hybridization (Wallace et al., 1979). Two allele-specific probes

are designed with the polymorphic base in the central position of the probe sequence. Only the perfectly matched

probe-target hybrids remain stable under optimized assay conditions and hybrids with one-base mismatch are unstable.

Allele-specific probes (AS probe) with reverse dot-blot formats were used to detect the first polymorphisms analyzed

by PCR in the agriculture field and they are still used in some laboratories (Fig. 31.5). To take full advantage of new

AS probe formats for SNP typing, it is necessary to use detection methods that provide high accuracy, high sensitivity,

and HTP (Kim et al., 2016).

FIGURE 31.3 Representation of cleaved amplified polymorphic sequence marker system for single-nucleotide polymorphisms genotyping.
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31.5.2 Nongel-based single-nucleotide polymorphism genotyping

The nongel-based method for SNP genotyping requires PCR amplification; however, the amplified product is detected

through the nongel techniques that will discriminate between the wild and mutant alleles. The nongel techniques detect

a mismatch or a perfect match between the amplified product and oligonucleotide probes. Several nongel-based meth-

ods like minisequencing, fluorescence detection, molecular beacons, MALDI-TOF MS (matrix-assisted laser

FIGURE 31.5 Schematic illustration of

the tetra-primer allele-specific

polymerase-chain reaction for single-

nucleotide polymorphism genotyping.

Upper two allele-specific amplicons are

generated using two pairs of primers, one

pair (outer forward and reverse inner) pro-

ducing an amplicon representing the

nonallele-specific product. The specificity

of the inner primers is conferred by two

mismatches, one between the 3’terminal

base of an inner primer and the template

and the second at position-2 from the

3’terminus (indicated by an asterisk).

Lower by positioning the two outer pri-

mers at different distances from the poly-

morphic nucleotide, the two allele-specific

amplicons differ in length, allowing them

to be discriminated by gel electrophoresis.

FIGURE 31.4 The polymerase-chain reaction�based single-stranded

conformation polymorphism analysis. The single-nucleotide polymorph-

isms (represented by a dot on a DNA strand) lead to different conforma-

tions of single-strand for the mutant DNA (M) compared with the wild

type (w) and thus resulting in differential mobilities in nondenaturing

gel electrophoresis.
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desorption/ionization time-of-flight mass spectrometry), fluorescence polarization, pyrosequencing, microarrays, and

invasive cleavage (Gupta, Roy, & Prasad, 2001). Two commonly used techniques, TaqMan assay and minisequencing

for SNP genotyping, are being discussed.

31.5.2.1 TaqMan assay

The TaqMan assay is based on the 5’ nuclease activity of Taq polymerase that displaces and cleaves the oligonucleotide

probes hybridized to the target DNA, generating a fluorescent signal (Livak, Flood, Marmaro, Giusti, & Deetz, 1995).

Two TaqMan probes differing at the polymorphic site are needed: one probe is complementary to the wild-type allele

and the other to the variant allele. These probes have different fluorescent dyes attached at the 5’ end and a quencher

attached at the 3’ end (Livak,1999). If there is a match between the primer�probe and target DNA, then it will be wild

type and if there is a mismatch, then it will be the mutant allele having the SNP (Fig. 31.6).

31.5.2.2 Minisequencing

SNPs can be validated by sequencing the few bases around the SNP site through Sanger’s dideoxynucleotide methods.

In this reaction a primer that anneals to its target DNA immediately adjacent to the SNP is extended by a DNA poly-

merase with a single-nucleotide complementary to the polymorphic site (Syvänen, Aalto-Setälä, Harju, Kontula, &

Söderlund, 1990). Different technologies are available for analyzing primer extension products. The use of labeled or

unlabeled nucleotides, ddNTP combined with dNTP, or only ddNTP in the minisequencing reaction depends on the

product detection method. The multiplexing ability also relies on the technology used. The most common technologies

used for analyzing minisequencing products are fluorescence detection, MALDI-TOF MS, and microarrays.

31.6 Application of single-nucleotide polymorphisms in plants

Major impediments in meeting global food demands in light of the growing world population include deterioration and

shrinkage of agricultural lands due to salinization, environmental pollution, temperature, global climate change, urban

and industrial growth, etc. (FAO, 2020). Therefore the development of new genotypes that could grow in deteriorated/

marginal/waste agricultural lands is the need of hour. In this context the novel crop improvement approaches are highly

desirable (Lateef, 2015). Thus identification of SNPs which enables the selection of desired lines in large-scale popula-

tions is of immense importance in crop breeding programs in an efficient and economical way (Brennan et al., 2014).

As the genome of many plants has been fully sequenced, the discovery of interest-specific sequence differences

becomes easier (Fournier-Level et al., 2013). The application of SNPs in detecting relationships between allelic forms

of a gene and phenotypes, prevalent in diseases with multifactor genetics, high-resolution genetic map construction,

linkage disequilibrium�based association mapping, genetic diagnostics, genetic diversity analysis, cultivar

FIGURE 31.6 Probe binding and primer extension in a TaqMan SNP Genotyping assay. Allelic discrimination is achieved by the selective annealing

of matching probe and template sequences, which generates an allele-specific (fluorescent dye-specific) signal.
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identification, phylogenetic analysis, etc., creates great potential for characterization of genetic resources (Freudenthal,

Ankenbrand, Grimm, & Korte, 2019). Thus in the following sections, some common applications of the SNP marker in

the field of agriculture are discussed in detail.

31.6.1 Genetic diversity

Information on genetic diversity and relationships among lines and varieties is important to plant breeders for the

improvement of crop plants. Knowledge of genetic diversity is also valuable for identifying novel alleles, which may

then be introgressed into elite backgrounds within breeding programs. Previously, assessing diversity on a genome-wide

scale was based on marker systems such as AFLPs, SSRs, or isozymes (Vigouroux et al., 2005). However, with HTP

SNP technology development, it has become possible to assess diversity within specific genes or genomic regions more

efficiently and reliably. Thus in maize, genetic diversity was studied using SNPs at 21 loci along chromosome 1

(Tenaillon et al., 2002). This study facilitated an understanding of the forces contributing to genetic diversity in maize.

Similarly, genetic polymorphism studies have been performed among Tongkat Ali’s different accessions (Eurycoma

longifolia), a plant used in herbal remedies and health supplements through allele-specific oligonucleotide hybridization

(Osman et al., 2003). On average 64% loci were found polymorphic, and the populations were found to exhibit a high

degree of diversity. SNPs have also been used for cultivar identification in malting barley and wheat cultivars (Batley

& Edwards, 2007). These assays could also be applied for distinctness, uniformity, and stability testing and assessing

plant breeder’s rights (Chiapparino, Lee, & Donini, 2004). Van Inghelandt, Melchinger, Lebreton, and Stich (2010)

studied the comparative diversity analysis based on SNP markers among the maize varieties and obtained 4 (Iodent and

SSS) to 25 (Flint) group-specific alleles with a gene diversity index of 0.32. Singh, Choudhury, et al. (2013), Singh,

Gupta, et al. (2013) investigated comparative genetic diversity analysis between SSR and SNP markers among the

Indian rice varieties. It was observed that SNP markers detected a greater extent of variation (45.2% for SNP and

13.3% for SSR) and classified the rice accessions more accurately. Du et al. (2019) investigated the genetic diversity

among varieties and subpopulations of pepper (Capsicum spp.) using SNP marker that classified the pepper populations

into various groups, namely, long horn-fruited followed by the shorthorn-, linear-, and blocky-fruited populations. Xia

et al. (2019) studied the population structure analysis based on the SNP markers of 200 individuals of African oil palm

(Elaeis guineensis) and classified them into five subgroups. Adawiah, Norliza, Fairuz, Norzihan, and Kalsom (2016)

discovered the 934 and 7959 putative SNPs in Eksotika and Sekaki, varieties of papaya, respectively, and these can be

utilized for the genetic diversity analysis and variety identification.

31.6.2 Genetic mapping

The whole-genome trait mapping by allele association requires high marker density, which SNPs can readily provide.

In combination with their HTP discovery and detection methodology, the abundance of SNPs makes them

suitable markers of choice for applications such as linkage mapping, QTL mapping, and association mapping. SNP-

based genetic mapping has been demonstrated both on large and small scale, in both models (Schmid et al., 2003) and

nonmodel (rice, wheat, pepper, date palm, cannabis, potato, tomato, etc.) plants (Carpentier et al., 2008). SNPs identi-

fied within ESTs or large genomic fragments can be applied for genetic mapping of complex traits. This approach

enables the genetic mapping of specific genes of interest and assists in identifying linked or perfect markers for traits

and increasing the density of markers on genetic maps (Rafalski, 2002). SNP markers also allow the integration of

genetic and physical maps. SNPs can also develop haplotyping systems for genes or regions of interest (Delourme

et al., 2013). A genome-wide set of SNP markers in Arabidopsis thaliana has been identified (Schmid et al., 2003).

Alternatively, a targeted approach may be undertaken to map candidate genes, or the fine mapping of specific genomic

regions that may have previously been identified through QTL mapping and SNPs has also been used to remap the

genetically mapped genes (Ching & Rafalski, 2002). The abundance of SNPs makes them useful for placing ESTs or

candidate genes onto a genetic map, which has been previously constructed with other markers. Thus SNPs have been

identified and characterized in soybean ESTs which have been used to develop soybean linkage maps for its association

with quantitative trait loci (Zhu et al., 2003).

Identification of EST-based SNPs associated with traits of interest in barley has been made for the syntenic studies

with other related species (Kota, Varshney, Thiel, Dehmer, & Graner, 2001). Similarly, SNPs have been genetically

mapped in melon (Morales, Roig, Monforte, Arus, & Garcia-Mas, 2004) and cassava (Lopez et al., 2005). SNPs have

also been applied in maize to generate a high-resolution genetic map (Sanchez-Villeda et al., 2003). Yu et al. (2011)

analyzed a comparative study of SNP-based map to that of a previously generated RFLP/SSR-based QTL map in rice
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populations for traits such as yield, number of tillers per plant, number of grains per panicle, and grain weight. SNP-

based maps were found to be denser than the RFLP/SSR-based QTL maps. In pea, 64,754 SNPs have been analyzed by

short-read sequencing, which was used to construct a whole-genome genotyping by sequencing (WGGBS)-derived pea

genetic map, which was found to be collinear with previous pea consensus maps (Boutet et al., 2016). Geleta,

Gustafsson, Glaubitz, and Ortiz (2020) constructed the genetic linkage map of Lepidium campestre based on 2330 SNP

markers and the final linkage map consisted of eight linkage groups.

31.6.3 Phylogenetic analysis

Plant phylogenetic and evolutionary studies have traditionally relied on sequence diversity, and therefore SNPs are the

most interesting than all other sequence variations due to their dense abundance in the genome. Nuclear and chloroplast

genes are a rich source of phylogenetic information for evolutionary analysis in plants. The diversity of the sequence

and genotyping of these SNPs can be used to infer phylogenetic and evolutionary relationships in a wide variety of spe-

cies. Genetic inheritance studies could be deduced through analysis of SNP diversity and conservation among sequences

from individuals. By considering mutation rates a molecular clock may also be applied to estimate the timing of species

divergence. Increasing quantities of sequence and SNP data for genes in a wide variety of species is slowly uncovering

the molecular mechanisms of evolution within genomes and between species. It is possible to utilize other molecular

markers for phylogenetic analysis. However, without the knowledge of the sequence variation, degrees of similarity

only can be assessed and homoplasy cannot be ruled out (Paule et al., 2020). Shavrukov et al. (2014) used the 863 SNP

markers for the phylogenetic analysis in bread wheat from Kazakhstan and they identified as unique to specific culti-

vars, and clusters of these markers showed specific patterns on the consensus genetic map for each cultivar.

Intervarietal polymorphism-based phylogenetic analysis showed that the ancient cultivar Erythrospermum 841 was

the most genetically distinct from Kazakhstan’s other nine cultivars, falling in a clade with the American cultivar

Sonora and Central and South Asian genotypes. The modern cultivar, Kazakhstanskaya 19, also belongs to a separate

clade, together with the American cultivar, Thatcher. Remaining eight cultivars share a single subclade, categorized

into four clusters. The phylogenetic relationships among 199 accessions of chrysanthemum (Chrysanthemum morifolium

Ramat.) have been performed based on 92,830 SNPs. All the accessions were found to be grouped into five clades

(Chong et al., 2016). Acquadro et al. (2017) analyzed the phylogenetic relationship between the 76 accessions of egg-

plant species (Solanum sp.). All the 76 accessions were found to be clustered into four clades.

31.6.4 Marker-assisted selection

Functional genomic approaches such as transcriptomics, targeting-induced local lesions in genomes (TILLING), homol-

ogous recombinant, association mapping, and allele mining are all strategies to identify functional markers for breeding

goals, such as agronomic traits and biotic and abiotic stress resistance (Salgotra & Stewart, 2020). Molecular markers

are essential for mapping candidate genes, marker-assisted breeding, and the map-based cloning of genes underlying

traits. Marker-assisted selection (MAS) is the often used or more prominently used genetic marker in plant breeding

programs, which allows the breeder to achieve an early selection of a trait or a combination of traits. Molecular markers

are 100% inheritable to the progeny, therefore using these markers to select for allow heritable trait is more effective

and less expensive than phenotypic selection for that trait. The abundance of SNPs in plant genomes makes them attrac-

tive tools for MAS and map-based cloning and SNPs and indel molecular markers can be applied for MAS (Carrillo-

Perdomo et al., 2020).

Markers loosely linked to a trait may suffer from recombination between the marker and the gene. Linked markers

are also not usually transferable between populations originating from different parents due to a lack of polymorphism.

Markers within the gene responsible for the trait are considered perfect markers. These are highly valuable for breeding

as recombination between the marker and gene is practically eliminated, which is frequently transferable between

populations.

SNPs are highly stable markers that may contribute directly to phenotype and they can serve as a powerful tool for

MAS. Once SNP markers are found to be associated with a target trait, they can be applied by plant breeders for MAS

to identify individual plants containing a combination of alleles of interest from large segregating populations. SNPs

can be identified within or close to genes underlying agronomic traits. Although the SNP may not be responsible for

the mutant phenotype, they may be applied for MAS and the positional gene cloning in the desired region of genome

(Gupta et al., 2001). Association of SNPs with genes of economic value has already been demonstrated, such as SNP

markers for supernodulation in soybean have been identified and the identified SNP in the GmNARK gene has been
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suggested as a marker for hypernodulating mutation. The SNP was converted to a single-nucleotide amplified polymor-

phism marker to allow direct MAS for supernodulation at an early growth stage without inoculating and phenotyping

the roots (Kim, Van, Lestari, Moon, & Lee, 2005). EST-based SNPs are associated with the Adh genes encoding alco-

hol dehydrogenase involved in the glycolytic pathway, which provides an ideal model for SNP discovery and analysis

that can be used for genetic mapping and QTL analysis and MAS in sugarcane (Grivet, Glaszmann, Vincentz, Da Silva,

& Arruda, 2003). An HTP SNP genotyping system has been developed and used to select barley alleles carrying super-

ior alleles of β-amylase, a key enzyme involved in the degradation of starch during the malting process. The four allelic

forms of the enzyme were unambiguously identified by genotyping two SNPs using the SnuPE system. A CAPS marker

has also been developed, enabling the marker transfer to other laboratories that do not have SnuPE assay capabilities.

These assays provide a rapid and inexpensive method for screening large numbers of individual plants, allowing the

desirable allelic introgression into breeding programs (Paris, Jones, & Eglinton, 2002).

Further works on MAS using SNPs in barley include identifying SNPs in the Isa gene, which has a potential role in

defense against pathogens. This gene was sequenced and screened for SNPs across 16 genotypes. This study showed lit-

tle diversity in cultivated barley and that SNPs could be a useful tool for the introduction of novel alleles from wild bar-

ley (Bundock & Henry, 2004). Furthermore, SNPs associated with grain germination have been characterized across 23

varieties for their suitability for MAS implementation (Russell et al., 2004).

An SNP marker has been developed for the waxy gene controlling amylose content in rice. Amylose is the main

component controlling the cooking and nutritional properties of cereals. Low amylose varieties are considered desirable,

and in rice, it has been shown that the high and low amylose types can be differentiated based on an SNP near the

waxy gene. This marker can be applied for MAS for the low amylose trait in seedlings (Gupta et al., 2001).

Additionally, SNPs associated with essential genes in rice include an SNP marker for the dwarfing gene. The SNP was

identified within an SSR flanking sequence and used for selection in various crosses. SNP-based markers for rice-blast

resistance genes have also been developed. These markers enabled mapping the Piz and Piz-t genes, demonstrating that

the SNPs are a valuable tool for gene mapping, map-based cloning, and MAS in rice (Hayashi, Hashimoto, Daigen, &

Ashikawa, 2004).

In wheat the SNP linked to the protein structure of adenine phosphoribosyltransferase has been identified. This gene

encodes the key enzyme, which converts adenine to adenosine monophosphate in the purine salvage pathway (Xing

et al., 2005). In wheat, further SNPs in genes of interest have been identified, including the Lr1 leaf rust resistance

gene. Infections can lead to severe yield losses and therefore the desire is to grow resistant cultivars. The SNP marker

development in the Lr1 gene has exhibited a dramatic improvement on the STS markers, which was not previously spe-

cific in 50% of cultivars tested. The growing number of wheat SNP markers available can open the possibility of intro-

ducing multiplexed assays, targeting loci to pyramid trait selection during wheat breeding (Tyrka et al., 2004). Beukert

et al. (2020) performed the MAS for improving rust resistance in hybrid wheat and thus findings suggested that MAS

seemed to be a robust and efficient tool to improve leaf rust resistance in European wheat hybrids. Genome-wide asso-

ciation studies (GWAS) identified SNP marker�trait associations (MTAs) for 10 traits across the genome of Foxtail

millet (Setaria italica). High-confidence MTAs for three crucial agronomic traits, including FLW (flag leaf width), GY

(grain yield), and TGW (thousand-grain weight) were identified. The significant pyramiding effect of identified MTAs

further supplemented its importance in breeding programs. Desirable alleles and superior genotypes were identified for

foxtail millet improvement through MAS.

Work has also been performed on MAS in less developed crop species. A number of 132 SNPs in quinoa have been

identified from ESTs. It was found that the SNP development from ESTs was a practical method for developing

species-specific markers and may provide the molecular differentiation required to monitor gene flow between culti-

vated quinoa and weedy species (Coles et al., 2005). Further potential applications in plants include a study of nucleo-

tide diversity in the pal1 locus of Scots pine. This gene is predicted to be associated with ozone tolerance, pathogen

defense, and metabolism of exogenous compounds, and SNPs within it could prove valuable for MAS in this species

(Dvornyk, Sirviö, Mikkonen, & Savolainen, 2002).

Qi, Talukder, Hulke, and Foley (2017) analyzed the SNP marker�based segregation of two downy mildew disease

resistance genes, PlArg and Pl8, which are highly effective against the causal fungus, Plasmopara halstedii races in

sunflower. The rust caused by the fungus Puccinia helianthi and downy mildew by obligate pathogen, P. halstedii, are

two of the most globally essential sunflower diseases. Four rust-resistant lines, HA-R3 (carrying the R4 gene), HA-R2

(R5), HA-R8 (R15), and RHA 397 (R13b), were each crossed with a standard line, RHA 464, carrying a rust gene R12

and a downy mildew gene PlArg, an additional cross of HA-R8 and RHA 397. Codominant SSR and SNP markers

linked to the target genes were used to discriminate between homozygotes and heterozygotes in F2 populations (Qi &

Ma, 2020). Trebbi et al. (2019) analyzed the association between SNP markers and seed toxicity in the Jatropha curcas
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L populations. The association study identified two new SNPs, SNP_J22 and SNP_J24, significantly linked to low tox-

icity with R2 values of 0.75 and 0.54. It was suggested that these two valuable SNP markers could be used for HTP,

marker-assisted breeding of seed toxicity in J. curcas.

31.7 Conclusion and prospects

Analysis of genetic diversity occurring within a given population is of significance for crop improvement. A variety of

molecular markers have been used for plant genetic diversity analysis. The SNPs are a significant component of crop

genomic diversity and are invaluable tools as genetic markers in research, breeding programs, and locating the genes

associated with plant-specific traits. With the availability of various computational approaches and advancements in

NGS technologies, SNP discovery became faster, efficient, and cost-effective, resulting in the identification of a large

number of genome-wide SNPs from many plant species. Furthermore, technological advancements have made SNP

genotyping more efficient as well as automated. Hence, SNPs are increasingly becoming the marker of choice for a

wide range of applications, including genetic mapping, SNP marker�assisted plant breeding and diversity analysis.
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32.1 Introduction

Due to change in their cellular and environmental factors, all organisms have mutations in the genome responsible for

genetic variations and thus show polymorphism. If these mutations occur within a nucleotide sequence of a gene, the

whole amino acid string of an open reading frame changed and form a functionally different new variant. Markers are

“character traits” whose patterns of inheritance can be traced in plants at different levels. The markers are used to get

more information regarding the genetics of other interested traits. Markers can be divided into three groups: morpholog-

ical markers (i.e., seed shape, seed coat color, and flower color), cytological markers (chromosome karyotypes, band-

ings, and repeats), and biochemical markers (isozymes) (Nadeem, Nawaz, Shahid, Doğan, & Comertpay, 2018).

In the early 20th century, scientists found genes that are arranged in linear order on chromosomes. Genes can be

linked and could be inherited in a group. The flanking gene within an area of the defined close interval are called

molecular DNA markers. Molecular markers, gene or identifiable DNA sequence, found in the genome at fixed loca-

tions and show association with the trait.

A genetic marker may be mini and microsatellites (long DNA sequence) or single-nucleotide polymorphism, SNP

(short DNA sequence)

Molecular markers are the source of potent informational tools that can be used to divulge the genetic exclusivity of

individuals, species, and populations in plant breeding (Davey, Hohenlohe, & Etter, 2011).

There are more molecular markers for the classification of genotype. Morphological traits are affected by the envi-

ronment but not molecular markers (Staub, Serquen, & Mccreight, 1997). In the breeding program, molecular marker

data would be of great interest to investigate the correlation between phenotypically and genetically similar cultivars

(Duzyaman, 2005). For crop improvement, different molecular techniques can be used to detect differences in between

DNA of separate plants (Jonah, Bello, Lucky, & A. Midau, 2011). The molecular markers can be a “sign posts” and

help to identify genes of interest. Molecular markers can be used in marker-assisted selection (MAS; Hoisington et al.,

2002). The information of quantitative trait loci (QTL) can dissect by markers.

The discovery of polymerase chain reaction (PCR) was brought a new class of DNA markers, which can be used in

the cloning of important genes by map-based cloning, synteny mapping, to get desirable genotypes by MAS, variability

studies, and phylogenetic analysis (Joshi & Deshpande, 2011).

To analyze different objective, DNA markers show many advantages over traditional phenotypic markers as they

provide more data. Therefore there are several types of molecular marker in plants, and each of them has their own

advantages and disadvantages (Cadalen et al., 1998). The development of molecular markers (or DNA) has changed a

lot in plant genetics and widely used in the area of the breeding program to improve varieties (Collard & Mackill,

2008).
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32.2 Genetic markers

Genetic markers have an important role in the plant-breeding field. Moreover, genetic markers are act as flags or sign;

linked with the target gene (Kebriyaee, Kordrostami, & Rezadoost, 2012). Genetic markers are mainly divided into two

types: (1) classical and (2) DNA/molecular markers.

32.2.1 Classical markers: The classical markers are further divided that include morphological
markers, cytological markers and biochemical markers

32.2.1.1 Morphological markers

Morphological markers could be used to discriminate qualities like growth pattern, color of flower, seed structure, and

other important agronomic traits by simply visualizing these characters. These markers are not required specific instru-

ments and easy to use. They required simple biochemical and molecular techniques. Breeders used successfully these

markers in the different breeding plants for numerous crops. However, there are some demerits of these markers like-

wise: the plant growth stages influenced these markers. They are limited in number and affected by various environ-

mental factors (Eagles, Bariana, & Ogbonnaya, 2001). Humans used various morphological markers in plant breeding

to develop new varieties since ancient times (Karaköy, Baloch, & Toklu, 2014).

32.2.1.2 Cytological markers

In cytology, chromosome karyotype and bands can show the structural features of chromosomes. The cytological mar-

kers are related with different banding patterns. They also changed according to size, shape, order, numbers, and posi-

tion of chromosomes. These variations can relate to distributions of euchromatin and heterochromatin in chromosomes.

There are different types of bands like G bands (Giemsa stain), Q bands (quinacrine hydrochloride), and R bands

(inverted G bands). These signs could be used in the characterization of normal and altered chromosomes. These mar-

kers helped in the identification of linkage groups and also in the physical mapping (Jiang, 2013). The physical maps

made by morphological and cytological markers can be used for genetic linkage mapping with the help of molecular

biology techniques. Nevertheless, there are only a few reports that show direct use of cytological markers in genetic

mapping and plant breeding.

32.2.1.3 Biochemical markers

Protein markers can be cataloged into markers. Isozymes are used as biochemical markers. These are different molecu-

lar forms or structural variants of enzymes. These are coded by various genes and have different molecular weights. As

they also count for difference in electrophoretic mobility but show the same functions. They are allelic variations of the

same genes. The electrophoretic mobility shift is due to amino acid substitution (point mutation) (Xu, 2010).

Biochemical markers are used in the detection of population structure, subdivision of population, gene flow, and genetic

diversity (Mateu-Andres & De Paco, 2005). They are codominant, cost-effective, and easily available. They can also be

used in seed purity and sporadically in plant breeding due to less number.

32.2.2 Molecular markers

Molecular markers are used for the analysis of genetic variation among individuals as they easily link the phenotypic

variation with genotypic variation. These have been used in the agronomic sector in recent decades. These are nucleo-

tide sequences. The nucleotide sequences are different between individuals and showed polymorphism that leads to

develop a marker. There are different types of molecular markers. During the last few decades, different systems contin-

uously evolved like in the 1980s restriction fragment length polymorphisms (RFLPs) were prominent but nowaday’s

high-throughput sequencing-based SNPs are prominent markers (Fig. 32.1)

32.3 Restriction fragment length polymorphism (RFLP)

RFLPs, hybridization-based, are the most studied molecular markers among the different markers. It was first discov-

ered and was used in human genome mapping. The polymorphisms in RFLPs based on the deletion, insertion, point

mutation, or transposons. First, restriction enzymes digest the DNA, run on agarose gel, and then transfer to nylon

membranes, followed by the hybridization of probes. The polymorphisms are restriction fragments of different sizes.
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The size depends on the type of restriction enzymes. Double-stranded DNA cleaved by restriction enzymes at specific

recognition sites (short sequences of DNA that are interspersed in plant and animal DNA) (Voet & Voet, 2004). RFLPs

are used for construction of genetic maps. They are used for the analysis of genomics for comparison. RFLPs are

mostly time-consuming and labor-dependent. For some plants, RFLPs show less polymorphisms. In many living organ-

isms, insertion or deletion can take place within restriction sites. Sometimes difference of restriction sites created due to

change in base pair. This difference resulting in base pair changes. Due to these variations, the recognition sites may

alternate or eliminate. Therefore, when homologous chromosomes are imperiled to digestion, different products are cre-

ated that can be identified by agarose gel and DNA hybridization.

RFLP markers are a powerful tool used for comparative as well as synteny mapping. Most RFLP markers are locus-

specific and codominant in nature. It is a simple method as no distinct apparatus is required. In RFLP, there is no need

to know the sequence used for a probe. There is only one need that is a genomic clone for the polymorphism. There are

very few RFLPs that have been sequenced. It uses larger amounts of DNA. It is very difficult to automate. In 1980s

and 1990s it was predominant, but since last decade, it lost its faith in breeding. Most plant breeders face the problem

as it is expensive and requires quality DNA for the study.

Soller and Beckmann (1983) were the first persons to analyze the roles of RFLP in plants. They correlated it with

varietal identification, marker-assisted introgression, surveys of genetic polymorphism, and identification and mapping

of quantitative traits. There are some benefits of RFLP markers in genetic analysis that included multiple allelic forms,

no pleiotropic effects on different traits, and lack of dominance (codominance).

32.3.1 Application of restriction fragment length polymorphism

32.3.1.1 Restriction fragment length polymorphism in DNA fingerprinting

RFLP is used in DNA fingerprinting. The restriction fragments pattern showed that this is the fingerprint for a clone. It

can also be used in the identification of an individual plant and cultivar. A single probe gives a little information; there-

fore to yield fingerprints, information from numerous probes should be combined. Scientists have used the probe

Molecular Markers

1980 1985 1990 1995 2000 2005 2010-

RFLP

RAPD,AFLP,SSR

PCR Technology

SNPs, SFPs

GoldenGate
assays, DArTs

Infinium assays CRoPS, 
RADSeq, RRLs

GBS

Hybridization PCR- based markers Array- based markers NGS- based markers

PAST Present Future 

FIGURE 32.1 Schematic representation of molecular markers in the 1980s RFLPs (hybridization) but now SNPs markers based on new sequencing

technologies. RFLP, restriction fragment length polymorphism; SNP, single-nucleotide polymorphism.
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approach for rice (Wang & Tanksley, 1989). The bacteriophage probe M13 has used in fingerprinting of plants, both

angiosperms and gymnosperms (Nybom, Rogstad, & Schaal, 1990).

32.3.1.2 Restriction fragment length polymorphism in species identification

RFLP data from chloroplast have been widely used in the identification of plant. Chloroplast genomes are more con-

served and smaller. Complete sets of probes are easily accessible. Many scientists have used the chloroplast RFLP data

in several plants species to identify and authenticate varieties and species like in Phyllanthus species (Sarin, Mohanty,

& demente, 2013)

32.3.1.3 Restriction fragment length polymorphism in comparative mapping

RFLP maps can be gathered valuable data on taxonomic associations and chromosome progression through the compar-

ison of maps. The tomato RFLP map has transferred to two Solanaceae species: potato and pepper by Tanksley,

Bernatzky, Lapitan, and Prince, 1988.

32.3.1.4 Linkage mapping with restriction fragment length polymorphism markers

Usually, RFLP maps are used for self-pollinating plants or plants that can produce inbred lines by self-fertilization. All

loci in these plants are generally homozygous. The inheritance in RFLP is different from the conventional one

(Fig. 32.2). The RFLP markers help in plant breeding to find the tight linkage between markers and genes of interest.

Such linkage gives information about desirable gene with help of an RFLP marker. Breeders frequently transferred

Parent 2
(True breeding, white-flower)

Parent 1
(True breeding, Red-flower)

6 Kb 8 Kb

6 Kb/6 Kb 8 Kb/ 8kb

R/R r/r

Parents

R/r

6 Kb

8 Kb/6 Kb

8 Kb
F1

Self

R/R R/R r/r r/r

6 Kb/6 Kb

6 Kb

8 Kb/6 Kb

6 Kb

8 Kb/6 Kb

6 Kb

8 Kb/8 Kb

8 Kb

8 Kb 8 Kb
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FIGURE 32.2 Comparison between RFLP marker and conventional marker controlling color of flower. Here the conserved gene is dominant. The

plant is homozygous at all loci. The RFLP marker showed a segregation ratio of 1:2:1 in F2 population. RFLP, restriction fragment length

polymorphism.
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single-gene traits from one genetic background to other background. There is a problem to find the disease-resistance

varieties from a population by the conventional method. Traditionally to find the variety with disease resistance, plants

should be inoculated by pathogens. There is also a problem to screen the plants for different pathogens simultaneously.

In contrast, detecting plants with resistance gene by their linkage to RFLP probe makes it easy without the need to inoc-

ulate the population with pathogens.

32.3.1.5 Elucidating the genetic traits

Many heritable traits are regulated by many genes together. Such characteristics are called quantitative traits as the

amount of seeds, drought resistance. High-density RFLP maps help to measure the effect of genes for complex traits.

RFLP markers have an ability to detect QTL based on the size of population being studied, effect of QTLs on character,

and recombination frequency between marker and QTL. Complete RFLP maps help to detect QTLs for traits.

32.3.1.6 Restriction fragment length polymorphism in back crossing

The cross between donor parent and progeny is called back cross. This is developed for the recovery of the desired traits

from genotypes. The selected progenies are crossed again to one genotype. It is also used to mark QTLs and genes in

the genome. The RFLP genotypes at one specific locus show alleles for a site on chromosomes. The linkage of desir-

able genes with undesirable genes is the main drawback of plant breeding.

32.4 Random amplified polymorphic DNA (RAPD)

Over the past years, researchers focused on the new exigencies for the improvement in the field of agronomy using var-

ious approaches including conventional breeding and modern molecular biotechnology. In addition, molecular marker

closely associated with a trait can be used to screen and ultimately that decreases the time spent phenotyping varieties.

Advances in molecular biotechnology have offered to unveil the number of DNA markers in one of which random

amplified polymorphic DNA (RAPD). PCR has become the most popular and available technique to study several novel

genetic analysis based on DNA amplification. RAPD is a type of PCR reaction. It uses single 10-base primer of GC-

rich random sequence. They are used simultaneously for polymorphism at many sites (Grattapaglia & Sederoff, 1994).

As it is PCR-based technique, amplicons using this arbitrary primer happened only after the site presents two times in a

reverse direction in a span of 2000 bases. Thus RAPD polymorphism results from sequence difference in primer-

binding site or target sequence which is present between priming sites. The technique starts with basic steps: (1) isola-

tion of genomic DNA; (2) addition of single-arbitrary primer; (3) PCR; (4) gel electrophoresis of the amplified product

resolved generally on 1.2%�2.0% agarose gels. The gel is stained with ethidium bromide (EtBr). Polyacrylamide gels

can also be used in combination with either AgNO3 staining, or radioactivity or fluorescently labeled primers or nucleo-

tides; (Corley, Lim, Kalmar, & Brandhorst, 1997; Hollingsworth, Christie, Nichols, & Neilson, 1998; Huff, Peakall, &

Smouse, 1993; Pammi, Schertz, Xu, Hart, & Mullet, 1994; Vejl, 1997; Weller & Reddy, 1997). (5) Determining the

fragment size by comparison with the known molecular marker (Sharma, Dı́az, & Blair, 2013).

The exact annealing temperature helps the random oligonucleotide primers to bind at several primer-binding sites on

the complementary strand of DNA. These binding results in defected products of the priming sites. Sequence character-

ized amplified regions (SCARs) is based on RAPD. This is based on chromosomal reshuffles like insertions/deletions

(Paran & Michelmore, 1993). Thus amplicons in a heterozygote will be identified due to the presence or absence of

bands in the RAPD profile. RAPD markers are dominant in nature. In RAPD, it is not possible to distinguish between

heterozygous or homozygous, as it is difficult to know that a DNA segment is amplified from which locus. There are

some disadvantages of RAPD like constraints about the reproducibility of results, since this is dominant, only half of

the genetic information is available and cannot detect null alleles directly.

32.4.1 Applications of random amplified polymorphic DNA

32.4.1.1 Genetic mapping

Short arbitrary primers are required to amplify DNA segments in RAPD. RAPD is a fast and efficient platform to per-

form genetic mapping with high density in many plant species such as alfalfa, fava bean, and apple (Hemmat, Weeden,

Manganaris, & Lawson, 1994; Kiss, Csanadi, Kalman, Kalo, & Okresz, 1993; Torress, Weeden, & Martin, 1993).
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32.4.1.2 In development of genetic markers

RAPD is used to study the linkage between the markers and traits. This is not required the mapping of the entire

genome. RAPD technique is used to identify DNA segments to show the linkage between markers and traits (Martin,

Williams, & Tanksley, 1991). It has been used in the identification of markers that are linked to disease-resistance

genes in lettuce, tomato, and common bean NILs line (Adam-Blondon, Sevignac, Bannerot, & Dron, 1994; Martin

et al., 1991; Paran & Michelmore, 1993). This analysis is used in pooled DNA samples of NILs, which increased the

gene tracking efficacy.

32.4.1.3 In population genetics

The RAPD technique is a simple and rapid in revealing genetic variation in DNA, thus highly used by population scien-

tists. RAPD analysis gives more information about populations that are closely related and less information about dis-

tantly related populations. RAPD data also help in phylogenetic studies and support previously known data of RFLPs.

RAPD polymorphism has been used in paternity test and kinship relationships among large populations (Smith &

Williams, 1994).

32.4.1.4 Plant breeding

RAPD technique is used in intra-specific variation among species to screen the degree of inbreeding in commercial

plants. It is used to prevent the increase of deleterious recessive allele’s frequency in given populations. SCAR-

transformed RAPD markers have more use in commercial plant breeding programs. RAPD markers are helpful in

genetic mapping, evolutionary genetics, population genetics, and the breeding program. It is used to generate more mar-

kers in a short period.

32.5 Amplified fragment length polymorphism (AFLP)

Amplified fragment length polymorphism (AFLP) is an important technique used for fingerprinting that can apply to

complex DNAs of any origin. AFLP combines both restriction digestion and PCR. First, digest the total genomic DNA

and then use the digested product in the PCR reaction by ligation of adapters to digested DNA (Lynch & Walsh, 1998).

AFLP can use for the selection of DNA sequences in the genome, and this phenomenon is called “genome representa-

tion.” It can be created for any organism’s DNA without extra cost in the development of primer/probe and sequence

analysis. There is no need of high-quality DNA, low-quality DNA can also be utilized. The DNA should be devoid of

any inhibitors and digestive enzymes. AFLP analysis comprises a mixture of six bases and four base cutter (EcoRI,

TruI, respectively) enzymes for restriction digestion of DNA. The adapters are used to prevent the creation of restriction

sites after ligation. These adapters are ligated to both fragment ends. PCR amplifies when the primers are bound to spe-

cific locations on DNA sequence. The amplicon includes adapter sequences, selective nucleotides, and complementary

base pairs to the additional nucleotides. This was followed by two subsequent PCR amplifications with stringent pri-

mers. These primers are of 1�3 bases and complementary to the adapters. The first PCR is with a mixture of primer

with an extra one bp, called preamplification. Further, the other amplification is carried out by 3-bp extension primer

pairs. The primers are highly selective; thus primers change only by one base and are used in the AFLP extension. A

primer extension up to four bases reduces the amplicon’s number by factors of 4, 16, 64, and 256, respectively. AFLP

fragments can be visualized by autoradiography in polyacrylamide gels (denaturing). Agarose gel, AgNO3 staining, and

next-generation sequencers can also be used to detect AFLP fragments (Fig. 32.3).

There are 50�100 amplified fragments in an AFLP fingerprint, and 80% can use as markers. Generally, AFLP needs

less samples of DNA. The AFLP data show more multiplex ratio and genotyping output.

The matrix ratio (band pattern) of 1/0 is used for genotyping. The 1 is for the existence, and 0 is for the absence of

a restriction fragment. This fragment was used in the detection of polymorphism by the second PCR. The characteristics

of an AFLP is that a single band symbolizes two alleles at every locus. There are several bands in an AFLP gel. The

band patterns could be of hundred types for every individual. It is dominance and multilocus in nature. The genotyping

technology is relatively simple. The AFLP markers are also used to detect the DNA methylation. In this, pairs of

restriction enzymes are used.

32.5.1 Advantages of amplified fragment length polymorphism

1. It is very productive and trustworthy (Jones et al., 1997).
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2. It does not require prior DNA sequence information during analysis.

3. It can use to detect a greater number of polymorphisms at different loci. It is used only one primer for the amplifica-

tion as compared to RFLPs and microsatellites (Russell, Fuller, Macaulay, Hatz, & Jahoor, 1997).

4. The amplicons are comigrating and homologous for specific locus. The polyploidy species showed exceptions.

5. It can use partially degraded DNA for digestion but free of PCR inhibitors and restriction enzymes.

6. In case of high genomic heterogeneity, AFLP can use, when it is necessary to amplify many loci in outcrossing spe-

cies to ascertain an accurate measure of genomic diversity.

7. It also can be used with low genetic variability. When it is necessary to amplify many loci to know the polymorphic

site, AFLP is used

8. It can be used where there are no suitable established markers available.

There are many studies that showed AFLP can use in various applications (Meudt & Clarke, 2007).

32.5.2 Disadvantages of amplified fragment length polymorphism

AFLP assays have some limitations also like

1. When there are biallelic markers, it cannot be used for polymorphism.

2. Sometimes it requires quite good quality DNA for analysis.

3. AFLP markers are present in centromeres like in barley and sunflower.

4. The AFLP marker development is difficult and costly for defined locus.

FIGURE 32.3 Schematic diagram showing steps

for AFLP. AFLP, amplified fragment length

polymorphism.
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32.5.3 Techniques for amplified fragment length polymorphism data analysis

32.5.3.1 Linkage mapping

AFLP data can be concomitant with different data, including RFLPs, RAPDs, and microsatellites to make linkage maps

in mapping populations (such as barley, Arabidopsis, potato, and rice).

32.5.3.2 Population-based methods

There are two data analysis methods for the AFLPs. The first is based on population and used in allele frequencies com-

parison to divide genetic diversity. The calculation of allele frequencies from dominant markers is difficult to show the

homozygous and heterozygous conditions; therefore people use the frequency of the null allele in analysis.

32.5.3.3 Phylogenetic methods

This is the second method for data analysis, individual-based, and use genetic relationships to study the individuals. AFLP

data is used in phylogenetic reconstruction, closely related organisms such as ring species, recent species radiations, and

crops. The combination of AFLP data and DNA sequence data showed highly robust phylogenies. This is due to the comple-

mentary effect of the different data sets which use in making the tree (Karp, 2002; Robinson & Harris, 1999).

32.5.4 Application of amplified fragment length polymorphism

The AFLP markers are applied in biodiversity studies, germplasm analysis, and construction of genetic maps. It can also use

for genotyping of individuals and linkage identification, gene mapping, study of physical maps, and transcript profiling.

32.6 Simple sequence repeats (SSR)

There are various applications of molecular markers which have been discovered including correlation of genetic varia-

tions between individuals, in constructing linkage maps, population genetics and phylogenetic studies, MASs, and back-

crosses. There are many molecular marker studies among many crops that have been reported in soyabean, barley, and

wheat (Bohn, Utz, & Melchinger, 1999; Powell et al., 1996; Russell et al., 1997). Among all molecular markers, micro-

satellites are important in plant genetics and breeding as it controls many genetic characters like hypervariability, rela-

tive abundance, reproducibility, multiallelic nature, codominant inheritance, chromosome-specific location, extensive

genome coverage, and also high-throughput genotyping. Due to change in repeat-motifs, microsatellite markers show a

high degree of allelic variation. These variations are because of replication slippage or uneven crossing-over in meiosis.

Microsatellites, simple sequence repeats (SSRs) are made up of DNA sequences consisting of short, tandemly repeated

nucleotide motifs. This has been found in all eukaryotic species (Tautz & Renz, 1984). Commonly plants are AT-rich

repeats, whereas animals are rich in AC repeat. This seems to be the key feature that differentiates animal genomes

with plant. SSRs are present in coding and noncoding region of DNA and distributed through nuclear, chloroplast, and

mitochondria genome (Chung, Staub, & Chen, 2006; Kumar, Qiu, & Joshi, 2007). SSRs are showed less degree of repe-

tition at selected locus, random distribution of genome, and high degree of length polymorphism (Zane, Bargelloni, &

Patarnello, 2002). SSRs can use in high-throughput genotyping. A large number of database have been added in the

public domain like for rice (http://rgp.dna.affrc.go.jp/IRGSP) and Arabidopsis (http://www.arabidopsis.org). Nowadays,

expressed sequence tag (EST) databases are an important database to find candidate genes. To amplify the genic micro-

satellite, a locus-specific primer can be designed flanking EST- or genic SSRs. Genic SSRs are more valuable than

genomic SSRs. Genic is quickly taking out from data, and they are present in genic regions of the genome. The genic

SSRs are also important because they present in coding regions. In early 1993, the identification of SSRs was carried

out in gene sequences of plant species by Morgante and Olivieri (Morgante & Olivieri, 1993). Microsatellites can be

classified depending on repeat units, their size, and their location in the genome. Microsatellites are perfect, imperfect,

and compound microsatellites. This is dependent on how the nucleotides arrange in the repeat regions. SSR’s have been

classified as mononucleotide, dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, or hexanucleotides as per

number of nucleotides. The perfect repeats are tandemly duplicated repeat motif, whereas imperfect repeats have nonre-

peat motifs in perfect repeats at some locations. Nuclear SSRs are the most common genomic SSRs. Microsatellites are

also found in mitochondria and chloroplasts (Soranzo, Provan, & Powell, 1999; Weising & Gardner, 1999). These mar-

kers are used to know different information in the population. The change in repeat number is associated with its muta-

tion rate. This change is dependent on time and a complex process (Pearson, Edamura, & Cleary, 2005). The change in
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repeat number is caused by different processes like recombination in DNA, DNA slippage, and retro transposition. The

addition and deletion of retrotransposons between the genes cause expansion of the plant genome. The slippage and

recombination interaction affects SSR strength (Li, Korol, Fahima, Beiles, & Nevo, 2002) (Fig. 32.4).

32.6.1 Distribution of simple sequence repeats

SSRs is also present in the noncoding region of DNA. A large number of SSRs are present in the coding region. In cer-

eals, only 1.5%�7.5% SSRs are located in ESTs. The dinucleotide repeats are frequent in many species. These are less

in the coding region. In plants, AAG is the most frequent triplet (Li, Korol, Fahima, & Nevo, 2004). CCG is an abun-

dant triplet in cereals. The location of SSR affects gene functions like regulating gene expression thus development of

plants. If SSRs are located in a noncoding, like in 50-untranslated regions (UTRs), the SSRs may regulate the expression

of gene by affecting mRNA or protein level. In chickpea, seed weight was correlated with GA repeats variation in the

50-UTR of the inositol mono-phosphatase gene (Dwivedi, Parida, & Chattopadhyay, 2017). The 30-UTRs have less tri-

plets in Arabidopsis and barley (Thiel, Michalek, Varshney, & Graner, 2003).

32.6.2 Isolation of simple sequence repeats markers

Microsatellites are present in both exons and introns. The nucleotide swap types of SSRs are abundant in noncoding regions.

For the amplification of SSRs, the information about flanking DNA sequences is required to design a primer to do PCR. The

amplification products are run on gel according to the size of amplicons and imagined by different dyes like EtBr, silver

staining, or fluorescent dyes. The allelic variation of repeat motifs present in the microsatellite is different among genotypes

FIGURE 32.4 An overview of microsatellite markers: its development, distribution, functions, and applications in plants.
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and showed polymorphisms. In potato, there are multiple SSR alleles that show heterozygosity, due to which SSR markers

are more useful in potato (Milbourne, Meyer, Collins, Ramsay, & Gebhardt, 1998). There are some steps for the isolation of

SSRs: (1) to create a genome library with a small insert, (2) screen the library through hybridization, (3) sequence the posi-

tive clones, (4) design of primers and PCR analysis, and (5) the last step is to identify polymorphisms in between genotypes.

32.6.3 Applications of microsatellite

32.6.3.1 Simple sequence repeats in the mapping of gene

SSRs present in the exon or intron region of the genome hardly show any information about the functions in organisms. The

genic markers either have both known and unknown functions when they present in the same position of the gene and show

polymorphism between different species. There are numerous EST-SSR markers and having putative functions in plants. EST-

SSR markers can be useful in direct allele selection that is associated with targeted traits (Kalia, Rai, Kalia, Singh, & Dhawan,

2011). Dof homolog (DAG1) gene regulates seed germination in Arabidopsis. A homolog of this gene presented on chromo-

some 1B with EST-SSR markers in wheat. Two EST-SSR markers present in gene that control photo response in wheat, has

been identified by Yu et al. (Yu, Dake, Singh, Benscher, & Li, 2004). The genic microsatellite markers were not present near

centromere but genomic SSRs were clustered around centromere. Genic markers were found more in gene regions.

32.6.3.2 Simple sequence repeats in functional diversity

The SSRs present in the CDS of genes regulates the expression or function. However, the length of SSRs in CDS regu-

lates the phenotypic differences as it was reported in humans for different diseases (Orr & Zoghbi, 2007). The variation

present in 50-UTR regulates the expression of the gene. Sometimes it can activate or inactivate genes or stop the proper

protein formation. The SSRs present in 30-UTR can do gene silencing or transcription slippage in many organisms. It

has many roles in the examination of functional diversity between species.

32.6.3.3 Simple sequence repeats in comparative mapping

The genic SSRs markers are transferable among different species. The genomic SSRs are nontransferable between

diverse species. In monocots like barley and wheat, the EST-SSRs can be used for comparative mapping (Wang,

Barkley, & Jenkins, 2009). The genic SSRs are more useful as they can be used in the development of the same markers

for the breeding program in many species.

32.7 Intersimple sequence repeat (ISSR)

Zietkiewicz et al. first developed inter simple sequence repeat (ISSR) technique (Zietkiewicz, Rafalski, & Labuda, 1994).

The amplification of DNA segments between two microsatellite repeats regions is the main basis of ISSR. These microsatel-

lites are at some distance and used for the amplification. The SSR markers present at the same locus have been generated for

many species. Primers in this technique, called microsatellite, are of di-, tri-, tetra- or pentanucleotide. In this technique, long

primers are used for amplification. There is a major drawback in the development of SSR markers because it requires the

knowledge of flanking sequences. ISSR fingerprinting was established, and no prior sequence knowledge was required for

analysis in this technique. Primers with repeat sequence, such as (CACT)n, can be made with a degenerate 30-sequence such
as (CACT)8RG or (TAGC)6TY (R 5 purines, Y 5 pyrimidines). The resultant PCR product amplified from the sequence

between two SSRs and helps to study the marker system at multiple locus useful for fingerprinting, genome mapping, and

diversity analysis. These PCR products are 32P or 33P radiolabeled with the help of end-labeling or PCR incorporation. The

PCR product is separated on a polyacrylamide sequencing gel and further used in autoradiographic visualization. A typical

reaction yields 20�100 bands per lane depending on the species and primer. They are segregating by simple Mendelian laws

of inheritance, thus characterized as dominant markers (Fang & Roose, 1997; Tsumura, Ohba, & Strauss, 1996). These can

also be used as codominant markers. ISSRs are simple, easy markers as compared to RAPD (Chatterjee, Vijayan, & Roy,

2004; Kar, Vijayan, & Mohandas, 2005). Moreover, they are dominant markers in nature. They are less reproducible and

show homology with comigrating amplification products (Semagn, Bjornstad, & Ndjiondjop, 2006).

32.7.1 Advantages of intersimple sequence repeat markers

1. The major advantage of ISSR is no previous requisite of the DNA sequence for analysis.

2. This is simpler and more reliable than other techniques, as the PCR products are specific.
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3. This is fast as it can do simultaneous assessment of various loci.

4. It can distinguish closely related species.

5. It is less costly and time-consuming, as it is devoid of cloning and characterization.

6. It is easy to use, as less steps to be required as compared to AFLP and cost-effective.

32.7.2 Disadvantages of intersimple sequence repeat markers

ISSR assays have some limitations also like

1. It is dominant in nature.

2. It leads to abstruse fingerprints, as sometimes the ISSR primers have not much specificity to the genome.

3. The quality of DNA is important; the poor-quality DNA gives poor result.

32.7.3 Application of intersimple sequence repeat markers

Scientists have used fingerprinting based on this technique in different plant species. Previous scientists have demon-

strated that there is higher level of polymorphism when ISSR markers used when compared with RFLP or RAPD analy-

ses. It has been also used for genetic diversity analysis. It is used to study genetic diversity analysis in sorghum and

maize and cultivar identification in chrysanthemum (Chatterjee et al., 2004). It is used in the forest species Ctyptomeria

japonica and Pseudotsuga menzeisii (Reddy, Sarla, Neeraja, & Siddiq, 2000; Tsumura et al., 1996).

32.8 Single-nucleotide polymorphism (SNP)

If one base pair variation is detected in the DNA sequence of different species, then it is called SNPs. This is the most abun-

dant marker in both animal and plant. The advanced sequencing technology like NGS can produce huge sequencing data,

which make the easy way to identify SNPs. Nowadays, numerous sequencing technologies are available to develop huge

genotyping data, which conceded easy, efficient fast identification of SNP markers in many plants (Ganal, Wieseke,

Luerssen, Durstewitz, & Graner, 2014). High-density SNPs markers are usually used to analyze population structure and

genetic diversity. These are used to develop genetic maps and study the genome-wide association study (GWAS). In the

same species, allelic variations within a genome can be divided into three categories (1) SSRs, differences in repeat number,

(2) InDels, insertions/deletions, and (3) SNPs. Due to their biallelic nature, SNPs show less polymorphism than SSRs. This

drawback can easily compensate by next-generation sequencing (NGS), high-throughput automation. In NGS, parallelize

DNA sequencing can be done and this helps to read molecules of thousands of genetic materials simultaneously. Nowadays,

there are several methods that have low genome sequence and had been successfully developed. These are reduced represen-

tation libraries (Hyten et al., 2010), GBS (genotyping-by-sequencing) (Elshire, Glaubitz, Sun, Poland, & Kawamoto, 2011),

RAD (restriction-site associated) sequencing (Bus, Hecht, Huettel, Reinhardt, & Stich, 2012), and SLAF-seq (single-locus

amplified fragment sequencing) (Zhang et al., 2013). SLAF-seq is an easy, efficient, accurate, and cost-effective method for

the development of SNPs and InDels. SNPs discoveries in polyploid crops are difficult like in coaon, canola, and wheat.

SNP discovery in allopolyploids plant confides upon differentiation in sequence variation (Thomson, 2014). The haplotype

information and allelic frequency are together used to differentiate between homologous SNPs and homoeologous loci. SNP

genotyping can be used as genomic tools that developed new approaches in mapping complex traits.

32.8.1 Single-nucleotide polymorphism detection

SNP can be detected by two methods: (1) in silico and (2) in vitro techniques. In silico methods are easy for SNPs min-

ing in species with the known genome sequences. There are many software and databases for SNPs mining in plants.

Illumina GA/Solexa, SOLiDTM, Oxford and Nanopore are advanced sequencing platform to generate a large number

of SNPs. Reference and de novo are two type of sequence data. There are three steps to identify SNPs from sequencing

(1) group the sequence reads, (2) read alignments, (3) sequence variants scanning. There are several softwares or data-

bases for SNP mining in plants such as dbSNP, POLYMORPH, SNiPlay, and IRIS (Table 32.3).

32.8.2 In vitro techniques

This can be divided into three categories (1) nonsequencing technique-like cleaved amplified polymorphic sequences,

single-strand conformation polymorphism, temperature-gradient gel electrophoresis, and denaturing-gradient gel
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electrophoresis. (2) Sequencing-reduced representation shotgun, bacterial artificial chromosome, and PAC (P1-derived

artificial chromosome). (3) Re-sequencing MALDI-TOF/MS and sequencing.

32.8.3 Single-nucleotide polymorphism application

The genomic variation is much important for plant breeding and genetics. The SNPs cover large populations to identify

desired lines for different traits. Today, SNPs is widely used in plant breeding, feature mapping, and cost-effective analysis

of germplasm. The use of SNPs improvises the understanding of plant genetics thus changing the strategy for new varieties.

SNPs can use in the detection of correlations between genotypes and phenotypes. It is used to identify common diseases

with complex genetics, genetic diagnostics, genetic diversity analysis, construction of genetic map, association mapping

(AM) by linkage disequilibrium (LD), phylogenetic analysis, and cultivar identification (Brachi, Morris, & Borevitz, 2011).

To identify new alleles, genetic diversity information can be used in plant breeding. SNPs can be used in plant phylogenetic

and evolutionary research (Fournier-Level, Lacombe, Le Cunff, Boursiquot, & This, 2010). SNPs present in nuclear and

chloroplast gene regions are a rich source of phylogeny in plants. SNP is good to study the genetic diversity in domesticated

populations. SNPs can cause phenotypic diversity like plants/flowers/fruits color, ripening timing, time to first flower, fruit

size, grain yield, crop quality, or various abiotic and biotic stress tolerance (Huq, Akter, Nou, & Kim, 2016). SNPs present

in the exon of a gene and can changes the amino acids. SNP can also silence the gene. There are many advantages of SNP

markers like highly flexible and fast as they provide huge data for analysis. The high-quality reference genome gives the

entire SNP catalog for each species. SNPs are also used to detect the variation in UTRs.

32.8.4 Diversity array technology (DArT Seq)

This technique is highly reproducible and based on microarray hybridization. This is a technique, which helps to iden-

tify polymorphic loci (hundreds to thousands) in the genome. For the detection by this method, it is not needed the pre-

vious sequence information (Wenzl, Carling, & Kudrna, 2004). It is very economical and highly throughput. One

reaction can identify several loci by this technology. This requires little amount of DNA (55�105 ng genomic DNA).

An identical platform is utilized for the scoring and discovery of markers in this technique. This is not required specific

assays for genotyping. It is just need the assembly of polymorphic markers into one genotype array. These markers are

used for genotypic reaction (Huttner, Wenzl, & Akbari, 2005).

32.9 Quantitative trait loci (QTL)

Many important traits like yield traits, quality, root architecture, and disease resistance are regulated by multiple genes

and therefore are known as quantitative traits. The QTL identification is also based on DNA (or molecular) marker

besides conventional phenotypic evaluation. DNA markers have been used in the construction of linkage maps in agri-

cultural research. Linkage maps is used in QTL analysis to identify the chromosomal regions having genes (Mohan,

Nair, & Bhagwat, 1997). QTL mapping includes linkage maps construction followed by analysis of QTL (McCouch &

Doerge, 1995; Paterson & Landes Company, 1996; Zeng, 1994). There are many steps in QTL mapping (Fig. 32.5).

32.9.1 Molecular markers

DNA marker can be divided into three categories (1) hybridization-based; (2) PCR-based, and (3) DNA sequence-based

(Gupta, Varshney, Sharma, & Ramesh, 1999) (Table 32.1).

DNA markers are quite useful if they show differences between the same or different species. These markers are dif-

ferent between species and are known as polymorphic markers, whereas monomorphic markers are same between geno-

types. Polymorphic markers are codominant or dominant in nature. The markers can discriminate between homozygous

and heterozygous plant.

32.9.2 Construction of genetic linkage maps

A linkage map, a “road map” on the chromosomes is derived from different individuals. The linkage maps are used to

construct QTL (or “genetic”) map. In QTL mapping, genes and markers segregate via chromosome recombination

(called crossing-over) (Paterson & Landes Company, 1996). Linkage map constructions are involved three things (1)

mapping population; (2) polymorphism, and (3) linkage analysis.
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32.9.3 Mapping population

A segregating plant population that is derived from sexual reproduction is required for the linkage map construction.

The mapping population should be made with contrasting parents. Population sizes of a mapping population may range

from 100 to 300 individuals (Zeng, 1994).

32.9.4 Identification of polymorphism

Identifying DNA markers is the second step, which shows differences between parents in the construction of a linkage map. The

polymorphic markers will be checked in the whole population, which includes their parents. This process is called genotyping.

32.9.5 Linkage analysis of markers

The last step of the construction of linkage map is linkage analysis. This involves coding data for DNA marker on each

mapping population individual and analyzing linkage through software. Linkage is generally calculated using odds

ratios and called a logarithm of odds (LOD) value or LOD score (Risch, 1992).

QTL Mapping Two diverse 
parents selection

Development of 
mapping 

population

BC

RILs

DH

Genetic map 
formation Genotyping Phenotyping

Identifying QTLQTL validation

FIGURE 32.5 Steps involved in QTL mapping. QTL, quantitative trait loci.
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32.9.6 Genetic distance and mapping functions

The chance of recombination is based on the distance between two markers. Distance is calculated by the recombination fre-

quency between genetic markers. The recombination frequency is presented by centiMorgans (cM) (Hartl & Jones, 2005).

32.9.7 Quantitative trait loci analysis

The phenotype and genotype association of markers is the key component in QTL analysis. The genotypic groups are based

on the presence or absence of a particular DNA marker locus (Young, 1996). If marker and QTL are closely linked, then the

chance of recombination is less. Therefore the marker and QTL will be generally inherited together in the next generation.

32.9.8 Quantitative trait loci detection

There are commonly three ways to detect QTLs: (1) single-marker, (2) simple interval, and (3) composite interval (Liu

& Wu, 1998; Tanksley, 1993). The is single-marker analysis in which one can use single marker for QTL. This method

uses different statistical methods like t-tests and linear regression. Q Gene and MapManager software are mostly used

for this analysis (Manly, Cudmore Robert, & Meer, 2001).

On the other hand, the simple interval mapping method first make linkage maps and then simultaneously check link-

age intervals between markers along all chromosomes (Lander & Botstein, 1989). But nowaday’s composite interval

mapping (CIM) is easy and more in use for QTL mapping. It includes genetic markers in the statistical model and inter-

val mapping with linear regression. QTL Cartographer, MapManager QTX, and PLABQTL are used to study CIM

(Basten, Weir, & Zeng, 2001; Manly et al., 2001; Utz & Melchinger, 1996).

32.9.9 Advantages and disadvantages of quantitative trait loci mapping

It is utilized to spot the genes of interest that control the particular trait in plants. It is very beneficial for the genome-

wide detection of QTLs in plants. The QTL mapping can detect the genes controlling disease resistance in plant because

diseases are a big apprehension of agriculture. Besides advantages, there are some disadvantages of QTL mapping like

TABLE 32.1 Types of molecular/DNA markers

DNA marker Single/

multiple

loci

Degree of

dominance

Polymorphism

source (mutation)

Polymorphim

level

Abundance Laboratory

technique

RFLPs Single Codominant Point mutation Lower Moderate Southern
blot; agarose
gel

RAPDs Multiple Dominant Point mutation Lower Little PCR; agarose
gel

AFLPs Multiple Dominant Point mutation Lower Moderate PCR;
acrylamide
gel

SSRs Single Codominant Variation in the
number of the repeats

Higher Moderate PCR;
acrylamide
gel

SNPs Single Codominant Point mutation (with
sequence information)

Lower to
Higher

Very high Primer
extension;
chips

ISSR Single Dominant Variation in the
number of the repeats

Higher Moderate PCR; agarose
gel

DArT Single Dominant Point mutation Higher Very high Microarray

Retrotransposons Single Dominant Point mutation Higher High PCR; agarose
gel
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lower number of recombination events, less allelic diversity (Price, 2006). It is also a time-consuming when we devel-

oped a mapping population. It is less specific in the detection of QTLs for a given population.

32.10 Association mapping

In AM, molecular markers are associated with a phenotypic trait. AM shows a correlation between the polymorphic

marker and the trait of interest (Jannink & Walsh, 2002; Zhang, Zhong, & Shahid, 2016). In comparison with linkage

mapping, it is time saving technique, provides greater mapping resolution, and shows more recombination events. AM

expedites the documentation of a higher number of alleles. AM is based on LD.

32.10.1 Linkage disequilibrium

LD is when alleles are associated nonrandomly at different loci. LD showed the increased or decreased haplotypes fre-

quency in a population. In LD, gametic disequilibrium or gametic phase disequilibrium can be denoted as PAB 6¼ PA 3
PB, where PAB is a frequency of haplotypes of alleles AB; PA is a frequency of haplotypes A, and PB is a frequency of

haplotypes B. GOLD, TASSEL, and R are the most commonly used software for LD pattern (Bradbury, Zhang, &

Kroon, 2007). Mutation and recombination are important for the significant LD.

32.10.2 Methods of association mapping

A wide range of genetically diverse populations are used in AM. First phenotyping has been done for the population at a differ-

ent time point, different locations, and in different environments. After phenotyping, genotyping with favorable markers is done.

Further, the populations’ structure and kinship matrix are calculated. Further, the phenotyping and genotyping data are correlated

with help of different software. TASSEL is commonly used software for AM. The detailed method is as follows Fig. 32.6.

32.10.3 Class of association mapping

AM can divide into two classes: (1) candidate-gene-based and (2) genome-wide association.

32.10.3.1 Candidate-gene-based

This technique is used to study the correlation between the DNA polymorphism present in a gene and an interested trait

(Sehgal, Singh, & Rajpal, 2016). In this technique, biologically relevant candidates are selected based on their evolutionary

FIGURE 32.6 Methods to study the association mapping.
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data. This technique uses SNPs present within specific genes and between lines. The SNPs present in exon, promoter, and 50/
30-UTRs are the important factors to investigate the candidate gene. This technique has been widely used for the identification

of QTLs in the last several years. This is also used for the development of functional markers (Lau, Rafii, & Ismail, 2015).

32.10.3.2 Genome-wide association study

This technique is used in various species. It uses the GBS. This is used to study the genetic variations in plants.

Normally, recombinant inbred lines are used for GWAS. For QTLs, a large population is required to obtain a high-

resolution genetic map. This technique is used to investigate the small haplotype blocks that are correlated with quanti-

tative traits. This is a cheap and high-throughput method and used in different crops like millet, maize, wheat, rice, sor-

ghum, and chickpea (Jia & Zhao, 2014).

32.10.4 Association mapping in the breeding program

AM used superior alleles for breeding practices for introgressive hybridization into elite germplasm from different indivi-

duals. There are many examples of the use of AM in breeding programs. Most studied characters are abiotic stress and

yield-related characters. RHM (regional heritability mapping) and GWAS for productivity, lodging, and plant architecture

have been carried out by Resende et al. (2018). They were used 188 germplasms of common bean. This includes three mar-

kers used for trait study with help of GWAS, and 145 markers were identified using RHM along chromosomes 5. Liu,

Bayer, Druka, and Russell (2014) have identified a total 122 and 134 QTL for different traits of cotton in two environments

using GWAS. Patishtan, Hartley, Fonseca de Carvalho, and Maathuis (2018) performed GWAS in a panel of 306 rice germ-

plasm to identified transcription factors and components of the ubiquitination pathway (Patishtan, Hartley, Fonseca de

Carvalho, & Maathuis, 2018). PIP2, RD2, and PP2C genes were found to be significant for abiotic stress resistance in cotton

(Hou et al., 2018). Zhang and Yuan (2019) showed AM in maize (300 inbred lines) from different habitats.

32.11 Marker-assisted selection (MAS)

MAS includes molecular marker and traditional breeding program. In MAS, a single cross is made. The steps involved

in MAS is shown in Fig. 32.7. There are many steps in MAS as following:

� Select the parents for crossing that have DNA marker alleles for the trait of interest.
� The second plant F1 population is detected for the marker alleles thus eliminating false hybrids.
� Screen F2 population and store data for the individuals having the desired alleles.
� Select F3 individuals for desired marker alleles and traits.
� Screen F4 and F5 generation for marker to find homozygous lines and evaluate the best lines for phenotypic trait of interest
� Evaluate the selected lines for characters of interest like yield, quality, and resistance.

In MAS, theoretically all the QTLs could be taken for analysis that contributes to the trait of interest. The MAS effi-

ciency depends on QTL number, as the number increases the efficiency decreases thus their heritability also decreases

(Moreau et al., 1998). The number of genes/QTLs are also controlled the efficiency of MAS. Generally, more than three

QTLs are not good for MAS. There is some report in which scientists used more than three QTLs. Five QTLs were

used through marker-assisted introgression for the improvement of fruit quality traits in tomato (Lecomte, Duffé, Buret,

Servin, & Hospital, 2004). Two markers for a single QTL are good from both an effectiveness and efficiency point of

view. The efficiency of MAS depends on recombination frequency inversely.

32.11.1 Application of marker-assisted selection

In crop plants, many traits are governed by QTLs like diseases/pests resistance, self-incompatibility, and male sterility.

MAS has been used in soybean cyst nematode (Heterodera glycine Inchinoe) for major genes. As some traits are con-

trolled by QTLS so strong, QTL�environmental interaction control the phenotypic expression. A saturated linkage map

showed both targeted and linked QTLs. MAS can be used to improve the plants.

MAS can be used to make disease-resistance plants like in wheat; markers for MAS and powdery mildew resistance genes

like Pm4a, Pm5e, and other Pm genes have been identified (Huang et al., 1997; Ma, van der Does, & Borkovich, 2010).

MAS is also used for the mapping of desired traits involved in tolerance to drought stress like osmotic adjustment, root

penetration and morphology, carbon isotope discrimination, and phenological traits like anthesis-silking interval in maize.
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32.12 Bioinformatics intervention in molecular markers

NGS has significantly improved plant genomics. NGS technology is used to discover, validate, and assess the molecular mar-

kers on a large scale. NGS technology has produced a huge amount of data that can be used for the mining of markers in plant.

These markers further can be used for genetic mapping, studies of association, analysis of diversity among popula-

tions, and MAS. Advanced bioinformatics tools and databases are required to mine the data that result in the discovery

of molecular markers. NGS technology helped in the discovery of markers and genotyping of these markers at a very

high density. These markers are used for complete GWAS. Different NGS technologies are commonly used for marker

discovery like Roche/454 sequencing, Ion torrent: Proton/PGM sequencing, Illumina (Solexa) sequencing, SOLiD

sequencing, and Pacific Biosciences Table 32.2. From recent studies, it has been found that shotgun sequencing of a

genome or transcriptome through NGS platform is the easy way to mine SNP or SSR marker. Genome assembly is the

first step to find the markers in NGS platform. There are many softwares for genome assembly like CLC Genomics

Workbench, Velvet, and SeqManNGen (DNASTAR) (Table 32.3).

32.13 Software for simple sequence repeats discovery

There are many softwares to screen the SSR in the entire genome. There are some tools for SSR like MicroSAtellite;

mreps, the windows-based SSR locator, WebSat, and Msatfinder 2.0. Search for Tandem Approximate Repeats

FIGURE 32.7 Key steps involved in MAS study. MAS, marker-assisted selection.

TABLE 32.2 Comparison of key features between different sequencing platforms.

Topographies Roche 454 Ion torrent Illumina

Sequence method Pyrosequencing Semiconductor Synthesis

PCR approach EmPCR EmPCR BridgePCR

Sequencing-paired end No No Yes

Read count (bp) 350�1000 B200 100�250
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TABLE 32.3 Different software: software uses for assembly of sequences, in the identification of SSRs and SNPs.

Assembly software

Name Technology Website/References

CLC Genomics Workbench Sanger, 454, Illumina, Ion
torrent

http://www.clcbio.com/

Velvet Sanger, 454, Illumina http://www.ebi.ac.uk/Bzerbino/

AbySS Sanger, 454, Illumina, Ion
torrent

http://www.bcgsc.ca/platform/bioinfo/software/abyss

SeqManNgen Sanger, 454, Illumina, Ion
torrent

http://www.dnastar.com/t-

MIRA Sanger, 454, Illumina, Ion
torrent

http://sourceforge.net/apps/mediawiki/mira-assembler/

TMAP Ion torrent http://www.ioncommunity.lifetechnologies.co m/

NextGENe Sanger, 454, Illumina, Ion
torrent

http://softgenetics.com/NextGENe.html

TopHat 454, Illumina Lorenc, Boskovic, Stiller, Duran, and Edwards (2012)

SSR tools

SSRPrimerII http://www.appliedbioinformatics.com

MicroSAtellite (MISA) http://pgrc.ipk-gatersleben.de/misa/

SSR identification tool (SSRIT) Kantety, La Rota, Matthews, and Sorrells (2002)

Tandem repeat occurrence locator
(TROLL)

Castelo, Martins, and Gao (2002)

SSRSEARCH ftp://ftp.gramene.org/pub/gramene/

RepeatMasker http://www.mendeley.com/

Msatfinder http://www.genomics.ceh.ac.uk/

RepeatMasker http://www.mendeley.com/

SNP tools

SOAP2 http://soap.genomics.org.cn/

Samtools http://samtools.sourceforge.net/

GATK http://www.broadinstitute.org

MaCH http://genome.sph.umich.edu/

Qcall ftp://ftp.sanger.ac.uk/pub/

IMPUTE2 http://mathgen.stats.ox.ac.uk/

GigaBayes http://bioinformatics.bc.edu/

SNPdetector Zhang et al. (2005)

Geneious http://www.geneious.com

SGSautoSNP Lorenc et al. (2012)

QualitySNP Tang, Vosman, Voorrips, van der Linden, & Leunissen
(2006)

PolyScan Chen, McLellan, Ding, Wendl, and Kasai (2007)
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http://samtools.sourceforge.net/
http://www.broadinstitute.org
http://genome.sph.umich.edu/
ftp://ftp.sanger.ac.uk/pub/
http://mathgen.stats.ox.ac.uk/
http://bioinformatics.bc.edu/
http://www.geneious.com


(STAR), a mining tool, is used for the identification of repeats motif (Ruperao & Edwards, 2014). Some tools like msat-

finder, E-TRA, msatcommander, and MISA are used for SSR finding from NGS data (Table 32.3).

32.14 Software for single-nucleotide polymorphism discovery

Because of their abundance, SNPs have emerged as the markers of choice and are used in various breeding programs.

SNPs have huge potential in crop improvement programs. There are various methods for the detection and genotyping

of SNPs.

There are many SNP discovery software programs such as Consensus Assessment of Sequence And Variation

(CASAVA), NextGENe (http://www.softgenetics.com/), CLC Genomics Workbench, Biomatters, Geneious, SNPdector,

and ACCUSA (Ruperao & Edwards, 2014).

The SNP discovery software AutoSNPdb can be used for both Sanger and Roche 454 (84). MAQ, using the align-

ment quality, used to predict SNPs Table 32.3.

The advancement of bioinformatics tool will be necessary for the analysis of genomic data obtained from sequenc-

ing to mine the markers. NGS technology has changed the way of study of markers for genotyping. It helps to generate

markers for comprehensive association studies in genome. Through the combination of NGS technology and bioinfor-

matics, numerous biological questions can be studied like recombination breakpoints for trait association and used in

genomic selection for crop improvement.
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33.1 Introduction

Abiotic stresses on plants are estimated to currently cause a loss of 50% in crop productivity (Pandey, Irulappan,

Bagavathiannan, & Senthil-Kumar, 2017). Further increase in temperatures due to climate change is expected to exacer-

bate heat and drought stress as well as enhance salinity in soils due to evaporation. Salinity is already a major problem

in many coastal areas due to sea level rise (Gopalakrishnan, Hasan, Haque, Jayasinghe, & Kumar, 2019). To cope with

these stresses, plants switch from their regular developmental program to an altered metabolism at the expense of their

reproductive potential (Annacondia, Magerøy, & Martinez, 2018). Response to abiotic stresses are not only organ or

tissue-specific, these depend on the developmental stage as well, with panicle-bearing being more sensitive than seed-

ling growth, particularly in cereals like rice (Gray & Brady, 2016; Razzaque et al., 2017; Razzaque et al., 2019). In the

struggle for survival, some plants have evolved to tolerate stress (Mickelbart, Hasegawa, & Bailey-Serres, 2015). The

evolved genotypes within the same species are referred to as landraces and can be used as donors for tolerance traits,

provided that their mechanism for survival is understood in finer detail. Often a multitude of coordinated activities can

be responsible for tolerance. For instance in case of salinity tolerance in rice, some of the major mechanisms are cell

expansion (Jadamba, Kang, Paek, Lee, & Yoo, 2020), retrograde signaling (Huang et al., 2020), Na1 transport and

extrusion (Sriskantharajah et al., 2020), G-protein signaling as well as change in membrane potential (Razzaque et al.,

2017), shape alteration in mesophyll chloroplast to allow greater dissipation of light energy (Oi et al., 2019), mainte-

nance of low reactive oxygen species (Bhattacharjee, 2012) and induction of RNA chaperones (Ganie, 2020). Not all of

these mechanisms is present in any particular landrace and expression quantitative trait loci (eQTL) are a good method

of determining the relative importance of a specific mechanism and the genes regulating it. eQTLs combine mapped

genetic loci with RNA seq gene expression studies (Guo et al., 2019).

Each of the mechanisms for fighting stress may be regulated and fine-tuned by small RNA-mediated regulation of

transcripts (Goswami, Mittal, Gautam, Sopory, & Sanan-Mishra, 2020), alternative splicing, (Fu, Shen, Kuang, Wu, &

Zhang, 2019) or reprogramming at a deeper level in the genome such as methylation of chromatin histones or DNA.

Methylation has been reported for defense against salinity stress (Chen, Luo, Wang, & Wu, 2010) and against drought

stress (van Dijk et al., 2010). Even the number of stomata can be altered when cells sense reduction in relative humidity

and this is controlled by the RNA-directed DNA methylation (RdDM) pathway (Tricker, Gibbings, Rodrı́guez López,

Hadley, & Wilkinson, 2012). Drought causes genome-wide changes at the cytosine methylation level (Colaneri &

Jones, 2013). Heat stress has been reported to induce the de-condensation of rDNA loci in rice and Arabidopsis

(Pecinka et al., 2010; Tomás, Brazao, Viegas, & Silva, 2013). Epigenetic control of transposable element expression

and transposition may also result in additional control (Lisch, 2013; Wang, Weigel, & Smith, 2013). In recent years,

there has been a technological watershed not only for developing efficient methods to dissect these stress regulatory
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pathways, but also in the area of computational biology for systems-level analysis of the interconnected datasets. The

former encompasses high throughput methods to generate multiomics data such as total RNA, direct sequencing of

native RNAs, small RNA, RNA degradome and Methyl-C sequencing and the latter covers efficient ways to process

and robust statistical methods to analyze these Big data (Sedlazeck, Lee, Darby, & Schatz, 2018; Simon et al., 2009;

Yang et al., 2020).

In order to avail all the above information into use for crop improvement programs, it is essential that there is tar-

geted characterization of germplasm in seedbanks. Genome Wide Association Study (GWAS) studies in cereals like

rice and other cereals has already been reported for plant architectural and grain quality traits (Dwivedi, Scheben,

Edwards, Spillane, & Ortiz, 2017; Huang et al., 2010). Some of these have been colocalized with known quantitative

trait loci (QTLs) for desired phenotypes (Biscarini et al., 2016). SNPs and germplasm-based GWAS for phenology and

yield in legumes has also been reported (Dwivedi et al., 2017). It is also essential that the breeder, the physiologist, the

molecular biologist and the bioinformatician work in a coordinated manner in order to produce crops to feed our future

generations. It will however help the biological scientists to acquire some computational skills for data-intensive aspects

of enabling plants to survive and thrive in our changing environments.

33.2 Expression quantitative trait loci and their functional significance

Biological information flows from DNA to RNA to protein towards visible phenotypes. Each of the steps for this, for

example, transcription, translation as well as post-translational levels are regulated by specific factors. eQTL con-

nects the sequence level polymorphism to gene expression variation. Quantitative trait loci are regions in the genome

that are associated with a quantitative trait of interest, for example, plant height, yield, etc., and other traits which

altogether determine the performance of a plant under particular abiotic stress/s. In eQTL analysis, the expression

value of gene is also considered as a quantitative trait. Dynamism of a biological system depends on its ability to

switch expression of genes in response to environmental demand. Hence differential gene expression is observed

when specific genotypes encounter abiotic stress. A QTL region for a specific trait can comprise more than hundreds

of genes depending on the span of the boundary markers. eQTLs can therefore not only identify genes associated

with the selected molecular markers, but also pinpoint important differentially expressed genes underlying the physi-

ological QTL (pQTL) region. Variation in temporal (time point) and spatial (tissue) gene expression as well as in

multiple developmental stages under continuous abiotic stress can identify underlying mechanisms that a plant adopts

to combat the encountered stress. Computational biology and statistical modeling have always been an integrated

part of this comparative association study. Advancement of next generation sequencing (NGS) strategies and high

throughput phenotyping facilities as well as associated large volume of biological data have made such bioinformat-

ics an essential part of modern crop improvement schemes. In the following subsections, recent genotyping technolo-

gies for determining sequence level polymorphism have been described. High throughput techniques for identifying

gene expression data and its analysis, that is commonly used in crop genomics is also explained. Expression QTL

mapping and its significance are then discussed by explaining the correlation of the genotyping with the expression

data.

33.2.1 Molecular marker system for genotyping

Molecular markers are like a flag in the genome that can mark variation or polymorphism in genome sequences of dif-

ferent cultivars within the same species. Common DNA markers are Randomly Amplified Polymorphic DNA,

Restriction Fragment Length Polymorphism, Amplified Fragment Length Polymorphism, Simple Sequence Repeat

(SSR), Single Nucleotide Polymorphism (SNP), Cleaved Amplified Polymorphic Sequences, etc. The simple sequence

repeats (SSR) have been the marker of choice for different species for many years, where polymerase chain reaction

(PCR) primers are designed to flank the repeat regions to determine the differences in repeat motifs among the geno-

types being analyzed. Molecular markers in the polymorphic region between two specific cultivars can be used to track

the inheritance of the marker allele in subsequent generations. Hence, in a biparental population having 2 different

alleles linked to a specific trait, segregation of the markers will occur in the F2 generation, comprising homozygous

alleles of the individual parents as well as heterozygous alleles. Using single seed descent method (Pazos-Navarro,

Castello, Bennett, Nichols, & Croser, 2017) advancement of generations, will result in reduction of heterozygosity if a

specific allele follows the 1:2:1 ratio of the first law of Mendelian genetics. Molecular markers are inherited along with

the DNA loci of the trait of interest, because they are close enough not to be segregated from each other. Linkage maps

are generated from the recombination frequency of the alleles where the estimated distance between two markers is
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positively correlated with their recombination frequency, that is, the higher the recombination frequency, the more dis-

tant two markers are from each other. The basic principle of mapping QTL is to track the parental allelic segregation in

progenies and associate those with physiological traits using appropriate statistical methods. In order to successfully

map the QTLs for a trait of interest, the two parents must show enough variation in terms of that trait and a robust

marker system needs to be used. The mapping population also need to gain enough homozygosity for specific alleles

(Collard, Jahufer, Brouwer, & Pang, 2005). Different mapping populations can be used for this purpose, such as, recom-

binant inbred lines (RILs), Near Isogenic Lines, Doubled Haploid, and F2. F2:3 lines are also used, where each F3 line

derived from specific F2s can be considered as replicates (Zhang & Xu, 2004). Thus genotyping of F2 and Phenotyping

of F3 can also be used to map QTLs successfully without waiting for years for the generation of inbred lines (Haque

et al., 2020). Phenotypic differences can be due to a few loci with great effects and are less due to large loci with smal-

ler effects (Mäki-Tanila & Hill, 2014). Advancement in sequencing technology and completion of major cereal rice

genome sequencing project accelerated the compilation of rice SSR databases (McCouch et al., 2002; Sasaki, 2005;

Temnykh et al., 2000) which have helped identify many QTL regions for traits of interest including a major QTL

named Saltol for salinity tolerance. Saltol was mapped on chromosome 1 using F8 RILs of Pokkali/IR29 cross

(Gregorio, Islam, Vergara, & Thirumeni, 2013) and was later found to harbor genes that can play roles in maintaining

sodium to potassium ratio in shoots (Das, Nutan, Singla-Pareek, & Pareek, 2015; Ren et al., 2005).

The main disadvantage of SSR marker system is that its numbers in the genome are limited in contrast to SNP mar-

kers. Large number of polymorphic markers can help in precise tracking of alleles in subsequent generation of proge-

nies. Moreover, advancement in NGS technologies have accelerated identification of large number of variants in the

genome and the most commonly used markers are now SNPs. Polygenic traits are affected by multiple genes, but statis-

tically significant genotype to phenotype association often helps identify specific regions that are more important for

the specific trait of interest. Most widely used methods for QTL mapping are single marker analysis, simple interval

mapping, composite interval mapping (CIM), etc. (Lin, Sasaki, & Yano, 1998; Liu, 2017; Tanksley, 1993). In single

marker analysis, t-tests, ANOVA (Analysis Of Variance), and linear regression models are used. The phenotypic varia-

tion due to the QTL can be explained by coefficient of determination (R2) in the linear regression. Use of larger number

of segregating markers covering the entire genome is essential making SNP markers ideal (Tanksley, 1993). CIM is

more powerful as it combines interval mapping and linear regression. The R/qtl (Broman, Wu, Sen, & Churchill, 2003)

package offers many functions like scanone for single QTL analysis as well as mqmscan for multiple QTL scanning.

After QTL mapping, the plants with desired QTLs are advanced to create RILs which can be used as donor plants in

Marker Assisted Back-Crossing (MABC) programs with a high-yielding variety or any variety whose genomic back-

ground is desired. Also multiple QTLs can be pyramided during MABC program by selecting the QTL marker alleles

and avoiding the background marker alleles of the donor plant.

The advancement in SNP detection methods have made its use in crop genomics and improvement remarkable.

Earlier, Expression Sequence Tag database or sequencing of gene amplicons using Sanger sequencing were used to

identify SNPs. Resequencing of whole genomes opened a path for discovering more SNPs. For instance, Shen et al.

(2004) reported identification of 1.7 million SNPs, and Feltus et al. (2004) reported 384,431 high quality SNPs by com-

paring the japonica rice Nipponbare and indica rice 93�11 genomes. Later, 1536 SNP array was designed from the

polymorphic sites among the 5 major subpopulations of Oryza sativa (Zhao et al., 2010). Thomson (Thomson, 2014)

reported a 384 SNP assay but with lower resolution. Most genotyping by sequencing (GBS) methods take the advan-

tages of reducing the genome complexity using restriction enzymes coupled with the NGS technologies. Complexity

Reduction of Polymorphic Sequence (CroPS) and Restriction Site Associated DNA (RAD) (Scheben, Batley, &

Edwards, 2017) can filter out duplicated SNP and are computationally robust without the need for complete sequencing

of all the genotypes in the population. In Double Digested RAD or ddRAD two restriction enzymes are used (Peterson,

Weber, Kay, Fisher, & Hoekstra, 2012). The digestion is followed by adapter ligation, shearing, end repair, second

adapter ligation, and size selection. Digested fragments are tagged and amplified using PCR and sequenced from the

two generated ends. Multiple samples can be pooled and sequenced together using different barcodes. In ddRAD

method one rare cutter and one frequent cutter is used while other methods can use one enzyme. Diversity Array

Technology or DArT-based sequencing method uses an intelligent selection of the genome to target polymorphic

regions closely associated with gene rich regions. A combination of restriction enzymes can separate low copy

sequences from the repetitive fractions. Low copy sequences are most informative for marker discovery and typing.

Initially DArT was used in microarray. Classic DArT markers are substituted by DArTseq (Jaccoud, Peng, Feinstein, &

Kilian, 2001) markers based on GBS. For setting up DArTseq in a new organism, the first step is usually the optimiza-

tion of genomic complexity reduction using restriction enzyme combinations. Sequencing can generate higher number

of markers compared to the array version of DArT.
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GBS has helped discover DNA markers that are polymorphic in a specific variety compared to the reference

genome. Advancement in sequencing technologies has improved the SNP discovery pipeline, resulting in identification

of a higher number of polymorphic markers. SNPs and indels variants can be generated by calling haplotypes in a vari-

ant call format (vcf) file. Important variant calling tools are: Genome Analysis Toolkit (GATK), mpileup function of

samtools, etc. (McKenna et al., 2010; Yao et al., 2020), and can be used for this purpose. Normally a workflow includes

sequence read filtering, alignment, identifying SNPs from aligned tags and scoring of all the discovered SNPs for vari-

ous coverage, depth, and genotypic statistics. After identification of the SNPs from all tags, duplicates and variants are

called followed by imputation if needed. Imputation refers to replacing missing data values with substituted values.

Variants are filtered according to a specific allele frequency threshold. Selection of specific restriction enzymes to shear

the genome to generate fragments in nonrepetitive regions and targeting low copy regions is important for nondistorted

coverage of the whole genome. This also reduces the alignment problem in genetically highly diverse species (Elshire

et al., 2011). QTL mapping has some limitations, for example, the segregated allelic diversity between two parents are

only assayed and the recombination amount in the RIL places a limit on mapping resolution. Use of advanced intercross

RIL as well as multiparent advanced generation intercross lines can however increase the allelic diversity where multi-

ple genetically diverse accessions are intercrossed before establishing the RIL (Kover et al., 2009). GWAS overcomes

the main limitation of biparental analysis as it involves diversity or accession panels with a large number of accessions

(. 200), landraces, or breeding materials. QTLs are identified here by using marker�trait association and the linkage

disequilibrium between polymorphic markers or SNPs of the diverse set of germplasm (Zhu, Gore, Buckler, & Yu,

2008). GWAS can serve as being an informed choice of parents for QTL analysis as well as being suggestive for gene

choice in functional genomics studies. Famoso et al. (2011) used both GWAS and biparental QTL mapping to elucidate

genetic architecture of Aluminum tolerance in rice and by identifying several subpopulation specific QTLs they con-

cluded that the subpopulation structure in rice has a major role in the tolerance. In an integrated analysis of GWAS,

QTL mapping, and RNAseq, Guo et al. (2019) could identify 6 colocalized loci between GWAS and QTL ultimately

pinpointing 44 genes responsible for seed vigor in rice. For rice, a diverse allelic resource was generated using 3,000

rice genomes by analyzing allele frequencies in rice subpopulations, thus improving the downstream analysis in the rice

genome (Alexandrov et al., 2014). However, GWAS has a high false discovery rate, hence the association between mar-

kers and traits are often verified by development of parental populations and QTL mapping.

33.2.2 Transcript abundance measurement by RNA sequence

RNAseq has provided a big leap for the total transcript count and gene expression analysis in an organism (Wang,

Gerstein, & Snyder, 2009) compared to the previously used microarray (Alonso-Simón et al., 2010). The microarray

depends on preidentified probe sequences on a chip for hybridization. Serial analysis of gene expression was also used ear-

lier which was a sequencing-based high throughput method for gene expression followed by massively parallel signature

sequencing. Microarrays use the hybridization approach where chips containing probes for specific transcripts are attached

and complementary DNA from the RNA are allowed to hybridize with the probe. The intensity of the fluorescent dye

attached to the hybridized probe can indicate the expression intensity of the gene. In RNAseq studies, the number of reads

mapped to the total number of genes, that is, the transcript counts in an organism are considered as indicator for the level

of expression. Up or down regulation of the same gene under nonstress and stress condition in tolerant or sensitive culti-

vars or in a population can indicate potential candidates involved in conferring salt tolerance. A common pipeline is to

clean the transcript count raw data with Trimmomatic (Bolger, Lohse, & Usadel, 2014), followed by mapping with a refer-

ence genome/transcriptome. The mapping step needs high computational power. Reads which span exon junction can map

to multiple location making the mapping step complicated. For RNAseq, illumina’s HiSeq system with 150 bp paired end

reads with sufficient coverage is the most popular method. An alignment tool called STAR (Dobin et al., 2013) is com-

monly used for ultrafast mapping of the transcripts to the reference genome. The read counts then need to be measured,

for example, using featureCounts (Liao, Smyth, & Shi, 2014). The principle that is followed is: the more the mapped read

counts for a specific gene, the more the transcript number and expression level.

Reduction in cost for multiple sample sequencing can be achieved by adopting different modified RNA sequencing

approaches, for example, a 30 tag based RNAseq method by Meyer, Aglyamova, and Matz (2011) along with multiplex-

ing samples using barcodes. Rarefaction or saturation curves can be plotted to evaluate whether the sequencing depth is

enough to represent all transcripts, which can discern whether collecting more data will actually be able to detect more

transcripts. Differential expression analysis can be performed using R packages like DESeq2 (Love, Huber, & Anders,

2014), edgeR (Robinson, McCarthy, & Smyth, 2010), etc., via Bioconductor. This helps elucidate whether there is a

significant difference in the mean expression levels of different sample groups (e.g., stress vs nonstress). In general,
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DESeq2 normalizes the raw counts by removing the library depth bias followed by estimation of gene-wise dispersion.

Negative binomial models are then fitted followed by hypothesis testing using Wald test or Likelihood ratio test (Love

et al., 2014). The edgeR package uses Generalized Linear models and relates the linear regression to the response vari-

able (Robinson et al., 2010). Other tools like JMP genomics (SAS Institute Inc, Cary, NC) use different models for nor-

malization (such as Kernel Density Mean of M component). Differential expression analysis has already shed light on

groups of genes that are upregulated or downregulated under salinity stress in different time points and different tissues

(Razzaque et al., 2017; Razzaque et al., 2019; Wang et al., 2018; Yeo, Bhave, & San Hwang, 2018).

33.2.3 Connecting genomic variation to expression variation

A merger of genomics and genetics was proposed by Jansen and Nap (Jansen & Nap, 2001) also known as eQTL. As

mentioned earlier, in eQTL mapping the transcript abundance of each gene is considered as a quantitative trait.

Combining the transcript count information with the genotyping information or linkage map generated from the molec-

ular markers can quantify and perform a multifactorial dissection of the RNA into its underlying genetic components or

mapping positions. Cis-eQTLs indicate which variation in the gene expression map to the SNPs of the genes themselves

and trans-eQTLs indicate which variation maps to distant genome locations.

RNAseq reads can also be directly aligned to the respective references to call the variants followed by haplotype

imputation. Recently Galpaz et al. (2018) have performed SNP calling by analyzing the RNAseq analysis in Melon for

fruit quality-related traits. A melon consensus linkage map merging data from eight populations including 414 3 Dul

was constructed with 1,592 markers. Several causative genes were mapped to single gene resolution and unknown

genes that affect fruit aroma and flesh color were identified and functionally or genetically validated. In another study

by Li et al. (2018), fatty acid composition, flowering time and growth trait-related QTLs and eQTLs were identified in

the allopolyploid Brassica napus. This study used BradSeq library construction method where 30 digital gene expression
libraries were extended to full transcript coverage in a shotgun type strand-specific approach. The authors used the

RNAseq data for genotyping using the R package onemap (Margarido, Souza, & Garcia, 2007) with the default value

of LOD score 3 and maximum recombination fraction 0.5 (Li et al., 2018). For QTL mapping they used both scanone

and CIM. For eQTL analysis they used the multiple algorithm of interval mapping method in R/qtl package (Broman

et al., 2003). It is important to note that proper statistical models are needed to retrieve the information from RNAseq

or microarray data and associating these with the linkage map. Tools like R/eQTL R/qTL, eMAP, Merlin, FastMap,

Matrix eQTL are among those being used, where the last one shows the fastest performance (Shabalin, 2012).

An eQTL study on rice shoots at 72 h after germination from 110 RILs of Zhenshan97 and Minghui 63 cross could

identify 26,051 eQTLs and 171 eQTL hotspots under nonstress condition (Wang et al., 2010). Specifically, eQTLs for

e-traits (expression as a trait) that were involved in DNA metabolic process were significantly enriched in the eQTL

hotspots on chromosome 3, 5, and 10. This study also found correlation between shoot dry weight QTLs and eQTLs

revealing potential candidate genes for the phenotypic trait (Wang et al., 2010). Comparative transcriptomics of salt-

tolerant and sensitive rice genotypes in a different study showed that under salt stress more genes were downregulated

at 48 h in both genotypes, but at 72 h the numbers of upregulated and downregulated genes were almost equal (Wang

et al., 2018). Differential gene expression of rice breeding lines has also been investigated under salt stress in both seed-

ling (Razzaque et al., 2019) and reproductive stages (Razzaque et al., 2017) in both shoot and root tissue under two

time points. These types of multifactorial models are beneficial in elucidation of tolerance mechanism and can identify

developmental stage-specific temporal and spatial eQTLs from the same linkage map compared to their nonstress

expression profile.

In case of eQTL analysis, the expression values are considered as quantitative traits and this is a useful strategy for

exploring the regulatory relationship between genes (Kliebenstein, 2009). Certain locations in the genome can act as

hotspots (above a specific threshold value) by regulating multiple gene expression. Mostly these appear as trans-eQTL

and they can work together in specific biological pathways to regulate certain phenotypic traits and can form functional

networks of correlated genes. Different coexpression network construction method like Mutual ranking, Weighed Gene

Coexpression Network Analysis can be performed on these genes to elucidate their relevance to specific biological

pathways. Hence combining the eQTL information with coexpression studies can identify regulatory candidates and

increase resolution of the analysis. Baker et al. (2019) characterized the mechanistic connections between genomic

architecture, gene expression networks and phenotypic variation throughout plant development using targeted eQTL

analysis.

eQTL studies can bypass the positional cloning process (Hansen, Halkier, & Kliebenstein, 2008) by narrowing down

specific genes underlying a phenotypic QTL region. They can be considered as a sequence-based genetic framework
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map identifying genes associated with the stress being studied. The major challenge in analyzing eQTL is the complex-

ity of genome-wide gene expression data. There are thousands of genes in a species and when all of them are consid-

ered as individual traits, it becomes computationally intensive to calculate the association. RNAseq and eQTL based

approaches are also challenging when used with crop genomes with more ploidy. To address such challenges, several

guidelines for eQTL mapping in allopolyploid organisms have been proposed recently (Fan, Devos, & Schliekelman,

2020). Additionally, improved computational and statistical power can help in more precise mapping of eQTLs.

Besides the physiological QTLs, merging GWAS and eQTL data is also of much benefit. This was demonstrated by

Li et al. (2020), who pinpointed a specific gene encoding KIP-related protein to be a master regulator of the genes

responsible for cell wall synthesis contributing to fiber length in cotton. eQTLs can map the changes in the expression

level of a gene to its structural variations even under stress conditions. For instance, eQTL mapping identified that

trans-regulatory elements (TREs) and transcription factor binding site evolution are the key players in drought response

of C4 perennial grass Panicum hallii (Lovell et al., 2018). Thus the genome�wide allelic expression differences under

both nonstress and stress condition can shed light on environmental perturbations and how variation in regulatory ele-

ments shapes phenotypic diversity.

33.3 Regulatory small RNAs

Plants express a diverse range of noncoding small RNAs (20�24 nt) that mediate posttranscriptional or transcriptional

regulation of gene expression (for review, see Axtell, 2013). Regulatory plant small RNAs can be broadly divided into

two categories based on their biogenesis patterns—microRNAs (miRNAs) and small interfering RNAs (siRNAs).

miRNAs are derived from single-stranded hairpin precursors and generally function in posttranscriptional regulation of

messenger RNAs through target cleavage or translational inhibition. miRNAs regulate a wide range of biological pro-

cesses in plants including development, growth, biotic, and abiotic stress response (reviewed in Jones-Rhoades, Bartel,

& Bartel, 2006; Martin, Liu, Goloviznina, & Nonogaki, 2010; Song, Li, Cao, & Qi, 2019).

In contrast to miRNAs, siRNAs are derived from long double-stranded RNA precursors. Plant siRNAs can be fur-

ther divided into several subcategories such as heterochromatic siRNAs (hc-siRNAs), phased siRNAs (phasiRNAs), and

trans-acting siRNAs (tasiRNAs). Hc-siRNAs (usually 24 nucleotides long) account for the majority of the expressed

plant small RNAs. Hc-siRNAs function in transcriptional silencing of transposons and repetitive elements in the

genome through the RdDM pathway (Matzke, Kanno, & Matzke, 2015; Zhang, Lang, & Zhu, 2018). PhasiRNAs and

tasiRNAs are both secondary siRNAs whose biogenesis is triggered by an initial miRNA or siRNA-directed cleavage of

target RNA (Axtell, 2013; Liu, Teng, Xia, & Meyers, 2020).

33.3.1 Discovery and annotation of small RNAs based on deep sequencing

Early discoveries of plant small RNAs involved Sanger sequencing of cloned products (Llave, Kasschau, Rector, &

Carrington, 2002; Reinhart, Weinstein, Rhoades, Bartel, & Bartel, 2002) and computational prediction of conserved

miRNAs across different species (Zhang, Pan, Wang, George, & Anderson, 2005). However, such approaches limited

the discovery of species- and lineage-specific small RNAs. The development of high-throughput sequencing technolo-

gies (Fahlgren et al., 2007; Fahlgren et al., 2009) and improved genome assemblies greatly accelerated large-scale sys-

tematic analysis of small RNAs in diverse plant species (Montes et al., 2014; You et al., 2017). Concomitantly, genetic

studies characterizing structural determinants for miRNA and siRNA biogenesis defined community standards for small

RNA loci annotation, especially for miRNAs (Meyers et al., 2008). As a result, a large number of web-based and stand-

alone tools dedicated to miRNA discovery have been developed over the years (Kuang, Wang, Li, & Yang, 2019;

Mohorianu, Stocks, Applegate, Folkes, & Moulton, 2017; Morgado & Johannes, 2019; Tseng et al., 2018). However,

variations in the quality and stringency of annotation practices have also led to many spurious annotations (Coruh,

Shahid, & Axtell, 2014; Kozomara & Griffiths-Jones, 2014; Taylor, Tarver, Foroozani, & Donoghue, 2017). To address

these discrepancies, a revised set of guidelines have been recently proposed for improved annotation of plant small

RNAs (Axtell & Meyers, 2018; Kozomara & Griffiths-Jones, 2014). Despite these efforts, relatively fewer tools are

available for annotating siRNAs and other classes of small RNAs (Axtell, 2013; Mohorianu et al., 2017; Shahid &

Axtell, 2013). Furthermore, as the majority of the siRNAs are derived from transposable elements (TE) and repeats,

these often map to multiple regions of the genome. Thus the placement of multimapping reads can greatly affect the

discovery of siRNA loci (Johnson, Yeoh, Coruh, & Axtell, 2016). Accurate assembly and annotation of repetitive, trans-

posable element-containing regions of the genome are also necessary for reducing false-positives in siRNA loci

discovery.
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Once small RNA loci have been annotated, these can be utilized for multiple downstream analyses for further char-

acterizing their function (Fig. 33.1). Deep sequencing allows capturing genome-wide changes in small RNA abundance

in different tissue samples or conditions. By using tools such as DESeq2 (Love et al., 2014) or edgeR (Robinson et al.,

2010), differentially expressed small RNA loci can be easily identified from such abundance datasets. Differential

expression analysis of small RNA loci has been successfully utilized by many studies to identify not only stress-

responsive small RNAs but also signaling pathways important in different stress conditions. For instance, miRNA

expression profiling of Arabidopsis seedlings unveiled cross-talk of stress signaling pathways involved in both drought

and salt stress response (Barciszewska-Pacak et al., 2015).
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FIGURE 33.1 Bioinformatic approaches for discovery and analysis of regulatory small RNAs and their targets. (Figure created using BioRender).
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33.3.2 Detection of small RNA targets

Targets of small RNAs can be predicted based on sequence complementarity. Unlike animals, plant small RNAs usually

require near perfect matches with their targeted transcripts. Various tools have been developed for prediction of

miRNA targets in the transcriptome (Addo-Quaye, Miller, & Axtell, 2009; Dai, Zhuang, & Zhao, 2018; Fahlgren &

Carrington, 2010). Most of these tools utilize a scoring system based on the number of matches, mismatches, and G:U

wobbles between miRNA and the aligned mRNA for predicting targets. Since plant miRNAs are known to cleave tar-

gets in a precise manner, cleavage of predicted targets can be validated using techniques such as degradome and PARE

sequencing (Simon et al., 2009) (Fig. 33.1). Software such as CleaveLand (Addo-Quaye et al., 2009), sPARTA

(Kakrana, Hammond, Patel, Nakano, & Meyers, 2014), and PAREsnip2 (Thody et al., 2018) are equipped to predict

both small RNA targets and detect cleaved targets based on degradome and PARE sequencing datasets. Besides target

cleavage, miRNAs are also capable of translational repression of targeted mRNAs. Integrative analysis of small RNA

and their target expression profiles along with degradome sequencing allow high resolution analysis of small RNA-

target interactions (Fig. 33.1). This type of integrative analysis has been successfully applied for identifying functional

miRNA-target pairs in diverse processes for both model plants (Thatcher, Burd, Wright, Lers, & Green, 2015) and non-

model plants (Cheng et al., 2020).

Heterochromatic siRNAs that trigger DNA methylation via RdDM pathway recognize noncoding scaffold RNAs

transcribed by the plant-specific RNA Polymerase V (Pol V) (Wendte & Pikaard, 2017). In this case target recognition

leads to recruitment of additional factors which mediate methylation of the associated DNA, leading to transcriptional

silencing. Techniques for detecting DNA methylation include bisulfite sequencing (Plongthongkum, Diep, & Zhang,

2014), which has been discussed in detail in Section 33.4.1. Additionally, DNA methylation can be detected from direct

sequencing of genomic DNA using long read technologies such as Oxford nanopore and PacBio (Flusberg et al., 2010;

Laszlo et al., 2013). Long read-based techniques do not require bisulfite-converted DNA for detecting methylation and

provide better coverage of repetitive and transposon-rich regions compared to short-read sequencing. Several studies

have utilized such technologies to identify genome-wide DNA methylation patterns (Ni et al., 2021; Simpson et al.,

2017; Tse et al., 2021). However, further development of tools and algorithms for accurate detection of modified bases

from long read sequencing datasets is necessary.

33.3.3 Natural variation in small RNAs and their targets

In general, plant miRNAs and their target sites are considered to be under strong purifying selection (Ehrenreich &

Purugganan, 2008; Wang et al., 2010). However, natural variations in miRNAs, miRNA precursors, and target sites

have been reported in several species (de Meaux, Hu, Tartler, & Goebel, 2008; Liu, Wang, Zhu, Hu, & Sun, 2013; Liu

et al., 2016; Wang et al., 2010). In some cases, such variation has been linked to phenotypic diversity. For instance,

sequence polymorphism in the Arabidopsis ath-miR164 precursor affects miRNA expression level and contributes to

variation in leaf shape and short architecture (Todesco et al., 2012). In rice, a GG/AA polymorphism in the precursor of

osa-miR2923a has been linked to grain length (Wang et al., 2013), while variation in the polyadenylation tail of osa-

miR156h precursor affected grain yield (Zhao et al., 2015). Sequence polymorphism in upstream regulatory regions of

the miRNA locus can also affect its expression. Such polymorphisms have been speculated to be the cause of variable

miR397 expression linked to domestication-related phenotypes in indica rice (Swetha et al., 2018). Finally, polymor-

phism in miRNA target sites has been linked to phenotypic diversity (Duan et al., 2015; Jiao et al., 2010; Miura et al.,

2010; Nair et al., 2010). These studies highlight the importance of exploring natural variations in small RNAs and their

targets and provide directions for manipulating such variations for crop improvement.

33.3.4 Integrating small RNA sequencing with quantitative trait loci mapping

Although several studies have reported genome-wide expression variation in miRNA and siRNA loci across closely

related species (Ma, Coruh, & Axtell, 2010; Wen et al., 2016), the underlying molecular mechanism and consequences

of such variation have not been extensively examined. Deep sequencing of miRNAs in six rice accessions revealed sig-

nificant miRNA expression variation between rice grains and seedling (Wen et al., 2016). This is consistent with the

regulatory roles of miRNAs in development. Interestingly, several rice QTLs that affect yield-related traits such as grain

number and grain weight are associated with miRNAs (reviewed in Peng, Teotia, Tang, & Zhao, 2019). In maize, map-

ping miRNAs to QTLs led to the discovery of several miRNA genes that colocalized with QTLs linked to waterlogging

tolerance (Osman et al., 2013). Therefore combining small RNA sequencing with QTL mapping can greatly enhance
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the discovery of traits affected by small RNA expression variation. This approach has been recently applied for identi-

fying miRNA expression-related QTLs (miR-eQTLs) in several crops (Chen et al., 2020; Liu et al., 2017). For instance,

Chen et al. combined miRNA expression variation in 200 maize lines along with the maize HapMap to identify four

miR-eQTLs (Chen et al., 2020). As many miRNAs and siRNAs are differentially expressed in response to abiotic stress

(Borsani, Zhu, Verslues, Sunkar, & Zhu, 2005; Furini, Koncz, Salamini, & Bartels, 1997; Zhang, 2015), small RNA-

eQTL analysis can be also useful for determining traits linked to stress tolerance. Indeed, miRNA expression profiling

in the salt-sensitive rice Pusa Basmati and salt-tolerant rice Pokkali identified several potential miR-eQTLs associated

with salt tolerance (Goswami et al., 2020). Compared to miRNAs, very few studies have explored expression variation

in siRNAs. However, as majority of the expressed plant small RNAs are actually siRNAs, eQTL analyses for these

could broaden our understanding on their regulatory potential. A relevant example is the role of siRNA expression vari-

ation in regulating rice hybrid vigor (Zhang et al., 2014). Further development of siRNA annotation methodologies will

be crucial for expanding small RNA-eQTL analysis beyond miRNAs.

33.4 Epigenomic regulation of gene expression in plant

The elements that regulate transcription of genes may reside in coding or noncoding parts of the genome and are

broadly classified into two categories: cis-regulatory elements (CREs) and TREs. CREs reside in noncoding regions of

the genome whereas TREs reside in the distal coding regions and can code for transcription factors (TFs), noncoding

RNAs or signaling molecules. CREs are noncoding conserved DNA sequences of B5�20 bp which often contain bind-

ing sites for different TFs (Rombauts et al., 2003). These elements may reside at the core promoter or UTR region of

the target gene and are often called proximal CREs. On the other hand, distal CREs reside far away from the target

gene and can come close during the process of transcription due the conformational change of the chromosome.

Unfortunately, we still have very limited knowledge of plant CREs and their regulation partially due to the fact that the

identification of genome-wide CREs is difficult. Since these elements have less universal sequence conservation and

shorter length, their identification is analogous to finding a needle in a haystack. Active CREs can initiate, facilitate,

enhance or repress transcription of the associated target genes and therefore play a chief role in the Gene Regulatory

Network (GRN) of an organism. The dynamic nature of transcriptional regulation through CREs provides high flexibil-

ity for rewiring GRNs in a spatial and temporal manner. This rewiring of GRN offers a great deal of plasticity for a

multicellular organism to respond differently to the changing environment. What are the ways to regulate CREs which

modulates the transcription of the associated target genes? DNA Methylation, histone modification or ATP-dependent

chromatin remodeling are the major regulatory mechanisms that have been studied for CRE activation or repression.

These regulations are often called epigenomic regulations. The term epigenome is formed from the Greek word “epi”

which means “above.” Since these epigenomic marks modify the genome and its expression without altering the genetic

code hence these are called epigenomic regulations.

33.4.1 DNA methylation and its role in transcriptional regulation

DNA methylation is a conserved mechanism for eukaryotes that plays an important role not only for gene regulation

but also for TE silencing, imprinting and whole chromosome inactivation. Active TEs can insert themselves into the

regulatory or coding regions of the genome and can cause functional changes of regulatory elements and genes. This

may cause genome instability and sometimes genetic disorders such as Hemophilia A in humans (Kazazian et al.,

1988). Therefore transcriptional silencing of TEs is a key epigenomic regulation that is required to suppress the tran-

scription of TEs. Gene imprinting and whole chromosome inactivation are the processes of epigenomic modification

mostly carried out by DNA and histone methylation that controls the expression of one single gene referred to as

“imprinting” or whole chromosome for the latter process. DNA methylation in eukaryotes usually occurs at the fifth

position of the cytosine bases but the context varies between mammalian and plant systems. For plants, methylation can

occur at CG, CHG, CHH (H5A, C, or T), whereas mammalian DNA methylation is restricted to only to the CG con-

text (Henderson & Jacobsen, 2007). In plants several different methyl transferases have been classified:

Methyltransferase 1 (MET1), Domain Rearranged Methyltransferase 2 (DMR2), Chromomethylase 2 (CMT2) and

Chromomethylase 3 (CMT3) (Zhong et al., 2021). MET1 is responsible for maintenance of CG methylation during rep-

lication whereas CMT3 is the plant specific DNA methyltransferase to maintain CHG methylation (Law & Jacobsen,

2010). CHH methylation is maintained by DRM2 through the RdDM pathway and CMT2. De novo methylation is also

mediated by the RdDM pathway which relies on DNA-dependent RNA polymerases, Pol IV, and Pol V (Gallego-

Bartolomé et al., 2019).

Deciphering comparative and structural variation that regulates abiotic stress response Chapter | 33 569



Molecular functions of DNA methylation for the different structural features of the genome are complex and still

not well-understood. DNA methylation in all contexts in the heterochromatin region, such as for TEs, is involved in

silencing these elements and works as a defense system (Wang & Baulcombe, 2020) of the genome. Protein-coding

genes located in euchromatin region can also be subjected to DNA methylation although the patterns of methylation

can alter the fate of the target gene expression. Methylation on the coding region of a gene is often referred as “Gene

body methylation” (gbM) which typically occurs in the CG context. GbM occurs frequently in constitutively expressed

genes whereas this is least observed for genes with highly variable expressions and therefore it has been hypothesized

that the gbM may not modulate expression during development or response to the environment (Zilberman, 2017).

Interestingly, although gbM primarily occurs on long evolutionary conserved genes, it is absent in the fungal genome.

CRE methylation can change the accessibility of that element to TFs and thus activate or repress gene expression

depending on the role of that CRE for the target gene and its accessibility profile upon methylation. For instance, loss

of methylation in a short repeat that resides in the upstream promoter of the FLOWERING WAGENINGEN (FWA) gene

in Arabidopsis has shown to make this element accessible for the transcription machineries which eventually increases

the expression of FWA gene and delays the flowering of the plant (Soppe et al., 2000; Zhong et al., 2021).

The different epigenetic marks we have discussed above are dynamic in nature. Numerous epigenetic reprogram-

ming events have been reported during the various developmental stages of plant’s life cycle and in response to various

environmental stimuli including biotic and abiotic stresses (Zhang et al., 2018). The major purpose for reprogramming

DNA methylation during gametogenesis and embryogenesis is to protect genome from TEs (Rajkumar, Gupta,

Khemka, Garg, & Jain, 2020). As an example, a study in rice endosperm revealed the reprogramming of methylation in

different contexts: non-CG methylation is reduced globally whereas CHH methylation of small TEs is increased in

embryos, a pattern that is conserved among angiosperms (Zemach et al., 2010). There is a growing interest to under-

stand the role of environmental stimuli on a plant’s epigenomic marks and whether the plant can preserve past environ-

mental cues as a memory in epigenomic marks. Studies on natural variant of epialleles suggest that genetic differences

in natural population have strong influence on the pattern of DNA methylation but it is uncertain whether this difference

leads to adaptation of plants to its native environment (Dubin et al., 2015). Studies have demonstrated that plant DNA

methylation can be altered at individual locus under both biotic and abiotic environmental stresses (Wang et al., 2011;

Wang et al., 2014; Wang et al., 2020). One such example of DNA methylation for CREs can be taken from the recent

study conducted by Wang et al. (Wang et al., 2020). The authors showed that in rice DNA methylation of a miniature

inverted repeat transposable element (MITE) located in the promoter region of a key salt responsive gene OsHKT1;5

increases under salinity stress which further recruits a methylation reader OsSUVH7 at MITE. A MYB transcription

factor OsMYB106 along with a chaperon regulator OsBAG4 bind to this transcription complex and facilitate the

expression of OsHKT1;5. HKT1;5 has been well studied in plants and encodes a Na1 selective transporter and helps to

maintain the Na1/K1 homeostasis during salt stress (Kobayashi et al., 2017).

Now a days there are three primary methods available to detect DNA methylation; (1) bisulfite conversion and

sequencing (BS-seq), (2) differential enzymatic cleavage of DNA, and (3) affinity capture of methylated DNA. One can

detect DNA methylation either for some specific locus or search the marks genome-wide. For locus specific detection,

first the target needs to be amplified and then the methylation can be detected either by enzymatic cleavage or BS-seq.

A combination of methyl sensitive and insensitive restriction enzymes can be used to detect methylation for some spe-

cific locus of interest. Methylation sensitive enzymes can only cleave at unmethylated targets of the restriction site and

this property has been exploited to detect DNA methylation for the given restriction site. Affinity capture of methylated

DNA technique uses antibody immunoprecipitation method that utilizes a 5-methylcytidine antibody to specifically rec-

ognize methylated cytosines for enrichment and can further be sequenced using an NGS platform. In this section we

will only discuss the bisulfite conversion method in detail for whole genome DNA methylation analysis. The general

principle of bisulfite conversion is fairly simple: the treatment of genomic DNA with sodium bisulfite converts cytosine

(C) residues to uracil (U) and leaves 5-methylcytosine residues unaffected. To construct libraries for whole genome BS-

seq, genomic DNA usually undergoes sonication to obtain 100�500 bp fragments and then is ligated with appropriate

adapters for latter sequencing steps. These small fragments are then subjected to sodium bisulfite conversion, few

rounds of amplification and finally sequenced using high-throughput NGS platform to provide single base resolution of

the DNA methylation call. One key consideration of BS-seq is the conversion rate of C to U which can be optimized on

the small chloroplast genome. While calling for DNA methylation, any mismatch of T in query sequence aligned to C

in the reference genome can be considered as unmethylated base. For a cytosine base of a given position in a reference

genome we would expect multiple BS-seq reads to align and therefore a binomial test is usually required to call whether

the base is methylated. Methylation profiles are usually analyzed for different contexts and are tested for a given win-

dow length of a genome.
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In the following section, we have mentioned some examples of DNA methylation for abiotic stress responses. This

raises the question: what is the scope for exploiting this methylation process to improve resilient crop production that

can withstand climate change? For the past two decades scientists have started to understand the process of gene expres-

sion regulation by DNA methylation in the context of abiotic stresses. Unfortunately, we still have very little under-

standing of how these stress memories pass to the next generation of plants to maintain the regulatory process. More

studies for the heritability of these stress memories may lead towards the development of stress tolerance crop breeding

by improving and exploiting existing epigenetic engineering tools.

33.4.2 The role of histone modification for the regulation of gene expression

Histone modification is one of the few key epigenomic mechanisms that regulates gene expression in plants and plays a

critical role in maintaining spatiotemporal transcriptional dynamics for a multicellular organism at various developmen-

tal stages and in response to different environmental stimuli. Typically, eukaryotic DNA is wrapped around histone pro-

teins and undergoes several degrees of folding to form compact chromatin structure that limits the accessibility of DNA

to its binding partners. These histone proteins can be modified posttranscriptionally and as a result can alter the accessi-

bility of the associated DNA. Five major classes of histone exist in the eukaryotic system: H1/H5, H2A, H2B, H3 and

H4. The latter four are usually referred to as core histone molecules whereas H1/H5 are known as linker histones (Park

& Kim, 2020). The core histones have a conserved motif called the histone-fold domain which is a globular structure

and has a dynamic histone-fold extension which is called “histone tail” (Zheng & Hayes, 2003). Two of each of these

core histone proteins form a histone octamer which binds and wraps about 146 bp of DNA molecule (B1.7 turns of

DNA helix) (Li, Carey, & Workman, 2007; Luger, Mäder, Richmond, Sargent, & Richmond, 1997). The linker histones

additionally wrap around another 20 bp of DNA and connect to the next histone octamer which eventually lead to an

array of histone octamers wrapping the DNA molecules. This primary extended nucleosome array structure undergoes

secondary and tertiary folding and forms the compact chromatin structure (Caterino & Hayes, 2007).

The tails of the histone molecules that interact with DNA, and the globular domain of histone protein surface far

from DNA molecules are both subjected to numerous different kinds of posttranslational modification which also modu-

lates gene expression. These modifications include methylation of Lysine and Arginine; acetylation, ubiquitination,

ADP-ribosylation, and sumoylation of Lysine and phosphorylation of Serine and Threonine. These modifications which

are associated with transcriptional activation such as H3K4 methylation (read as methylation at the 4th Lysine residue

of the H3 histone protein) are referred to as “euchromatin modification” whereas modifications that are localized for

inactivation of gene expression such as H3K27 methylation (read as methylation at the 27th Lysine residue of the H3

histone protein) are referred to as “heterochromatin modification” (Caterino & Hayes, 2007). Another major class of

chromatin remodeling involves ATP-dependent alteration of histone-DNA contacts which use ATP hydrolysis energy

for this remodeling, can form DNA loops and slide the nucleosome position which eventually changes the accessibility

of DNA to TFs. Another level of chromatin complexity may occur in the nucleosome due to the variants of core histone

molecules. The recruitment of new histone variants can affect the existing posttranslational modification and alter

nucleosome stability and the interaction between nucleosomes.

Chromatin immunoprecipitation (ChIP) for modification-specific antibody such as antibody targeted for H3K9Me

(read as methylation at the 9th Lysine residue of the H3 histone protein) coupled with microarray or DNA sequencing

is a widely applied method for genome-wide mapping of DNA�protein interactions (Tao, Feng, Zhao, & Guan, 2020).

Unfortunately, this method provides high background signals and suffers for a higher false positive rate. Several other

alternative methods have been developed in past few years such as DNase I hypersensitive sites sequencing (DNase-

seq) (Crawford et al., 2006), Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-seq) (Giresi,

Kim, McDaniell, Iyer, & Lieb, 2007), Micrococcal Nuclease digestion with deep sequencing (MNase-seq; Kent,

Adams, Moorhouse, & Paszkiewicz, 2011) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-

seq) (Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013) which aims to profile the accessible chromatin regions

(ACRs), not the specific type of modification that causes the activation or repression. All of these techniques exploit

the property of open chromatin structure but differs on whether the open-nucleosome free region or closed nucleosome-

covered regions of DNA is subjected to NGS-sequencing. In this section we will only discuss the principle and method-

ology of ATAC-seq technique which became a popular choice for its simplicity and robustness. This method uses a

modified Tn5 transposase with sequencing adapters that integrates itself directly into the open nucleosome-free region

of DNA and initiates the first step of the sequencing library construction. Insertion of Tn5 leaves the footprint of chro-

matin regions that are accessible which are then sequenced by NGS platform after amplification. However, for plants, a

major source of contamination of organelle genomes can reduce the representation of nuclear genome. Therefore a new

Deciphering comparative and structural variation that regulates abiotic stress response Chapter | 33 571



modified protocol has been developed which coupled fluorescence-activated nuclei sorting (FANS) prior to ATAC-seq

initiation (Lu, Hofmeister, Vollmers, DuBois, & Schmitz, 2017). In order to identify ACRs from ATAC-seq data, one

would expect to observe enrichment of read alignments around the open chromatin region compared to the region that

are covered by nucleosomes. Therefore commonly used peak calling tools which identify ACRs such as MACS2

(Zhang et al., 2008) or HOMMER (Heinz et al., 2010) test for enrichment of read counts for a given window of the

genome compared to various length of random genomic backgrounds. These tools were primarily developed for ChIP-

seq data and later have been modified to adapt for ATAC-seq data analysis. Currently, HMMRATAC (Tarbell & Liu,

2019) is the only peak calling tool which exclusively has been designed for ATAC-seq data but has not been implemen-

ted in many studies yet.

Identification of ACRs circumvent the unique difficulties in identifying CREs genome-wide by reducing the search

space from the whole genome to few thousand peaks. ACRs also provide the opportunity to study the cis-regulation of

gene expression and how GRN can be modulated for different developmental stages of plants or tissue type or by the

external environmental stimuli. For instance, a study for open chromatin landscape in Arabidopsis for root hair and non-

hair cell types revealed a root hair cell transcriptional regulatory module which is driven by ABA INSENSITIVE5

(ABI5) and MYB33 TFs (Maher et al., 2018). Another study integrated time-series transcriptome data and the patterns

of nucleosome-free chromatin to reveal the environmental gene regulatory influence networks which regulate the gene

expression in response to high temperatures, water deficit, and agricultural field conditions in five natural accessions of

tropical Asian rice (Wilkins et al., 2016). Another recent open chromatin landscape study in sorghum identified

drought-induced regulatory module and the variation in core drought-inducible signatures that associated with plant’s

water use efficiency (Parvathaneni, Kumar, Braud, & Eveland, 2020).

One may ask the question how conserved these CREs and the GRNs are across the long branches of the evolutionary

tree and can the knowledge of one plant species will be helpful for another species in the context of similar stress condi-

tions. Several studies have identified interspecies conserved noncoding sequences (CNSs) for plants (Burgess &

Freeling, 2014; Turco, Schnable, Pedersen, & Freeling, 2013; Van de Velde, Van Bel, Vaneechoutte, & Vandepoele,

2016). Lu et al. (2019) recently showed that such CNSs are enriched in distal ACRs that are very far from target genes.

Therefore the understanding of these intraspecies conserved stress GRNs regulations offers an in-depth picture of the

stress GRNs and opens the scope for manipulations of CREs/TREs for stress tolerant crop improvement.

33.5 Protein structure provides vital information of function during salt stress

Transport proteins are fundamental to life because they coordinate the movement and distribution of solutes between

different parts of the plant. Most of these ion transporters are responsible for regulating the metabolism, salt tolerance

or sensitivity and development of plants (Zhao, Zhang, Song, Zhu, & Shabala, 2020). In some cases, the expression pat-

tern of a particular transport protein may not differ between a tolerant or sensitive genotype under say, salt stress

(Shohan, Sinha, Nabila, Dastidar, & Seraj, 2019). In such cases, it is difficult to understand how the plant defends itself

in order to survive and thrive under salt stress. Under these circumstances, integration of structural and functional stud-

ies can provide insight into the mechanism of salt stress tolerance. Vital information gathered by matching structural

information among homologous transporters and their quantitative expression data have allowed the prediction and test-

ing of key structural elements. Specific amino acid residues were found to be implicated, which might help in confer-

ring salt tolerance through substrate specificity/selectivity and/or protein-protein interaction at the molecular level. For

such transport proteins, discovery of the substituted amino acids, prediction and validation of the altered molecular

structure led to an understanding of their differential function in tolerant and sensitive genotypes. In this section, we

illustrate the power of combining structural modeling and functional assays in order to understand how transport func-

tion can enhance the ability of plants to fight and survive salt stress.

33.5.1 Variation in protein structure contributing to salinity tolerance

Salt exclusion is of vital importance to help alleviate the effect of salt stress in any crop. High soil salinity leads to

accumulation of toxic levels of Na1 ions which interfere with photosynthesis, halt nutrition, and stall the development

of the plant. As such, excess Na1 needs to be kept away from cellular cytoplasm, especially in the shoot (reviewed in

Deinlein et al., 2014). Several studies have shown how structure-function relationships play a crucial role in a more

effective Na1 exclusion of the plant and better tolerance to salt stress. High Affinity K1 Transporters (HKT), in particu-

lar HKT1;5, which are associated with the root-shoot vasculature have been shown to minimize the accumulation of

Na1 in shoot tissues (Horie, Hauser, & Schroeder, 2009). The crystallization of the HKT1;5 protein has not been

572 SECTION | III Data mining, markers discovery



possible up to now. Therefore high quality modeling has been done using the bacterial K1 transport members of the

Ktr/Trk subfamily as templates. In one study it was shown that the HKT1;5-A transporter from Triticum monococcum

(TmHKT1;5-A) and HKT1;5-D from Triticum aestivum (TaHKT1;5-D) selectively conduct Na1 ions at different affini-

ties and rates (Xu et al., 2018). This study found 27 differences in amino acid residues between TmHKT1;5-A and

TaHKT1;5- D. Among these residues, substitution of six residues were predicted to cause sufficient structural change of

the transporter proteins and impact their transport capacity and function. These changes from basic to acidic residue or

positive to negative charge significantly impacted the local structure.

Another study conducted on different rice varieties showed that HKT1;5 has functional variability among salt-

sensitive and salt-tolerant varieties including in the halophyte Oryza coarctata (or Porteresia coarctata) (Shohan et al.,

2019). The major variation was found to be due to four altered amino acids. In this study, molecular dynamics simula-

tion modeling showed the positioning of the substituted Aspartate and Valine on opposite ends of the membrane in the

tolerant varieties. The dynamics showed that the substituted Valine (which is smaller than the Leucine present in sensi-

tive genotypes) was unable to generate a strong hydrophobic network, resulting in alteration in pore rigidity and easy

transport of Na1 away from the shoot. On the other hand, the presence of the substituted Aspartate in the shoot to root

interface created frequent polar interactions in the extracellular loop permitting less constriction at the pore and easy

efflux of Na1 compared to the Histidine at the same position in sensitive genotypes (Shohan et al., 2019). Homology

modeling and simulation study of HKT1;5 protein from the wild halophytic relative O. coarctata suggested that the rel-

atively lower Na1 affinity of this transporter was due to four key amino acid changes in the loops on the extracellular

side (E239K, G207R, G214R, L363V) (Somasundaram et al., 2020). This was validated by Na1 transport assays after

reciprocal site-directed mutations. Another study conducted with HKT1;2 from the halophyte Thellungiella salsuginea

(TsHKT1;2) found that this protein transports K1 in the presence of Na1 in yeast (Ali et al., 2016). TsHKT1;2 and

most other HKT1;5 sequences have aspartate in the second pore domain, whereas in all other cases, the presence of

asparagine was reported. Mutation studies have shown that replacing asparagine with aspartate in HKT1 type transpor-

ters leads to altered cation selectivity and uptake dynamics (Ali et al., 2016).

Conversely, one study conducted on rice HKT1;3 (OsHKT1;3) showed that a change in amino acid may not have

any effect on salt stress tolerance at all. Five SNPs were found in the coding region and among them four were synony-

mous substitution (A798C, G2083A, T2101C, C2122T) and only one was nonsynonymous (C3598G) which changed

the amino acid at position 200 from Leucine to Valine. But the position of the amino acid was in the third transmem-

brane segment of the OsHKT1;3 protein and the authors asserted that there was no effect on its transport capacity due

to this change (Do, Hoang, Le, Tang, & Nguyen, 2018).

Transporters like HKT1;5 seem to play a central role in adaptation to salt stress and despite the importance of their

structure and resultant function as discussed above, there may be an added layer of regulation. It has been recently

shown that the promoter of rice HKT1;5 is subject to epigenetic control during salt stress. A transcriptional complex

containing a methylation reader of a transposable element, a Myb binding site with OsMyb106 and a bridging protein

was shown to regulate expression of HKT1;5 in rice (Wang et al., 2020).

Boron is a solid metalloid which is passively up taken by the plant root from soil. Although high soil boron toxicity

is widespread worldwide, boron tolerant plants accumulate lower concentration of boron compared the sensitive ones.

The main mechanism for boron toxicity tolerance is related to limited entry of boron in the form of boric acid (BA) and

removal of surplus BA through leaves (Princi et al., 2016). In barley, two particular genes namely NIP2 and Bot1 are

mainly responsible for maintaining boron concentrations. Both of these genes encode proteins with transmembrane

alpha-helices and reside on the epidermal root cell. Bot1 plays a central role for imparting tolerance to plants growing

in soils with a high content of boron through efflux of borate from cells (Princi et al., 2016). One study defined the

function of Bot1 using cell-free synthesis through combination of molecular dynamics simulation, site-directed muta-

genesis and nanotechnology (Nagarajan et al., 2016). The authors found that the variant sites L234H and T541M occur

in the barley cultivar Haruna Nijo where H234 resides in the interhelical loop, adjacent to the fully conserved Arg-235

facilitating transport function. On the other hand, Met-541 resides in the intracellular loop in the region of low conser-

vation. Mutagenesis study showed that L234H in Bot1 is critical for the function of the protein while T541M has no

effect. The other changes found in Bot1 alleles from the cultivars Tadmor, Alexis, and WI4304 (N108S, K183E, and

Y195F) do not impact the functional atomistic model as are located in the noncritical region. This study also showed

that Bot1 has a Na1 ion binding site which is essential for its conductance (Nagarajan et al., 2016).

The Dehydration-responsive element-binding (DREB) transcription factor is an important regulatory molecule

involved in stress signal transduction pathways, hormone response, and plant derived development functions. Members

of the DREB family carry a conserved DNA binding domain known as EREBP/APT2. Analysis of amino acid

sequences of DREB proteins identified the presence of a conserved nuclear localization signal and another conserved
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serine/threonine rich region adjacent to the EREBP/AP2 domain (reviewed in Agarwal, Agarwal, Reddy, & Sopory,

2006). Several residues important for DNA binding activity of EREBP/AP2-type proteins have also been identified, for

instance arginine and tryptophan. Other key residues include a glycine within the AP2 domain that forms hydrogen

bond with an alanine (Allen, Yamasaki, Ohme-Takagi, Tateno, & Suzuki, 1998). Mutations in this glycine residue have

been demonstrated to impair the function of the Arabidopsis APETELA2 protein, possibly due to changes in the struc-

ture (Jofuku, Den Boer, Van Montagu, & Okamuro, 1994). Comparison of DREB1 proteins in multiple durum wheat

(Triticum turgidum) varieties have also revealed a SNP within AP2 domain in the highly salt tolerant genotype

(Mondini, Nachit, Porceddu, & Pagnotta, 2012).

The WRKY family of transcription factors play critical role as transcriptional regulators by repressing and/or acti-

vating different plant processes, including abiotic stress responses (Li, Pang, Lu, & Jin, 2020; Rushton, Somssich,

Ringler, & Shen, 2010). Several members of the WRKY family have been implicated in drought and salt stress toler-

ance in multiple plant species (Mondini et al., 2012; Shi et al., 2014). Comparative analysis of WRKY1 transcripts in

durum wheat varieties revealed two SNPs associated with salt-tolerant genotypes (Mondini et al., 2012). The first SNP

consists of a A/T transversion in the moderately salt-tolerant genotype Cham1. The second SNP consisting of a G/C

transversion was found in the highly salt-tolerant genotype J. Khetifa. Both of these SNPs were located near the

WRKY domain and resulted in amino acid substitutions. Thus these SNPs could potentially affect the DNA-binding

function of the WRKY domain and possibly contribute to increased salt tolerance in the aforementioned genotypes.

The Salt Overly Sensitive 2 (SOS2) gene is essential for homeostasis of Na1 and K1 level in plants. SOS2 codes for

a serine threonine type protein kinase with an N-terminal catalytic domain which is also seen in yeast SNF1 kinase

(Halfter, Ishitani, & Zhu, 2000). Analysis of the sos2 mutant allele sequences showed that both the N-terminal catalytic

domain and C-terminal regulatory domains are essential for the SOS2 to function properly. Another study in

Arabidopsis thaliana showed that changing glycine to glutamate in the recessive sos2�5 allele abolishes the SOS2

autophosphorylation. Therefore it is evident that this mutation causes change in the catalytic domain of the SOS1 pro-

tein structure, making the plant susceptible to salt stress (Liu, Ishitani, Halfter, Kim, & Zhu, 2000).

33.5.2 Future prospect in substitution-mediated enhanced salt tolerance

Knowledge of structure and transport function will help us to understand the impact of substitution events on perme-

ation, particularly by analyzing the atomic structure of 3D models of transporters. Coupling this information with

molecular dynamic simulation can empower protein engineering for better transporter function and improved salt toler-

ance. With the advent of CRISPR-Cas technologies, such engineering is becoming more feasible. The knowledge of

structural variation with substitution of amino acids will also help in the accurate annotation of genes and provide better

understanding of the significance of variation of homologous and divergent genes in an evolutionary context as well.

33.6 High performance computing in comparative genomics

Modern science is data driven. With the advancement of digital sensors, we are generating more and more data. As

explained by the Wired magazine in its July 2018 cover—“The quest for knowledge used to begin with grand theories.

Now it begins with massive amounts of data” (https://www.wired.com/). This states how the science is shifting. In fact,

a lot of our understanding in every discipline is generated by analyzing a massive amount of data. For example, the

Rubin Observatory (also known as LSST) located on a mountaintop of Chile is equipped with a 3.2 gigapixel CCD that

can generate 1.28 petabytes of images per year for astronomical surveys. The Large Hadron Collider (LHC) built by the

European Organization for Nuclear Research (CERN) produced approximately 25 petabytes of data every year by 2012.

Commercial giants like Google, Yahoo, Microsoft and Amazon are also gathering information for prediction and effec-

tive extension of their marketing policies. These data are also being used for economic and social science research.

Biological science is very understandably also in this race. Advancement in sequencing technologies has led to an enor-

mous amount of data being deposited into databases. The 1000 genome project, the 3k rice genome project, etc. are few

examples of large initiatives where large amount of data is being produced. Sequences of more and more crops and

their variant accessions have also been deposited and there is a need to relate the SNPs with important traits for crop

security in the face of climate change. GWAS not only of human diseases but also for crops with important trait varia-

tions need immense computational power. Generating and managing large amount of data brings with it new challenges

but more so because the data needs to be understood and made meaningful. Development of proper tools for compara-

tive genome analysis, structural and functional annotation of novel genes and proteins, understanding regulations of

genes, finding related metabolic pathways and discovering epigenetic regulation have become crucial. Such information
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is also invaluable for pharmaceutical industries, who need information on in silico target identification for drug discov-

ery. All these boils down to the need for acquiring and managing computational requirements as well as skills. In gen-

eral, we refer to supercomputers for addressing our computational needs for analyzing big data. But a supercomputer is

expensive to build and is beyond reach of most researchers. The best way to resolve the problem is to break down big

data into usable information, understand the components of computational needs for analyzing biological data, and

make the best use of the resources we have.

The basic requirement of analyzing big data in biological science, generally referred to as bioinformatics, is compu-

tational power. However, the hardware requirement varies according to the type of analysis, type of tools being used,

amount of data under processing, etc. For example, assembly of a bacterial genome using the Unicycler tool on a stan-

dard workstation with CORE i7 processor and 16 GB random access memory (RAM) takes about 2�3 h. But assembly

of a large genome like rice (B400 Million bp) or human (B3 billion bp) in it will be nearly impossible. Even in the

example for microbial genome assembly, the required time will vary depending on arguments used for analysis, type of

hardware or operating system. This problem is not unique to biological science only, rather it is universal. The comput-

ing community consortium recommended guideline to prepare or manage the system involved for such mammoth tasks

(Bryant, Katz, & Lazowska, 2008). For managing our requirements, we can adopt the right system. According to the

guideline, the following factors must be considered.

Storage: The data can be from two sources: from the sequencing machine itself, or it can be downloaded from pub-

lic databases. Whichever the source is, a good practice would be to store the data in a central location. This is usually a

computer with a large storage facility and is connected to network through which the data can be accessed by the com-

puter where the analysis is taking place. It will eliminate the overuse of storage due to multiple copies downloaded by

multiple users. However, local storage (the computer where the analysis is taking place) also has to be in consideration.

Because, most of the analysis tools generate temporary files while performing the task and they can be quite large in

size. Advancement of magnetic disk technology (technology behind traditional hard disk) has made the storage devices

cheaper. However, it has a rather slow read/write speed compared to the processing power available, which often

becomes the rate limiting step in overall performance. A traditional hard disk offers about 125 MB/s data transfer (read/

write) speed. If equipped on a 32 core processor-containing computer, the data is processed at a faster rate than the

reading of the information from HDD or placing them back. Recently developed SSD technology which offers 10x to

20x faster transfer rate has eliminated this problem. But they are rather expensive. One could balance this by choosing

a SSD storage device as primary where the operating system is installed and also being as temporary storage while the

analysis is ongoing. Whereas, magnetic disk technology storage can be used as secondary, where the final output will

be stored. With this the initial reading of the data and final writing of data (which is on a traditional HDD) will be

slower but will provide faster processing.

Network connection: Let’s say we are storing the data on a central computer storage which is dedicated for this pur-

pose only. The analysis will be done on a different high-performance computer. To minimize the delay to access the

data, a good network connection will be required between these two facilities. To scale this up, the data stored at the

central facility, can be shared among researchers across the globe. In this case a high-speed internet connection will be

required.

Processor: The processor power is usually measured by number of cores, the operational unit of a processor. The

popular laptop or desktop processors generally contain 4�8 cores and are not suitable for this task. Usually the proces-

sor core count is a major factor. The more the number of cores, the higher the number of processes that can be handled

at a given time, which in turn speeds up analysis. A 32-core processor is a good starting point. However, it is highly

dependent on the task in hand. Assembly of a single rice genome for example, will take 24�30 h on a 32-core com-

puter. But a task like 3k rice genome, we may have to multiply the power to several folds and also use parallel proces-

sing on multiple clusters. Tasks like finding splice variants or epigenetic landmarks, etc., are less processor intensive

than assembly, but the number of samples in the study may need to be considered.

RAM: RAM acts as temporary memory while the process is running. The larger the file size being analyzed, the

more RAM it will require to process. For example, assembly of a bacterial genome of around 3 Mb, a computer with

16 GB RAM should be sufficient. Whereas, rice genome is about 400 Mb and therefore the sequence file to cover this

length will be significantly larger. It would take 128 GB or more RAM to operate smoothly.

Operating system: One can choose any of the operating systems they are comfortable with. However, the availability

of tools/software in use will be the determinant. A wider community adopted the Linux environment to develop most of

the tools. Although some of the tools also have Mac and Windows versions also, the option for different types of analy-

ses becomes limited in non-Linux environments because of the lack of compatible tools. Switching between operating

systems is also not convenient. Moreover, Linux offers better multithread management over others. For example, we
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want to launch a GATK analysis for SNP determination in a bacterial genome sequence in a computer containing 32

core processor. This analysis does not need to engage all the computational resources. For example, users can allocate

24 cores for the GATK analysis and use the rest for another task in a Linux environment. Moreover, using multiple

terminals we can do the same task more efficiently. For example, in four separate terminals, we can start assembly of

four separate bacterial genomes where we can assign 8 cores for each of the processes. The result will take almost the

same time to finish a single process as assigning 32 cores for each, but in the latter case 4 genomes can be analyzed for

the given time. But for a large genome like rice, it will take larger amount of resources per process. Another question

that generally arises is: which version of the operating system should be chosen—the server or workstation version?

Unless it’s a requirement from the tools in use (like bigsdb, which requires local database management system), there is

not much difference between the two versions. A server version will provide better access control over storage, and

tools/software in use, especially if it is accessed remotely. Especially for centrally maintained data storage, one may

want to limit the access of data to a specific number of users and not to all. A server edition of an operating system will

provide better management of such access control.

Graphics: Most of the tools for assembly, annotation, alignment, etc., do not need additional graphical processing.

However, analyzing the results and presenting them graphically, one may want to use software like “R” which is very

popular among data analysts in recent days and will require a lot of graphics processing power. The simulation-based

and molecular dynamics study tools would require a decent amount of graphical processing power. For analyses involv-

ing these tools, a good graphics processor (graphics card) could be useful.

Both processor and RAM requirement are dependent on the tools in use. For example, an assembly tool is more pro-

cessor intensive, where as a multiple alignment tool is more RAM intensive. Again, a big dataset like rice genome will

require larger amount of RAM for processing compared to a bacterial genome. Similarly, multithread enabled tools can

perform a job faster with higher number of processing units (core) since they can efficiently split the task to multiple

cores and return the output in significantly less amount of time. Therefore proper hardware needs to be chosen depend-

ing on the intended use. This brings us to the option of cluster computing. The concept of cluster computing is to split

the job in several processes and reassemble them to the final output. The computing units can be several computers con-

nected as node and task is distributed through a job manager (Fig. 33.2). Essentially this follows the principle of

building-up of a super computer. A supercomputer consists of 100s or even 1000s of computers as nodes, where each

node is powerful enough (32 core processor and 128 GB RAM for example) to perform a task in reasonable amount of

time. If one has to start small and plan to build up later on this, building up such an architecture for a cluster computer

may be a good start.
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Another creative use of this cluster computing concept is employed by CERN to process the LHC data. This is

employed by a software called Berkely open infrastructure for network computing (BOINC) (Fig. 33.3). This software

is connected to the data server and manages connection to hosts all over the world. Here a host can be anyone who is

willing to share the ideal resources on their personal devices with the client software installed in them. The BOINC dis-

tributes the data to the client and reassembles the feedback.

In addition to the local computational unit or a supercomputer, a new emerging choice is cloud computing. The

commercial giants like Google and Amazon built storage facilities and computing power that can be used with a sub-

scription fee. The user only has to build the set of instructions for the computational units to process the data. The pro-

cess is nothing different from the command lines prepared for processing in a personal computer, but are prepared for

the cloud server. Necessary adjustments specific for the particular cloud servers are generally provided by the service

itself.

Efficient uses of the computational units: Now that we have a general idea about the computational units, we will

discuss the tools for the processes to plan a task to efficiently use the resources available. Most common uses of NGS

data are assembly of the short reads into genome/transcriptome or find the variants by comparing to a reference

genome. Assemblies are of two types: de novo and reference guided. The de novo assembly process consists of several

steps described in Fig. 33.4. Depending on the assembly program in use, the command to the process can be automated

in a single step or multiple steps where user has to initiate each step. The latter may seem laborious but gives more con-

trol to fine tune the process. In de novo assembly, the process varies depending on the tools being used but the basics

are pretty similar. First, we may want to check the quality of the reads and remove the bad reads. Next step is to assem-

ble the reads into a contig. This step takes a lot of processing power. Therefore if we assign maximum available

resources into this, it will take minimum time to complete. Most of the recent releases of the assembly programs are

multithread-enabled, but the default parameters are set to a lower number (usually 4) to allow universal use. Next steps

are aligning the contigs, and reassembling them into draft genome. These steps require a lot of RAM but considerably

lower processing. For assembly of a large genome like rice or human genome, we may want to deploy all the resources

available. But for small genome like virus or bacteria, assembly takes a lot less resources and assigning all of them is

not necessary.

Request and distribution of
jobs and results

Web interface 
for users

Job queue and
storing results

Database

Web server /
grid services

Computing Grid

Desktop computer

Linux server

Linux server

Desktop computer

Computer cluster
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FIGURE 33.3 BOINC manager.

The BOINC web server manages

job distribution along the grid

which can be computer hosts inside
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to share the ideal resources. The

server collects the results and

assembles into the database.

Figure is adapted from https://

boinc.berkeley.edu/.
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For reference-based assembly, the short reads are aligned to a reference genome. The process is similar in variant

analysis, as well as ChIPseq and methylome analysis. The latter however requires a lot of RAM. The process automati-

cally will use maximum available RAM. Therefore when we plan these studies, it is best to start with sufficient RAM.

We often use one or more segments of genome under these studies. Defining these regions to the alignment tool will

greatly improve the performance since it has to align only to the target regions rather than the entire genome.

Programming language: A general myth among biologists is that bioinformatics requires a lot of computer program-

ming and therefore learning programing language is a must. Bioinformatics can be divided into two branches: develop-

ing the tools for a specific need and use of the tools for actual analysis. The earlier task requires a lot of programming

knowledge and is usually done by someone with computer science/software background. In this case, a specific problem

is presented to them. For example, assembly of NGS data, where the task is to align millions of 100-bp or similar reads

into the final contig. A programmer will find out a smart way to place the correct sequence one after another or over

one another in case of duplicates. Most of the cases, they do not need to know what the sequence means or its signifi-

cance. They just need to be able to read them and place them in order. These is usually done with programming lan-

guages like C11 or python. On the other hand, biologists are the user of the tools. They will use the tools developed

by the earlier group and apply it on real dataset and experimentally prove if the result is correct and produce a meaning-

ful contig that represents the given organism. However, for efficient operation and efficient use of the resources, a little

understanding of programing language is helpful for the latter group. For example, the assembly process in multiple

steps requires human input in each step. We have to wait one process to finish before we start another one to start. This

is laborious and becomes complicated when we want to use parallel processing. Writing a small script (a set of com-

mands placed together which will provide instructions one after another and will respond accordingly) can easily handle

this task automatically. Often, the output of a tool does not directly fit as input of the next tool. Manual modification/

conversion is a mammoth task. For example, the local blast output would provide a multiple column data. For each

sequence there would be multiple line results. But we may be processing blast results of 100 sequences and from

each result, we want to pick only the best hit for those 100 sequences. Usual process would be to find the best hit value

for each of the sequence and copy the information to a new file then cut out the accession and sequence for them.

This may take several hours of intensive work. But with a few lines of code, we can do the same within a few seconds.

Resequencing
Reference-based assembly De novo assembly

Millions to billions of readsGenomic DNA

Reference genome

Align reads to reference genome

SNP ChIP seq Methylome Transcriptome

Next generation
DNA sequencing

FIGURE 33.4 NGS data generation and processing. Genomic DNA (or RNA) is processed according to experiment. Sequencing machine generates

millions to billions of short reads. These reads are processed according to experiment design. Short reads are assembled with or without a reference

guide. A de novo assembly will generate contigs which can be realigned and curated to produce a reference genome. In a reference-guided assembly,

reads are compared to reference genome and deviations from reference are determined. Based on experiment design, these data can be further pro-

cessed for SNP, methylome, ChIP Seq interpretation. NGS, Next generation sequencing; SNP, single nucleotide polymorphism.
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A programing language such as R can analyze the results and present them most efficiently in graphical format. As

Jeffrey Perkel, the technology editor at the Nature Journal, aptly described (Perkel, 2021)—a little understanding in

Unix/Linux can be helpful to access a file without even opening it and search for specific information and used to

advantage for many analyses.

In recent days, more and more scientists are becoming interested in programing languages. Programming languages

such as R, Python, and Perl, are extensively being used by biologists for data processing analysis and graphical repre-

sentation. All these languages are equally capable for the analysis purpose. Most importantly, a wider community is

using these languages and hence, new modules are constantly being developed for all of them, which we can utilize to

process and represent our data more easily and efficiently with ease.

Computational skills: As mentioned earlier, developing a software/tool will require a lot of programming lan-

guage and associated skills. Users (e.g., biologists) of these tools will not require such high-level programming

skills, but a decent understanding will help a lot in processing the data. For example, while using a cluster com-

puter, one might expect it to need a good amount of computer knowledge. But in fact, the architecture is designed

usually by a network engineer and is usually operated through a management software. The user just has to place

the usual commands only in a specific format for the management software to process. Skillful use of “awk” and

“bash” in Linux is very helpful in this regard. For operating from a remote location (a computer different from the

data stored or analysis is being performed), understanding on network architecture is helpful. A third-party soft-

ware like BOINC also uses the same instructions but in a specific manner. To wrap up the requirements for biolo-

gists, it is the same for all, just will need some adjustment according to the system. For example, the command

“bwa” will launch bwa alignment tool in a Linux system. But by using “ssh” in terminal we can log into a different

computer, a super computer on a remote location for example, and “bwa” command there will launch the same pro-

gram in that remote computer.

In summary, bioinformatics is the new era of modern biology. We may have limited resources to adopt the new sec-

tion of science. But better understanding of the process will allow us to utilize the resources more efficiently and to

explore the information that is already available. This will help us to find sustainable solutions for challenges like abi-

otic stress.

33.7 Conclusion

In summary, ensuring food security for the future is an uphill task, aggravated by global change in weather patterns and

the need to feed an ever-increasing human population. Another all-important constraint for ensuring crop production are

the dwindling reserves of fresh water. In addition, clearing of forests for logging and human habitation has drastically

reduced plant diversity. The crops of the future need to be resilient to multiple stresses. Therefore it is imperative that

we identify and study existing world-wide germplasm banks for plants with desirable traits such as abiotic stress toler-

ance. The DNA sequence of many reference genomes of cereal and legumes crops as well as their resequenced variant

genomes have already been deposited in genome specific or plant genome databases as discussed in this chapter and

GWAS as well as QTLs for important traits have already been published. Methods are also in place to generate large

scale mutations for producing allelic variations for improvement of target traits using genome editing tools, including

epi-alleles (Herbert et al., 2020; Zhang, Malzahn, Sretenovic, & Qi, 2019). The success in producing hardy crops which

are commercially viable needs to gather speed. Bioinformatics tools have gone a long way in helping us handle and

make sense of the enormous data already deposited. Further development of bioinformatics tools to understand the epi-

genome, RNA expression QTLs as well as small RNA expression QTLs will help in elucidating the fine-tuned regula-

tion of stress responses in plants. Armed with this knowledge, modern revolutionary tools like CRISPR-Cas9 genome

editing may pave the path for speedy crop improvement for the future. CRISPR-Cas9 has been used for gene knock-

out, which can be useful if we target susceptibility genes, or genes used by pathogens for establishment, or regulatory

genes which lower gene expression under stress. Precise gene-editing of single and multiple genes is also possible by

homology-dependent repair. Transcriptional control is also possible by gene editing of regulatory elements. Dead Cas

nucleases can be used to recruit regulators to the promoter region, including activators, repressors, DNA methyltransfer-

ase, demethylase and so on, reviewed in (Zhang et al., 2019). Recently RNA viral transfection methods have been

developed, where a single generation of plants are targeted for alteration of regulatory circuits which can enhance agro-

nomic traits (Torti et al., 2021). Gene editing tools like CRISPR-Cas9 may be used in such a way that the superior

plants produced are non-GMO and therefore can bypass time-consuming regulatory requirements, making it the one of

the handiest tools for rapid crop improvement.
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34.1 Introduction

The decrease in the cost of producing genomic data increased the importance of research in areas such as DNA

sequencing, RNA sequencing, and high-throughput screening. This ended up creating new challenges in finding effi-

cient ways to analyze data and provide insights into the function of biological systems. Computational biology uses

knowledge of computer science, biology, statistics, chemistry, and engineering to analyze and infer the relationships

between biological data and thus create computational solutions to address these issues. Bioinformatics research pro-

vides solutions on evolutionary aspects of molecular biology, metabolic pathways and networks, expression and regula-

tion of genes and proteins, genomic annotation, and biomolecular interaction. Machine Learning methods are general-

purpose approaches to learning functional data relationships without the need to define them a priori. Within computa-

tional biology, its application involves the ability to generate predictive models without the need for strong assumptions

about mechanisms that are often unknown or insufficiently defined. Deep Neural Network (DNN), subarea of Machine

Learning which assembles Deep Learning algorithms, takes the raw data in its lowest layer (input) and transforms them

into representations of increasingly abstract features, successively combining the outputs of the previous layer in a data-

oriented manner, encapsulating complexes mathematical functions in the process. Deep Learning is now one of the

most active fields in Machine Learning and shows to improve performance in image and speech recognition, under-

standing of natural language, and, more recently, in computational biology. The potential for using Deep Learning in

high-performance biology is remarkable. It allows to better explore the availability of larger and larger datasets (e.g.,

DNA sequencing, RNA measurements, flow cytometry, or microscopy) by training complex networks with multiple

layers that capture their internal. These deep networks, after being trained, are able to discover high-level features,

improve the performance of traditional models, increase interpretability, and provide the understanding of the structure

of biological data (Angermueller, Pärnamaa, Parts, & Stegle, 2016).

Likewise, Deep Learning has been used widely to solve historical challenges in agricultural sciences, such as in

image processing and data analysis, with promising results and great potential. As Deep Learning has been successfully

applied in a number of fields, more recently the turn to agriculture has come.

34.2 Deep Learning and Convolutional Neural Network

Machine Learning is an area of artificial intelligence, the objective of which implies the development of computational

algorithms that are capable of transforming experience into expertise. In other words, Machine Learning algorithms aim

to map patterns from an input domain to an output domain and subsequently recognize patterns from the output domain,

even those not exemplified.

Fig. 34.1 illustrates the mentioned domain mapping process. In this figure the symbol f represents the Machine

Learning model that is being built from examples of the input and output domains. After building the model, given a
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sample of the input domain, it is expected that f be able to perform the proper mapping for the output domain. If this

operation is satisfied, the Machine Learning model is said to have the ability to generalize.

A Machine Learning algorithm can be classified taking into account the adopted domain mapping methodology.

Among the possible classifications, these algorithms can be classified as supervised and unsupervised algorithms. So,

let X be a set of independent variables and Y a set of dependent variables, a dataset labeled L is defined by N pairs of

input values and output values x1; y1ð Þ; . . .; xN ; yNð Þ where xiAX and yiAY . Thus the task of a supervised model implies

learning the function f :X-Y from the set L5 ðXN ;YNÞ. After building the model, it is expected that the function

f :X-Y be able to map values ðxAX; yAYÞgL.

The development of supervised Machine Learning models implies the need for data labeling. However, in many real

problems, labeling a sample of the input data is a complex or even unfeasible task. When this is the case, it is recom-

mended to use unsupervised Machine Learning algorithms. In unsupervised Machine Learning the algorithm is built

from unlabeled examples. In this type of algorithm the similarity between the input data is sought. That is, if the input

data is similar, it is expected that this data will reflect in mapping for the same group as the output domain. In unsuper-

vised problems the outgoing domain is built from clustering. Referring to Fig. 34.1, the training data of the unsuper-

vised algorithm imply only the examples of the input domain. Because it is not labeled, the examples of the output

domain are not used in training the model.

Among the Machine Learning algorithms in the literature, algorithms based on convolution are standing out in sev-

eral areas. CNN (Convolutional Neural Network) is a Deep Learning approach that has been demonstrated efficiency in

problems such as object classification and face, speak, and action recognition. Architectures such as LeNet-5, AlexNet,

ZFNet, VGGNet, GoogleNet e ResNet show the evolution of CNNs and a tendency for increasingly deep architectures.

According to Gu et al. (2018), CNNs with deep architecture can provide a better performance, since they increase the

nonlinearity of the network. However, the depth also increases the complexity of the network and makes it difficult to

optimize. So, regardless of architecture and depth, it is possible to notice that there is a pattern of the components used

in a CNN. According to Goodfellow, Bengio, and Courville (2016), a convolutional layer is composed of the 3-upla

,convolution, activation function, pooling..

Convolution is a mathematical theorem applied to two functions f and g to obtain a third function h, defined as

follows:

f � gð Þ cð Þ5 h cð Þ5
X
a

f ðaÞ3 gðc2 aÞ (34.1)

To illustrate, consider the scenario in Fig. 34.2. In this case a ball is thrown from a height h1 and travels a distance

A with probability f ðAÞ. From the stop point the ball is relaunched from a height h2 and travels a distance B, with

FIGURE 34.1 Domain mapping process

performed by Machine Learning models.

FIGURE 34.2 Convolution exemplified by the throw of the ball.
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probability gðBÞ. Thus the total distance traveled by the ball is c5 a1 b. The probability of the ball traveling distance c

is given by f ðAÞ3 gðBÞ, that is, the probability of traveling distance A and the probability of traveling distance B.

Assuming c5 8, it is possible to obtain different values for a and b that satisfy the equation a1 b5 8. Therefore to

obtain the probability function of c, it is necessary to take into account all the possibilities of f ðAÞ3 gðBÞ. Therefore the
probability of the ball traveling a distance c can be defined as follows:

f � gð Þ cð Þ5 h cð Þ5
X

a1 b5 c

f ðaÞ3 gðbÞ (34.2)

Assuming b5 c� a, we have the convolution:

f � gð Þ cð Þ5 h cð Þ5
X
a

f ðaÞ3 gðc2 aÞ (34.3)

In the context of Artificial Neural Networks (ANNs), many applications use multidimensional input values.

Applications that work with image manipulation are examples of networks that manipulate two-dimensional inputs. In

this context the convolution is given by:

f � gð Þðc1; c2Þ5 h c1; c2ð Þ
5

P
a1;a2

f ða1; a2Þ3 gðc1 2 a1; c2 2 a2Þ (34.4)

Two-dimensional convolution can be seen as a sliding window from one function to the other. In the case of the

CNN, convolution implies the kernel function by sliding over the array of input values. Fig. 34.3 shows an example of

a two-dimensional convolution performed by a CNN.

According to Buduma and Locascio (2017), the kernel functions of CNNs work as feature detectors. Each kernel

has the function of learning specific characteristics of the input data. The learning of each kernel is given by adjusting

the weights, during network training. In image classification or feature recognition problems, convolutional layers typi-

cally learn to detect specific edges, texture, shapes, and characteristics of the problem.

As an example, Fig. 34.4 presents an abstraction of the functioning of the convolutional layers. Each frame in

Fig. 34.4 represents a kernel function performing a convolution.

According to Chollet (2017), convolutional kernels enable hierarchical learning. In this case the first convolution

layer learns small local patterns, such as edges; the second layer of convolution learns more specific patterns, and so

on. In the example in Fig. 34.4, the filters of the first convolutional layer learned generic forms of the object. In the sec-

ond layer the combination of characteristics made it possible to learn in more specific ways.

FIGURE 34.3 Example of two-dimensional

convolution (Goodfellow et al., 2016).
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The convolution of a CNN is a linear system. In this sense, multiple convolutions also form a linear system. In

order, for a CNN to solve nonlinearly separable problems, it is necessary to use nonlinear activation functions among

each convolution layer. Studies such as Gu et al. (2018), Alcantara (2017), and LeCun, Bengio, and Hinton (2015) point

out that the Rectified Linear Unit (ReLU) function and its variations have good performance for the neurons of the con-

volution layers. The ReLU function (see Eq. 34.2) calculates the maximum value of the input values and transforms all

the negative input values to zero.

f xð Þ5maxð0; xÞ (34.5)

According to Gu et al. (2018), the convergence of negative values allows the nonactivation of all neurons and, con-

sequently, a sparse representation of the model. The sparse representation provided by the ReLU function allows CNNs

to be trained efficiently, without the need for pretraining. In addition, the use of ReLU functions makes it possible to

approach more complex functions. For example, consider the quadratic function f ðxÞ5 x2. In this case we could use the

following function ReLU, to approximate f ðxÞ (Fig. 34.5).
h xð Þ5ReLU xð Þ1ReLU 2xð Þ1ReLU 2x2 2ð Þ1ReLU 22x1 2ð Þ (34.6)

FIGURE 34.4 Abstraction of the CNN kernel functions (Chollet, 2017). CNN,

Convolutional Neural Network.

FIGURE 34.5 Approximation of the quadratic function by the ReLU function. ReLU, Rectified Linear Unit.
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The last component of 3-tuple is the pooling function. These functions analyze a set of neighbors and extract a char-

acteristic that represents them. The goal is to merge semantically similar features and make feature mapping invariant,

even if there are variations in input values. The Max Pooling function proposed by Zhou and Chellappa (1988) performs

this representativity by extracting the maximum value among the observed neighbors. In addition to Max Pooling, Gu

et al. (2018) emphasize that the functions LP Pooling, Mixed Pooling, Stochastic Pooling, Spectral Pooling, Spatial

Pyramid Pooling, and Multiscale Ordering are also efficient functions used in CNNs.

On a CNN the Max Pooling function also works to prevent overfitting. In the learning model, overfitting is related

to the generalization capacity of the model. If the performance of the model with the labeled data is drastically higher

than its performance with the unlabeled data, it is assumed that this model does not have the capacity to generalize and,

therefore, overfitting.

There are several ways to solve the problem of overfitting. Considering the low performance with the unlabeled

data, one of the possible findings of overfitting implies the low variability of examples for the domain mapping. Thus,

to solve this problem, increasing the sample space of the labeled data is the solution usually adopted.

Another problem that leads to overfitting concerns the sensitivity in the variation of characteristics. In this case the

problem is usually solved by investigating the model’s architecture. In the context of the CNN, pooling functions are

essential to solve this problem, since these functions aim to make the mapping of invariant characteristics, even if there

are variations in the input values. Recent studies demonstrate that Deep Learning models perform well with sensor and

temporal data. The work proposed by Zhang, Geiger et al. (2018) shows that DNNs have been proved to be useful in

learning from speech data. Sensor data of a smartphone are also kinds of time series with similar characteristics to

speech signals.

34.3 Deep Learning applications in computational biology

Computational biology integrates knowledge from different branches of science: biological, computing, mathematics,

statistics, chemistry, and physics. At the end of the 1990s, the first biological databases disseminated its content through

HTTP protocol (Ouzounis, 2012), which increase in the following years according to the technological evolution of

computing science in its various aspects: algorithms, new programming languages, and artificial intelligence methods.

The application of computational methods to process and analyze biological data increased significantly with the

emergence of high-throughput sequencing technologies (second- and third-generation sequencing platforms) in the early

21st century (Pearson, 2001) due to their power to decode the genome producing large files with adenine (A), cytosine

(C), guanine (G), and thymine (T). Among the main features of these platforms, the increase of data generation and

cost reduction by sequenced base (Schuster, 2008), which popularized the sequencing of complete genomes and tran-

scriptomes, in comparison to the first large projects of sequencing: the human genome whose results were released in

2001 by a private and a public consortium (Green, Watson, & Collins, 2015).

With the development of new applications based on DNA decoding techniques, analyses beyond the structural types

have gained space, such as evaluation of gene expression that allows the comparison of levels of gene expression under

different conditions (stresses) to identify, for example, genes of biotechnological interest; molecular markers to perform

a more accurate diagnosis to provide adequate treatment through personalized medicine today supported by data science

(Fröhlich et al., 2018); assessment of the interaction of pathogens and their hosts to understand the pathogen invasion

system and host defenses (Saha, Sengupta, Chatterjee, Basu, & Nasipuri, 2018); among other studies supported by

computational biology analysis/tools.

Conventional data analysis strategies have been challenged due to the rapid increase rate in biological data dimen-

sion and acquisition (Kell, 2006). Deep Learning, one branch of Machine Learning methods, has been a very helpful

method for finding hidden structures and making predictions using the large quantity of data available (Manyika et al.,

2011). In this topic, it is discussed the applications of Deep Learning in omics and biological image processing.

34.3.1 Omics

The evolution of sequencing platforms allowed the growth of another known methods such as genomics, transcrip-

tomics, proteomics, and metabolomics, generating the increase of many applications based on the information obtained

through these methods (Zhang et al., 2019). In this section the applications presented will be focused protein structure

prediction, gene expression, and protein classification.
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DNNs are heavily used in protein structure research (Lyons et al., 2014). The complete prediction, which is per-

formed in three dimensions in space, is challenging and complex. Some studies have tried simpler approaches, such as

the prediction of the torsion angles or the secondary structure of a protein.

For instance, Heffernan et al. (2015) used SAE (Sparse Autoencoder) on protein amino acid sequences to solve pro-

blems with predictions of torsion angle, secondary structure, and accessible surface area. In a different study, Spencer,

Eickholt, and Cheng (2015) used DBN (Deep Belief Networks) to amino acid sequences together with PSSM (Position-

Specific Scoring Matrix) and Atchley factors to predict secondary structure of proteins. DNNs have also shown capabil-

ities in gene expression regulation (Leung, Xiong, Lee, & Frey, 2014). Lee and Yoon (2015) used a DBN in the predic-

tion of splice junction and proposed a new DBN method of training named Boosted Contrastive Divergence for

imbalanced data and a new term for regularization of sparsity of DNA sequences. This work demonstrated better perfor-

mance and the ability to show subtle noncanonical signals of splicing.

Chen, Li, Narayan, Subramanian, and Xie (2016) used MLP (multilayer perceptron) to microarray and RNA-seq

expression data to infer, from around 1000 landmark genes, the expression of almost 21,000 target genes. When it

comes to classification of proteins, Asgari and Mofrad (2015) used the Skip-Gram model, a very known natural lan-

guage processing method, an MLP variant, and demonstrated that it could learn a distributed representation of biologi-

cal sequences with general use for several omic applications, protein family classification included.

A few studies have used CNNs to resolve biological sequences problems related to gene expression regulation

(Denas & Taylor, 2013). Even so, they have first introduced the advantages of using CNNs, showing great promise

for research in the future. First, an initial convolution layer can capture patterns of local sequence and can be con-

sidered a detector of motif for which PSSMs are solely learned from data, instead of hard coded. Motifs are short

DNA sequences, which represent a kind of recurring patterns that may have a biological function (D’haeseleer,

2006). The CNNs’ depth makes learning more complex pattern possible and can capture longer motifs, integrate

cumulative effects of motifs that can be observed, and, eventually, learn sophisticated regulatory codes (Park &

Kellis, 2015).

Moreover, CNNs may be tailored to explore the benefits of learning by joint multitask. By training CNNs to predict

closely factors that are related, simultaneously, features with predictive strengths are learned and shared across different

tasks more efficiently. For example, Denas and Taylor (2013) used preprocessed data from ChIP-seq into a matrix with

two dimensions where the rows represented the profiles of transcription factors for each gene and a CNN with two

dimensions that is very similar to its use in the processing of images. ChIP-seq was first described in 2007. ChIP

sequencing as well as microRNA sequencing was one of the first methods to make use of the power of massively paral-

lel or next-generation sequencing to significantly advance real-time PCR (polymerase chain reaction) and array-based

methods. ChIP-seq is a counting assay that uses only short reads to align to the genome but requires millions of them to

provide meaningful data (Robertson et al., 2007). More recent studies have focused on the usage of CNNs with one

dimension and biological sequence data. Alipanahi, Delong, Weirauch, and Frey (2015) and Kelley, Snoek, and Rinn

(2016) proposed approaches based on CNNs for the prediction of transcription factor binding site and the multitask pre-

diction of 164 cell-specific DNA accessibility, respectively. The two groups showed downstream applications for the

identification of disease-associated genetic variants.

RNNs (Recurrent Neural Networks) are expected to be a decent Deep Learning architecture because of the variable

lengths of biological sequences. Studies have shown the successful application of RNNs on the prediction of protein

structures (Baldi, Brunak, Frasconi, Soda, & Pollastri, 1999), the regulation of gene expression (Park, Min, Choi, &

Yoon, 2016), and the classification of proteins (Hochreiter, Heusel, & Obermayer, 2007). In the first studies, Baldi

et al. (1999) used BRNN (Bidirectional Recurrent Neural Networks) with Perceptron hidden units in the prediction of

protein secondary structure. Knowing the secondary structure of a protein is important in several aspects, for example,

for the design of drugs. After that the LSTM (long short-term memory) hidden units improved performance and became

widely recognized. Dediu, Hernández-Quiroz, Martı́n-Vide, and Rosenblueth (2015) used BRNNs and LSTM hidden

units and a convolution layer with one dimension to learn representations from sequences of amino acid and classify

the subcellular locations of proteins, then the research identify that proteins localized on membrane, among another,

which are common and can be target for drugs.

Other studies explored the functional annotation applying Deep Learning. Guan et al. (2018) proposed a method

called Stacked Denoising Autoencoder Multilabel Learning. This tool used Denoising Autoencoder Algorithm and text

mining techniques for helping the genes multifunction discovery and the completion of the pathways in cancer data.

Results showed that the method exceeds the existing classical multilabel algorithms.
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34.3.2 Biological image processing

Probably the most successful field of DNNs is in the image analysis and processing. Deep architectures after trained

with millions of photographs can detect objects in photos better than humans (He, Zhang, Ren, & Sun, 2015). All the

most significant applications for image classification and retrieval, object detection, and semantic segmentation use

DNNs.

The CNN (Fig. 34.6) is the most common deep network architecture for image analysis. In general, a CNN performs

pattern matching (convolution) and aggregation (pool) operations. At the pixel level the convolution operation scans the

image with a certain pattern and calculates the strength of the match for all positions. The pool step determines the

input image fully connected
layers

output layer

convolutional layer

discrete convolution

max pooling

pooling layer

x N

max pooling

1 x 1 + 2 x 0 + 1 x 0 + 2 x 1 = 3

1 2
1 2

1 2

3

1 2 3

4

4

1 2 3 4

1 2 3 4

max({1, 2, 1, 2}) = 2

discrete

convolution

receptive field

0.02 Vacuole

0.02 Cytoplasm

0.95 Cell periphery

...

(A)

(B) (C)

FIGURE 34.6 (A) A convolutional layer with multiple feature maps. (B) The activity of a neuron is obtained by computing a discrete convolution

of its receptive field, computing the weighted sum of input neurons, and applying an activation function. (C) Pooling layer summarizes adjacent neu-

rons by computing the maximum or average over their activity, resulting in a smoother representation of feature activities. Adapted from

Angermueller, C., Pärnamaa, T., Parts L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12, 878.

https://doi.org/10.15252/msb.20156651.
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presence of the pattern in a region, for example, by calculating the maximum pattern matching in smaller patches (Max

Pooling), thus aggregating the region’s information into a single number. Most network architectures used for image

analysis apply a succession of convolution and pooling operations

A convolutional layer consists of several neuron maps, called feature or filter maps, the size of which is equal to the

size of the input image (Fig. 34.6A). Two concepts allow to reduce the number of parameters of the model: local con-

nectivity and parameter sharing. First, unlike a fully connected network, each neuron within a feature map is connected

only to a local fragment of neurons in the anterior layer, the so-called receptive field. Second, all neurons in a given

feature map share the same parameters. Therefore all neurons in a feature map look for the same feature in the previous

layer, but in different locations. Maps of different characteristics can, for example, detect edges of different orientation

in an image or sequence motifs in a genomic sequence. The activity of a neuron is obtained by calculating a discrete

convolution of its receptive field, which is the calculation of the weighted sum of input neurons and the application of

an activation function (Fig. 34.6B). In most applications the exact position and frequency of characteristics are irrele-

vant to the final prediction, such as recognizing objects in an image. Using this assumption, the pool layer summarizes

the adjacent neurons by calculating, for example, the maximum or the average over their activity, resulting in a

smoother representation of resource activities (image 34.6C). By applying the same grouping operation to small image

corrections that are shifted by more than one pixel, the input image is effectively reduced in sampling, further reducing

the number of model parameters. One or more fully connected layers can follow the last pool layer (Fig. 34.6A). The

hyperparameters of the model, such as the number of convolutional layers, the number of characteristic maps, or the

size of the receptive fields, depend on the application and must be rigorously selected from a set of validation data

(Angermueller et al., 2016).

Image processing with Deep Learning techniques is also applied in areas such as biomedical image for the clinical

treatment of patients (Cerutti et al., 2011). Magnetic resonance imaging (MRI), radiographic imaging, positron emission

tomography (PET), and histopathology imaging have been important tools used as input data for Deep Learning

algorithms.

Problems of anomaly classification are one of the most studied fields (Plis et al., 2014). Also, in general, tasks

related to imaging, segmentation and recognition are often studied in image processing (Woalder, 2017). Some popular

high-content screening studies (the quantification of cell biology microscopic images) are also covered by the image

processing topic (Woalder, 2017).

DNNs have been used in anomaly classification, segmentation, recognition, and brain decoding. Plis et al. (2014)

classified patients with schizophrenia using brain MRIs and DBNs. Woalder (2017) used SAE to identify cell nuclei

from images of histopathology.

Most biomedical image processing studies are performed using CNNs. For example, in anomaly classification, Roth

et al. (2016) used CNNs to three different CT (computed tomography) dataset images to classify sclerotic metastases,

colonic polyps, and lymph nodes. Ciresan, Giusti, Gambardella, and Schmidhuber (2013) used CNNs to detect breast

cancer mitoses in histopathology images. Ypsilantis et al. (2015) used PET images esophageal cancer to predict

responses to neoadjuvant chemotherapy.

34.3.3 Multiomic data integration

In the last decade, omic data increase exponentially in volume and variety, due to technological progress in DNA

sequencing, transcriptomic, proteomic, exome, and other biological fields. Even though these data can elucidate many

biological questions individually, their combination and integration can promise new insights about the complex biolog-

ical systems, illness, tissues, organisms, regulation, and coexpression inside the genome and allowed to understand dif-

ferent behavior, process, and interaction within the biological organisms (Grapov, Fahrmann, Wanichthanarak, &

Khoomrung, 2018; Li & Ngom, 2015; Li, Wu, & Ngom, 2018).

The multiomic data integration is defined as the incorporation of genomic data from different data omics sources in

a meaningful way to provide a more comprehensive analysis of a biological point of interest (Ritchie, Holzinger, Li,

Pendergrass, & Kim, 2015). Nowadays, data integration is a significant challenge for the bioinformatics and computa-

tional biology, due to the diversity and dimension of those data. Different mathematical and statistical methods, in addi-

tion to Machine Learning algorithms, are often used to produce a meaningful and representative integration of omic

data (Li & Ngom, 2015; Li et al., 2018; Pinu et al., 2019).

The Deep Learning techniques can help to improve the multiomic data integration and allow more accurate and

complete modeling of complex biological systems and processes. Recently, Deep Learning autoencoder techniques

showed considerable potential in this branch.
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Zhang, Lv et al. (2018) used autoencoder algorithms to integrate multiomic data from neuroblastoma patients and

combined with the K-means clustering technique to identify two subtypes with significant survival differences. The

application of this technique improved the understanding of the molecular mechanisms and helped the clinicians to

make decisions. Chaudhary, Poirion, Lu, and Garmire (2018) used similar techniques to build a sensitive survival model

using RNA sequencing, miRNA sequencing, and methylation data from patients with liver cancer. The researchers dis-

covered two optimal subgroups of patients with significant survival differences and functional model fitness.

To explore the implication of Deep Learning in human health, Grapov et al. (2018) presented a literary survey about

the challenges and opportunities at a system and biological scale for precision medicine. They said that the DL methods

had been shown able to be representing and learning relationships in diverse forms of the omic data and can lead to a

transformation in the researches in the precision medicine area.

Maui is a Python (widely used programming language) package developed to simplify the multidata integration by

Ronen, Hayat, and Akalin (2019). This computational tool is based on the Bayesian Latent Factor model, the inference

of which is done by using ANNs (autoencoder). Using that package, the researchers discovered patterns that describe

the variation across the different data modalities, capturing essential aspects of cancer biology, including different gene

expression, and mutational profiles, in data from colorectal cancer patients.

In their work, Li, Chen, and Wasserman (2016) proposed a Deep Feature Selection model that takes advantage of

the nonlinear Deep Learning structures to make an appropriate subset selection from multiomic data. They applied the

model to identify active enhancers and promoters by integrating omic data from the lymphoblastoid cell lines.

34.3.4 Single-cell RNA sequencing

In the last years the single-cell RNA sequencing (scRNA-seq) transformed the genomic and biological science bringing

a new way to study heterogeneity in cell populations.

The scRNA-seq can reveal important information about the heterogeneity of complex tissues, cellular states, and

profiling the genes expression for a significant number of single cells in parallel. For the analysis of the data produced

by scRNA-seq, several methods, pipelines, and algorithms based on Deep Learning have been proposed in the literature

(Hwang, Lee, & Bang, 2018; Kolodziejczyk, Kim, Svensson, Marioni, & Teichmann, 2015; Svensson et al., 2017).

scPred is a tool proposed by Alquicira-Hernandez, Sathe, Ji, Nguyen, and Powell (2019) for predicting the cell

types, using a combination of unbiased feature selection from a reduced-dimension space and DL algorithms. This tool

resolves several problems associated with the identification of individual gene features selection. The authors validated

the performance of the pipeline using a dataset to classify tumor versus nontumor epithelial cells in gastric cancer and

achieved 99% of accuracy classifying the disease state of individual cells.

The analysis of scRNA-seq data can be obstructed by the noise produced in the amplification and dropout process;

for that reason, scalable denoising methods for increasingly large but sparse scRNA-seq data are needed. Eraslan,

Simon, Mircea, Mueller, and Theis (2019) proposed an autoencoder network�based method to denoising the scRNA-

seq datasets. The pipeline can denoising improves a diverse set of typical scRNA-seq data analyses using simulated and

real datasets.

Lopez, Regier, Cole, Jordan, and Yosef (2018) proposed a introduce single-cell variational inference (scVI), a tool

for scRNA-seq data processing and analysis. This tool uses nonlinear Deep Learning and variational inference to model

library size and batch effect biases, to impute the expression of genes with dropout measurements, and to normalize

gene expression matrices, and this allows solver several technological biases. scVI showed a robust performance across

many tasks capturing the representation of the appropriate sources of variability for these data (Way & Greene, 2018).

scGen is a tool proposed by Lotfollahi, Wolf, and Theis (2019) to predict the perturbation and infection response of

cell types, studies, and species. The tool learns cell type and species-specific, responses signifying that it captures fea-

tures that identify responding from nonresponding genes and cells. ScGen can be a crucial tool to design in silico

screening of perturbation response in the context of disease and drug treatment.

34.3.5 Pharmacogenomics

The goal of pharmacogenomics is to study how the genome-wide variations affect the patterns of pharmacokinetics and

pharmacodynamics of individuals. Deep Learning is present in this field in experiments that permit the discovery and

develops new drugs using omic data (Relling & Evans, 2015).
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The Aliper et al. (2016) team developed and trained a DL model to predict the pharmacological properties of drugs

and the repurposing using a large transcriptional response dataset. This work was a demonstration of principles for

applying Deep Learning to drug discovery and development.

DL-ADR is algorithm that can classify various SNPs (single-nucleotide polymorphisms) to the corresponding

adverse reactions using the Generative Stochastic Networks model. The method allows exploring the complex associa-

tion between genomic variations and multiple events in pharmacogenomic studies (Liang, Huang, Zeng, & Zhang,

2016).

34.3.6 Modeling biological data in a Deep Neural Network

Most applications in omic sciences can be described within the canonical Machine Learning workflow, which involves

four steps: data cleaning, preprocessing, feature extraction, model adjustment, and evaluation (Fig. 34.7A). A supervised

Machine Learning model aims to learn a function f(x)5 y from a list of training pairs (x1, y1), (x2, y2), for which data

are recorded (Fig. 34.7B). For example, a typical application in biology is to predict the viability of a cancer cell line

when exposed to a chosen drug (Eduati et al., 2015; Menden et al., 2013). The input characteristics (x) capture the

somatic variants in the cell line sequence, the chemical composition of the drug and its concentration which, together

with the measured viability (output label y), can be used to train a support vector machine (SVM), a random forest (RF)

classifier, or other related methods (functional relationship f). Given a new cell line (unlabeled data sample x*) in the

future, the learnt function is able to predict its survival (output label y*) by calculating f(x*). Methods such as regres-

sion (where y is a real number) and classification (where y is a categorical class label) can be viewed in this way. On

the other hand, the unsupervised Machine Learning approach aims to discover patterns in the data samples (x), without

the need for labeled output data (y). Methods such as clustering, principal component analysis, and outlier detection are

typical examples of unsupervised models applied to biological data. The inputs (x), calculated from the raw data, repre-

sent what the model “sees in the world” and its choice is highly specific to the problem (Fig. 34.7C). Obtaining the

most informative characteristics is essential for the model performance, but the process can be labor intensive and

requires domain knowledge. This bottleneck is especially limiting for large data (Angermueller et al., 2016).

FIGURE 34.7 Machine Learning and representation learning. (A) The four stages of the classic Machine Learning workflow: data preprocessing,

feature extraction, learning model, and model evaluation. (B) In supervised learning the input characteristics x are related to the output label y, while

unsupervised approach learns factors about x with no observed labels. (C) The raw input data are generally high in dimension and related to the corre-

sponding label in a complex way, which makes it difficult for many classic Machine Learning algorithms (left graph). On the other hand, when

extracting higher level characteristics with Deep Learning, it is possible to better distinguish the classes (right graph—correct). (D) Deep networks use

a hierarchical layered structure to learn representations of increasingly abstract features from raw data. Adapted from Angermueller, C., Pärnamaa, T.,

Parts L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12, 878. https://doi.org/10.15252/msb.20156651.
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A major recent advance in Machine Learning field is the automation of this critical stage, where the model learns an

adequate representation of the data through deep ANNs (Fig. 34.7D). In general, a DNN takes the raw data to the low-

est layer (input) and transforms them into increasingly abstract representations, successively combining the outputs of

the previous layer, in a data-driven way, encapsulating highly complex functions in the process. Deep Learning is now-

adays one of the most researched fields in Machine Learning and has been shown to improve performance in image and

speech recognition applications, natural language processing, and, more recently, in computational biology.

The potential use for Deep Learning in high-performance biology is immense. It is possible to better explore larger

and larger datasets (DNA sequencing, RNA measurements, flow cytometry or automated microscopy) by training net-

works with multiple layers that capture their internal structure (Fig. 34.7C and D). When learned DNNs discover high-

level features, they improve performance over traditional models, increase interpretability, and provide additional

understanding of the structure of biological data.

34.3.6.1 Deep Leaning for regulatory genomics

Conventional approaches used in regulatory genomics relate sequence variation to changes in molecular features. One

way is to leverage variation between genetically diverse individuals to map the quantitative trait loci. This technique is

applied to identify regulatory variants that affect gene expression levels (Montgomery et al., 2010; Pickrell et al.,

2010), DNA methylation (Bell et al., 2011; Gibbs et al., 2010), histone marks (Grubert et al., 2015; Waszak et al.,

2015), and proteome variation (Albert, Treusch, Shockley, Bloom, & Kruglyak, 2014; Battle et al., 2015; Parts et al.,

2014) (Fig. 34.8A). However, any mapping approach is intrinsically limited to the variation present in the training

FIGURE 34.8 Using Deep Neural Networks for predicting molecular traits from DNA sequence. (A) DNA sequence and the molecular response var-

iable along the genome for three individuals. Conventional versus Deep Learning approaches. (B) One-dimensional Convolutional Neural Network for

predicting a molecular trait from the raw DNA sequence in a window. (C) Response variable predicted by the neural network for a wild-type and

mutant sequence is used as input to an additional neural network that predicts a variant score and allows to discriminate normal from deleterious var-

iants. (D) Visualization of a convolutional filter by aligning genetic sequences that maximally activate the filter and creating a sequence motif. (E)

Mutation map of a sequence window. Rows correspond to the four possible base pair substitutions, columns to sequence positions. Adapted from

Angermueller, C., Pärnamaa, T., Parts L., & Stegle, O. (2016). Deep learning for computational biology. Molecular Systems Biology, 12, 878.

https://doi.org/10.15252/msb.20156651.
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population. Thus studying the effects of rare mutations, in particular, requires datasets with very large sample sizes. An

alternative is to train models that use variation between regions within a genome (Fig. 34.8A). By dividing the sequence

into windows focused on the trait of interest, it is possible to create tens of thousands of training examples for most

molecular characteristics, even when using a single individual. Even with large datasets, predicting molecular traits

from DNA sequence is challenging due to the multiple layers of abstraction between the effect of individual DNA var-

iants and the trait of interest, as well as the dependence on the molecular traits in a wide sequence context and interac-

tions with distal regulatory elements.

The advantage of using DNNs in this context is twofold. First, classical Machine Learning methods cannot operate

directly on the sequence and therefore require predefined features that can be extracted from the sequence based on

prior knowledge (e.g., the presence or absence of single-nucleotide variants, k-mer frequencies, motif occurrences, con-

servation, known regulatory variants, or structural elements). DNNs can help bypass this manual extraction of features

by learning directly from data. Second, because of their representational richness, deep networks can capture nonlinear

dependencies on the sequence and interaction effects and spam broader sequence context at multiple genomic scales

(Angermueller et al., 2016).

DNNs have been successfully applied to predict splicing activity (Leung et al., 2014; Xiong et al., 2015), specifici-

ties of DNA- and RNA-binding proteins (Alipanahi et al., 2015), or epigenetic marks and to study the effect of DNA

sequence changes (Kelley et al., 2016; Zhou & Troyanskaya, 2015).

34.4 Deep Learning applications in agricultural sciences

Several Machine Learning approaches have been applied in agricultural sciences, for example, in crop management,

livestock management, water management, and soil management. In crop management, applications can be divided into

yield prediction, disease detection, crop quality, weed detection, and species recognition. In animal handling, Machine

Learning is already applied to animal welfare and livestock production (Liakos, Busato, Moshou, Pearson, & Bochtis,

2018). In turn, specific Deep Learning techniques have also been applied to problems such as weed identification, land

cover classification, plant recognition, fruit counting, crop type classification, prediction of future parameters in corn

production, soil humidity in the field, and climatic conditions (Kamilaris & Prenafeta-Boldú, 2018b). Many projects

using computer vision techniques addressed to agriculture have been implemented. Research has highlighted the possi-

bilities of applying computer vision systems in agriculture fields such as animal behavior analysis, precision agriculture

and machine orientation, silviculture, measurement, and growth plantation analysis (Brosnan & Sun, 2002). Other works

have been carried out recently on the identification and classification of weeds (Ferreira, 2017).

In the context of forestry, activities such as grading and classification of wood from their defects are considered tir-

ing and repetitive, and when performed by humans, in a nonautomated way, usually result in unreliable outcomes.

According to Kline, Surak, and Araman (2018), the hit rate of human graders is 48% in the sawing line, demonstrating

unsatisfying results. Therefore automated image classification methods were developed aiming at decreasing this prob-

lem, gaining promising results with hit rates around 90.5% (Rall, 2010) and 96.9% (Almeida, 2014). Processing method

and image classification have been suggested for a long time, and many of them use techniques of artificial intelligence

(de Almeida, Gomes, de Almeida, & Ballarin, 2018). The classification of forest species is another essential process in

proper forest management and forest control. After logging, many species characteristics are lost, and the identification

turns out to be an even harder task. It is, then, necessary a wood anatomy analysis, usually carried out by specialists

who know very well the cellular structures present in each species. However, this methodology implies in poorly auto-

mated techniques, which makes the task time-consuming and error prone. Those factors hinder the control and

decision-making by environmental organizations. The use of computer vision techniques is an alternative to automated

recognition since it allows the construction of intelligent models that, from the images, are capable of detecting features

and performing the final classification. The use of CNN, a Deep Learning technique, has shown to be efficient for this

type of application (Oliveira, 2018).

When we consider the Animal Science area, for example, the beef production chain has sought to generate products

that meet the requirements of the final link in this chain, that is, beef consumers. In this context, one of the approaches

used is the evaluation of carcass quality, which aims to estimate the characteristics of the meat produced. The use of

methods to assess carcass quality after slaughtering animals is of little benefit, and it is recommended to use methods

applied at the time of purchase or to separate animals into slaughter lots. The ultrasound technique allows the evaluation

of carcass characteristics through a noninvasive procedure, without leaving harmful residues in the meat of the animals

(Cardoso, 2013; Yokoo et al., 2009). Among the characteristics of bovine carcass measured by ultrasonography, the rib

eye area, the thickness of subcutaneous fat, and the thickness of fat on the animal rump can be analyzed (Yokoo et al.,
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2015). Despite its benefits, the accuracy of ultrasound measurements on carcass characteristics has generated a wide

range of results, which is attributed mainly to the different equipment configurations and the subjectivity inherent to the

technician responsible for carrying out the evaluation (Greiner, 2012). Automated approaches, based on CNNs, have

been used to estimate the thickness of fat on the animal rump from images obtained ultrasonographically (Bragamonte,

Camargo, Cardoso, Yokoo, & Cardoso, 2018).

34.4.1 Example of Deep Learning applied to agriculture

Various computational approaches are currently used for detecting plant diseases and most common are ANNs and

SVMs. They are combined with different image preprocessing methods to achieve better feature extraction. The method

described in Sladojevic, Arsenovic, Anderla, Culibrk, and Stefanovic (2016) is a novel plant disease recognition model,

based on leaf image and using a deep CNN trained and fine-tuned to fit accurately to the database of a plant’s leaves

that was gathered independently for diverse plant diseases. The advance and novelty of the developed model lie in its

simplicity: healthy leaves and background images are in line with other classes, enabling the model to distinguish

between diseased leaves and healthy ones or from the environment by using deep CNN. An example of Deep Learning

architecture used in this example is shown in Fig. 34.9, which illustrates CaffeNet (Jia et al., 2014), a classical type of

CNN, combining convolutional and fully connected (dense) layers.

As Fig. 34.9 shows, several convolutions are carried out in some layers of the network, creating different representations

of the learning dataset, starting with the most general ones in the first and largest layers, becoming more specific in the deeper

layers. The convolutional layers act as features extractors of the input images, the dimensionality of which is then reduced by

the pooling layers. Convolutional layers encode multiple low-level features into more discriminating features, so that they rec-

ognize the context spatially. They can be understood as filter banks that transform one input image into another, highlighting

specific patterns. Fully connected layers, located in many cases close to the model’s output, act as classifiers that exploit the

high-level features learned to classify input images into predefined classes or to make numerical predictions. They use a

matrix as an input and produce another matrix as an output (Sladojevic et al., 2016).

An example of visualization of leaf images after each processing step of CaffeNet CNN applied to a plant diseases

identification problem is shown in Fig. 34.10. It is observed that after each processing step, the image-specific elements

that indicate a possible disease become more evident, especially in the final stage (Pool5). The output images are

labeled with the name of the corresponding layer in the lower right corner of each image.

From historical research statistics or recent research results, it is possible to infer that Deep Learning techniques can

be well applied in agricultural science to solve several problems that have been worrying farmers and scientists for a

long time. With the help of new techniques and theories, these new approaches end up surpassing traditional methods

in several aspects (Zhu et al., 2018).

34.4.2 Convolutional Neural Networks in agriculture

Smart agriculture (Tyagi, 2016) is essential to face the diverse agricultural universe challenges, such as productivity,

environmental impact, food security, and sustainability (Gebbers & Adamchuk, 2010). The steady growth of the global

FIGURE 34.9 CaffeNet, an example of CNN architecture. CNN, Convolutional Neural Network.
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population (Kitzes et al., 2008) demands a substantial increase in food production (FAO, 2009). On the other hand, the

protection of forests and natural ecosystems cannot be ignored through sustainable agricultural procedures. Food needs

to maintain a high nutritional value, while food security needs to be guaranteed worldwide (Carvalho, 2006).

To face these challenges, complex, multivariate, and unpredictable agricultural ecosystems need to be better under-

stood. This knowledge can be achieved by continuously monitoring, measuring, and analyzing various aspects and

physical phenomena. The implementation of new Information and Communication Technologies (ICT) in agricultural

management of small-scale cultivation and harvesting and the observation of ecosystems on a larger scale will facilitate

this task, improving management and political decision-making from the context, situation, and awareness location

(Kamilaris & Prenafeta-Boldú, 2018a).

Emerging ICT technologies relevant to understanding agricultural ecosystems include remote sensing (Bastiaanssen,

Molden, & Makin, 2000), Internet of Things (IoT) (Weber & Weber, 2010), Cloud Computing (Hashem et al., 2015),

and Big Data analysis (Chi et al., 2016; Kamilaris & Prenafeta-Boldú, 2017). Remote sensing, using satellites, air-

planes, and unmanned aerial vehicles (UAV, or drones), provides an instant large-scale view of the agricultural environ-

ment. These technologies offer several advantages when applied to agriculture, being a well-known and nondestructive

method for collecting information on soil characteristics. Remote sensing data can be obtained systematically over large

geographic areas, including areas inaccessible to human exploration. The IoT uses advanced sensor technology to mea-

sure various parameters in the field, while cloud computing is employed for collecting, storing, preprocessing, and

modeling large volumes of data from various heterogeneous sources. Finally, Big Data analysis is employed in combi-

nation with cloud computing for real-time, large-scale analysis of data stored in the cloud (Kamilaris, Gao, Prenafeta-

Boldú, & Ali, 2016; Waga & Rabah, 2014). These four technologies (remote sensing, IoT, cloud computing, and big

data analysis) can create new applications and services to improve agricultural productivity and increase food security,

such as understanding climate conditions and changes better.

Much of the amount of data collected by remote sensing and IoT consists of images. These data can provide a com-

plete view of agricultural farmlands, and the analysis of these images can help in a variety of important issues (Liaghat

& Balasundram, 2010; Ozdogan, Yang, Allez, & Cervantes, 2010). Therefore image analysis is an essential area of

research in the agricultural domain, and intelligent analysis techniques are applied for image identification, classifica-

tion, and anomaly detection in different agricultural applications (Saxena & Armstrong, 2014; Teke, Deveci, Haliloğlu,

Gürbüz, & Sakarya, 2013). Among these, the most common detection method is based on satellite, using multispectral

and hyperspectral images. Synthetic aperture radar (SAR), thermal and near-infrared cameras (thermal and near-

infrared cameras) are used to a lesser extent (Ishimwe, Abutaleb, & Ahmed, 2014), while optical and radiographic

images are already commonly applied in the classification of packaged fruits and foods (Saxena & Armstrong, 2014).

The most commonly used techniques for image analysis are based on Machine Learning algorithms, such as K-means,

SVMs, and ANNs, as well as filtering based on wavelets, vegetation indexes such as the Normalized Difference Vegetation

FIGURE 34.10 Visualization of the output layer images after each CaffeNet CNN processing step (convolution, pooling, normalization) in a plant

disease identification problem based on leaf images. CNN, Convolutional Neural Network. Based on Sladojevic, S., Arsenovic, M., Anderla, A.,

Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational

Intelligence and Neuroscience, 2016, 3289801, 11 pages. Hindawi Publishing Corporation. https://doi.org/10.1155/2016/3289801.
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Index and Regression Analysis (Saxena & Armstrong, 2014). Also, Deep Learning techniques (LeCun et al., 2015;

Schmidhuber, 2015) have been widely applied to image analysis (computer vision) in agricultural sciences. This section pre-

sents some problems in agriculture that have successfully employed two particular classes of Deep Learning method. One is

called CNNs, defined as a deep ANN (Szegedy et al., 2015) and the second is the RNNs (Mandic & Chambers, 2001) that

can take advantage of neural networks for end-to-end classification of a time series. CNN is probably the most popular and

widely used technique in agricultural research today, especially in problems related to image analysis. This is due to its high

potential to address challenges in agriculture-related to computer vision.

The comparative study reported by Kamilaris and Prenafeta-Boldú (2018a) lists several relevant related works, indi-

cating the problems they addressed, the agricultural area involved, data sources used, general precision achieved, and

implementation details based on CNN, as well as comparisons with other techniques, whenever available. Twelve areas

have been identified in total, the most popular being: disease detection on plants and leaves, land cover classification,

plant recognition, fruit counting, and weed identification. Most of these works address image classification and catalog-

ing of interest areas, including obstacle detection (Christiansen, Nielsen, Steen, Jørgensen, & Karstoft, 2016; Steen,

Christiansen, Karstoft, & Jørgensen, 2016) and fruit counting (Rahnemoonfar & Sheppard, 2017; Sa et al., 2016), while

other studies focus on making predictions of future benefits, such as the corn production (Kuwata & Shibasaki, 2015)

and the soil moisture content in the field (Song et al., 2016). From another perspective, most researches focus on pro-

ductions, while few consider land cover and livestock issues. Several performance metrics were used by the authors,

with the percentage of correct predictions (Classification Accuracy, CA) being the most used in validating or testing the

dataset. Other works used Root-Mean-Square Error (RMSE), F1 Score, Quality Measure (QM) (Douarre, Schielein,

Frindel, Gerth, & Rousseau, 2016), Residual Functional Capacity (RFC) (Chen et al., 2017), and LC (Reyes, Caicedo,

& Camargo, 2015). The majority of those studies employed CA, which is generally high (i.e., over 90%), indicating the

successful application of CNN to various agricultural problems. Table 34.1 shows a comparison between these methods

that applied CNNs to problems in agriculture.

The comprehensive analysis of Kamilaris and Prenafeta-Boldú (2018a) showed that CNN offers superior perfor-

mance in terms of accuracy in the vast majority of applications presented, based on the performance metrics employed

by the authors, with the Gaussian Mixture Model (GMM) being a technique with comparable performance in some

cases (Reyes et al., 2015; Santoni et al., 2015). In most of the problems from agricultural areas, satisfactory accuracy

was observed, especially compared to other techniques applied to solve the same problem. These results show the suc-

cessful application of CNN in a variety of agricultural domains. In particular, the areas of disease detection in plants

and leaves, plant recognition, classification of soil covering, fruit count, and weed identification belong to the categories

in which the highest accuracy was observed. Although CNN has been associated with computer vision and image analy-

sis, two related works have been found in which CNN-based models are trained based on field sensory data (Kuwata &

Shibasaki, 2015) and a combination of static and dynamic environments (Song et al., 2016). In both cases the perfor-

mance (i.e., RMSE) was better than other techniques under consideration.

When comparing performance in terms of accuracy and exactness, the same experimental conditions and metrics

must exist for evaluating datasets and performance (when comparing CNN with other techniques), as well as architec-

tures and models parameters (when comparing studies using CNN).

The study of Kamilaris and Prenafeta-Boldú (2018a) showed only 12 types of problems related to agriculture, in

which CNN technique was successfully used. It would be interesting to comprehend how CNN behaves in other sectors

of agriculture, such as crop phenology, seed identification, nitrogen content in soil and leaves, irrigation, water stress

detection in plants, water erosion assessment, pest detection and herbicides use, contaminants identification, diseases or

defects in food, damage to crop hail and monitoring of greenhouses. Several of these research areas employ data analy-

sis techniques with similar concepts and performance comparable to CNN, such as linear and logistic regression, SVM,

K-nearest neighbor (KNN), K-means clustering, wavelet-based filtering, Fourier transform, and would be worth examin-

ing CNN’s applicability to these problems. Another possible area of application for CNNs would be using images,

employing drones, to monitor the effectiveness of the sowing process and increase the quality of production, for exam-

ple, of wine, harvesting the grapes at the right time to obtain the best levels maturity. It can also be applied in monitor-

ing animals and their movements to consider their well-being and identify possible diseases, in addition to many other

scenarios where computer vision is involved.

As observed, the cited works cited used standard CNN architectures that constitute only a specific and particular cat-

egory of Deep Learning models. Advanced and sophisticated models such as RNNs (Mandic & Chambers, 2001) have

been also tested in agricultural sciences tasks. These architectures tend to exhibit a dynamic temporal behavior and are

capable of remembering, but also forgetting after some time or when necessary. An application example could be to

estimate the growth of plants, trees, or even animals based on previous consecutive observations, to predict their yield,
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TABLE 34.1 Applications of Deep Learning in agriculture.

No. Agricultural

area

Problem

description

Data used Precision DL model

used

DL

framework

used

Comparison

with other

techniques

Ref.

1 Leaf disease
detection

13 different
types of plant
diseases, plus
healthy leaves

Authors-created database
containing 4483 images

96.30% (CA) CaffeNet Caffe Better results
than SVM (no
more details)

Sladojevic
et al. (2016)

2 Plant disease
detection

Identify 14 crop
species and 26
diseases

PlantVillage public dataset of
54,306 images of diseased
and healthy plant leaves

0.9935 (F1) AlexNet,
GoogleNet

Caffe Benchmarks
with approaches
using hand-
engineered
features

Mohanty et al.
(2016)

3 Plant disease
detection

Classify banana
leaf diseases

Dataset of 3700 images of
banana diseases obtained
from the PlantVillage dataset

96%1 (CA),
0.968 (F1)

LeNet Deeplearning4j Methods using
hand-crafted
features do not
generalize well

Amara et al.
(2017)

4 Land cover
classification

Identify 13
different land
cover classes in
KSC and nine
different classes
in Pavia

A mixed vegetation site over
KSC, FL, United States, and
an urban site over the city of
Pavia, Italy

98.00% (CA) Hybrid of
PCA,
autoencoder,
and logistic
regression

Developed by
the authors

1% more precise
than RBF-SVM

Chen et al.
(2014)

5 Land cover
classification

Identify 21 land
use classes
containing a
variety of
spatial patterns

UC Merced Land Use
dataset

93.48% (CA) Author
defined

Theano UFL (82%�
90%) and SIFT
(85%)

Luus et al.
(2015)

6 Land cover
classification

Extract
information
about
cultivated land

Images from UAV at the
areas Pengzhou County and
Guanghan County Sichuan
Province, China

88%�91%
(CA)

Author
defined

N/A N/A Lu et al. (2017)

7 Crop type
classification

Classification of
crops wheat,
maize, soybean
sunflower, and
sugar beet

19 multitemporal scenes
acquired by Landsat-8 and
Sentinel-1A R satellites from
a test site in Ukraine

94.60% (CA) Author
defined

Developed by
the authors

Multilayer
perceptron

(92.7%), random
forests (88%)

Kussul et al.
(2017)



8 Plant
recognition

Recognize
seven views of
different plants:
entire plant,
branch, flower,
fruit, leaf, stem
and scans

LifeCLEF 2015 plant dataset,
which has 91 759 images
distributed in 13,887 plant
observations

48.60% (LC) AlexNet Caffe 20% worse than
local descriptors
to represent
images and
KNN, dense
SIFT, and a
GMM

Reyes et al.
(2015)

9 Plant
recognition

Recognize 44
different plant
species

MK Leaf Dataset which
consists of 44 classes,
collected at the Royal
Botanic Gardens, Kew,
England

99.60% (CA) AlexNet Caffe SVM (95.1%),
ANN (58%)

Lee et al.
(2015)

10 Plant
recognition

Identify plants
from leaf vein
patterns of
white, soya,
and red beans

866 leaf images provided by
INTA Argentina. Dataset
divided into three classes:
422 images correspond to
soybean leaves, 272 to red
bean leaves, and 172 to
white bean leaves

96.90% (CA) Author
defined

Pylearn2 PDA (95.1%),
SVM and RF
slightly worse

Grinblat et al.
(2016)

11 Segmentation
of root and
soil

Identify roots
from soils

Soil images coming from X-
ray tomography

QM5 0.23
(simulation)
QM5 0.57
(real roots)

Author-
defined CNN
with SVM for
classification

MatConvNet N/A Douarre et al.
(2016)

12 Crop yield
estimation

Estimate maize
yield at county
level in the
United States

Maize yields from 2001 to
2010 in Illinois, United
States, downloaded from
Climate Research Unit
(CRU), plus MODIS
Enhanced Vegetation Index

RMSE5 6.298 Author
defined

Caffe SVR
RMSE58.204

Kuwata and
Shibasaki
(2015)

13 Fruit counting Predict number
of tomatoes in
images

24,000 synthetic images
produced by the authors

91% (RFC)
1.16 (RMSE)
on real
images, 93%
(RFC) 2.52
(RMSE) on
synthetic
images

Inception-
ResNet

TensorFlow ABT (66.16%),
RMSE513.56

Rahnemoonfar
and Sheppard
(2017)

14 Fruit counting Map from input
images of
apples and
oranges to total
fruit counts

711,280 ÅB960 orange
images (day time) and
211,920 ÅB 1200 apple
images (night time)

0.968 (RFC),
13.8 (L2) for
oranges 0.913
(RFC), 10.5
(L2) for apple

CNN (blob
detection and
counting)1
linear
regression

Caffe Best texture-
based regression
model (ratio of
0.682)

Chen et al.
(2017)

(Continued )



TABLE 34.1 (Continued)

No. Agricultural

area

Problem

description

Data used Precision DL model

used

DL

framework

used

Comparison

with other

techniques

Ref.

15 Fruit counting Fruit detection
in orchards,
including
mangoes,
almonds, and
apples

Images of three fruit
varieties: apples (726),
almonds (385) and mangoes
(1154), captured at orchards
in Victoria and Queensland,
Australia

F1 Scores of
0.904 (apples)
0.908
(mango)
0.775
(almonds)

Faster
Region-based
CNN with
VGG16
model

Caffe ZF network (F1
Scores of 0.892,
0.876, and
0.726 for the
apples,
mangoes, and
almonds,
respectively)

Bargoti and
Underwood
(2017)

16 Fruit counting Detection of
sweet pepper
and rock melon
fruits

122 images obtained from
two modalities: color (RGB)
and NIR

0.838 (F1) Faster region-
based CNN
with VGG16
model

Caffe Conditional
Random Field to
model color and
visual texture
features
(F15 0.807)

Sa et al. (2016)

17 Obstacle
detection

Identify ISO
barrel-shaped
obstacles in
row crops and
grass mowing

A total of 437 images from
authors’ experiments and
recordings

99.9% in row
crops and
90.8% in
grass mowing
(CA)

AlexNet Caffe N/A Steen et al.
(2016)

18 Obstacle
detection

Detect
obstacles that
are distant,
heavily
occluded, and
unknown

Background data of 48
images and test data of 48
images from annotations of
humans, houses, barrels,
wells, and mannequins

0.72 (F1) AlexNet and
VGG

Caffe Local
decorrelated
channel features
(F15 0.113)

Christiansen
et al. (2016)

19 Identification
of weeds

Classify 91
weed seed
types

Dataset of 3980 images
containing 91 types of weed
seeds

90.96% (CA) PCANet1
LMC
classifiers

Developed by
the authors

Better results
than feature
extraction
techniques (no
details)

Xinshao and
Cheng (2015)

20 Identification
of weeds

Classify weed
from crop
species based
on 22 different
species in total

Dataset of 10,413 images,
taken mainly from BBCH
12�16 containing 22 weed
and crop species at early
growth stages

86.20% (CA) Variation of
VGG16

Theano-based
Lasagne library
for Python

Local shape and
color features
(42.5% and
12.2%,
respectively)

Dyrmann et al.
(2016)



21 Identification
of weeds

Identify thistle
in winter wheat
and spring
barley images

A total of 4500 images from
10, 20, 30, and 50 m of
altitude captured by a Canon
PowerShot G15 camera

97.00% (CA) DenseNet Caffe Color
feature�based
Thistle Tool
(95%)

Sørensen et al.
(2017)

22 Prediction of
soil moisture
content

Predict the soil
moisture
content over an
irrigated
cornfield

Soil data collected from an
irrigated cornfield (an area of
22 km2) in the Zhangye
oasis, Northwest China

RMSE5 6.77 DBN-MCA Developed by
the authors

MLP-MCA (18%
RMSE reduction)

Song et al.
(2016)

23 Cattle race
classification

Practical and
accurate cattle
identification
from five
different races

A total of 1300 images
created by the authors

93.76% (CA) GLCM-CNN Deep Learning
Matlab
Toolbox

Deep Learning
Matlab Toolbox

Santoni,
Sensuse,
Arymurthy,
and Fanany
(2015)

ABT, Area-based technique; CA, Classification Accuracy; CNN, Convolutional Neural Network; DBN-MCA, Deep Belief Network�based macroscopic cellular automata; GLCM, Gray Level Cooccurrence
Matrix; GMM, Gaussian Mixture Model; KNN, K-nearest neighbor; KSC, Kennedy Space Center; MK, MalayaKew; MLP, multilayer perceptron; NIR, near-infrared; PDA, Penalized Discriminant Analysis; QM,
Quality Measure; RFC, Residual Functional Capacity; RMSE, Root-Mean-Square Error; SVM, support vector machine; SVR, support vector regression; UFL, unsupervised feature learning; PCA, Principal
Component Analysis; DL, Deep Learning; RBF, Radial Basis Function; SIFT, Scale Invariant Feature Transform.
Based on Kamilaris, A., & Prenafeta-Boldú, F.X. (2018a). A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science, 156, 312�322. https://doi.org/10.1017/
S0021859618000436.
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assess their water needs, or prevent disease. Models like these can also find applicability in environmental computer sci-

ence to understand climate changes and predict climatic conditions and phenomena, estimating the environmental

impact of various physical or artificial processes (Kamilaris & Prenafeta-Boldú, 2018a).

34.4.3 Recurrent Neural Network for agricultural classification

Spatial information on agricultural practices plays an essential role in the sustainable development of agronomy, envi-

ronment, and economy (Buckley & Carney, 2013; Foley et al., 2005). Indeed, the international community, such as the

Food and Agriculture Organization, recognized the importance of agricultural practices (Polsot, Speedy, & Kueneman,

2004). In this context, remote sensing satellite images are valuable guidance in understanding the spatial distribution of

agricultural cultures. In recent years, many satellites have been launched to acquire high spatial resolution data in vari-

ous spectral domains. The European Space Agency’s (ESA) Sentinel-1 radar and Sentinel-2 optical sensors are

suitable for monitoring agricultural areas. However, like all optical sensors, the use of Sentinel-2 data is limited if the

cloud layer is large (Drusch et al., 2012). On the other hand, Sentinel-1 is a SAR system that can acquire images in any

weather to provide data regardless of weather conditions. SAR data can, for example, distinguish rice from other types

of vegetation covering (Le Toan et al., 1997). The ESA Sentinel-1 SAR type sensor allows a precise temporal follow-

up of agricultural crop growth (Torres et al., 2012). ESA provides free data that allows obtain exceptional agricultural

monitoring for various applications, particularly to provide a detailed spatial agricultural land cover distribution

(Ndikumana, Minh, Baghdadi, Courault, & Hossard, 2018). In the Camargue region, in France, agriculture is a signifi-

cant activity. Among agricultural practices, rice cultivation is the one that stands out the most and plays a crucial role

in the development of agriculture systems because rice irrigation allows the leaching of salt and, consequently, the

introduction of other species in crop rotation (Mouret, 1988). In this context, the spatial extent of agricultural land cover

is primordial.

Remote sensing for classification is usually performed based on supervised Machine Learning approaches (Friedl &

Brodley, 1997; Li, Wang, Wang, Hu, & Gong, 2014). Several supervised learning algorithms are available and applica-

ble, each with its strengths and weaknesses (Friedl & Brodley, 1997; Lu & Weng, 2007; Waske & Braun, 2009). The

most recent methodological developments are based on approaches of active learning and semisupervised learning,

which make use of unlabeled data for training (Gomez-Chova, Camps-Valls, Munoz-Mari, & Calpe, 2008; Li, Bioucas-

Dias, & Plaza, 2010; Munoz-Mari, Bovolo, Gomez-Chova, Bruzzone, & Camp-Valls, 2010; Tuia, Volpi, Copa,

Kanevski, & Munoz-Mari, 2011); however, the use of these approaches is not yet widespread in agricultural land cover

classifications. In practice, for agricultural applications, most remote sensing work is based on traditional algorithms,

such as KNN, RF, and SVM (Flamary, Fauvel, Mura, & Valero, 2015; Inglada, Vincent, Arias, & Marais-Sicre, 2016).

Nevertheless, these approaches were not designed to work with time series data and, therefore, ignore their time

dependency. On the other hand, the DNNs consider the temporal correlation of the data. By recent advances in

Machine Learning, there has been an increasing interest in classifying time series using deep CNNs and RNNs that can

take advantage of neural networks for end-to-end classification time series (Ho Tong Minh et al., 2018; Ienco, Gaetano,

Dupaquier, & Maurel, 2017; Kamilaris & Prenafeta-Boldú, 2018b). Besides, RNN approaches can work on a pixel-

based time series (Ho Tong Minh et al., 2018) once those networks are ideal for this class of classification. Due to their

properties, RNNs offer models to explicitly manage dependencies between data, for example, with LSTM (Hochreiter

& Schmidhuber, 1996) and Closed Recurrent Unit (Cho et al., 2014), which makes them suitable for mining the

Sentinel-1 SAR multitemporal data (Ndikumana et al., 2018).

Ndikumana et al. (2018) in their research used 921 reference plots (July 2017) to collect land cover information.

The limit of the reference plots was drawn manually with ArcGIS online. Eleven surface classes observed were chosen:

(1) rice, (2) sunflower, (3) lawn, (4) irrigated grassland, (5) durum wheat (winter), (6) alfalfa, (7) tomato, (8) melon, (9)

clover, (10) swamps, and (11) vineyard. Fig. 34.11 shows the ground position of the samples and the distribution of the

pixel number per class and the number of plots.

Once the wheat cultivation is the only winter crop presence after May and the primary agricultural practices in

Camargue are conducted in the summer (from May to September), the 1 /1B SAR dataset included 25 acquisitions in

Terrain Observation by Progressive Scans (TOPS) imaging mode from May to September 2017 (5 months) with a revi-

siting period of 6 days. First, the master image was chosen, and all images were coregistered, taking into account the

TOPS mode, for the master image (Prats-Iraola, Scheiber, Marotti, Wollstadt, & Reigber, 2012). Images with the inten-

sity of five range views (5-range looks) were generated and radiometrically calibrated for range spreading loss, antenna

gain, normalized reference area, and constant calibration that depends on the parameters in the Sentinel-1 SAR header.

After preprocessing and filtering, all processed images are in the imaging geometries of the master image. In a unified
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dataset, all data in the image need to be orthorectified into map coordinates. The pixel size of the orthorectified image

data is 20 m. After geocoding, all intensity images are transformed to a logarithmic dB scale, normalized to values

between 0 and 255 (8 bits), and submitted to the classifiers.

RNNs are well-designed Machine Deep Learning techniques that stand out for their qualities in different domains,

such as signal processing, natural language processing, and speech recognition (Linzen, Dupoux, & Goldberg, 2016;

Soma, Mori, Sato, Furumai, & Nara, 2015). Unlike CNNs, RNNs manage data dependencies, since the neuron output at

time t2 1 is used with the next input to feed the neuron itself at time t. A diagram of a typical neural RNN is detailed

in Fig. 34.12. Among the different models of RNN, we have LSTM and Gated Recurrent Unit (GRU), which are the

best well-known RNN models. The main difference between them is related to the number of parameters to learn.

Considering the same size as the hidden state, the LSTM model has more parameters than the GRU unit.

A deep architecture is built in each RNN unit to perform the classification, in a similar way to the CNN structure

with several convolutional layers (Bengio, Courville, & Vincent, 2013). The arrangement serves to extract high-level

nonlinear time dependencies which are in the remote sensing time series. This structure is similar to both LSTM and

GRU. The RNN model follows a new sequence at the input but does not predict by itself. For this, a SoftMax layer

(Graves, Mohamed, & Hinton, 2013) is connected to the last recurrent unit to predict the final multiclass. The SoftMax

layer has the same number of neurons as the classes to be predicted. Each sample belongs to only a single class, which

leads to the choice of SoftMax. This scheme is instantiated for the LSTM and GRU units, creating two different classi-

fiers: a classification scheme based on LSTM and one based on GRU. Fig. 34.13 shows the LSTM-based architecture

scheme for each pixel (25 input points, 5 LSTM units, 512 hidden dimensions, and 11 output classes).

FIGURE 34.11 Camargue study area. Colored polygons represent 921 reference plots location. The study area is limited by the cyan polygon. Based

on Ndikumana, E., Minh, D.H.T., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep recurrent neural network for agricultural classification

using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10, 1217. doi:10.3390/rs10081217.
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The Sentinel-1 multitemporal data, after processed, was used as input for classification using classical approaches

(KNN, RF, and SVM) and two models based on RNN (LSTM and GRU). The results of these different classification

approaches are summarized in Table 34.2. This result is the performance of the fivefold cross-validation in the data

from the Sentinel SAR-1 time series, showing the mean and standard deviation values of measure F (F-measure), accu-

racy, and Kappa assessment metrics from five repetitions. All classifier performance metrics for the multitemporal SAR

Sentinel-1 data were very high, showing the quality of the dataset for agricultural classification tasks (Ndikumana et al.,

2018).

Among the two RNN models, the GRU method obtained a slightly better result than the LSTM. This result is

expected because the GRU unit is considered an improvement on the LSTM unit. Finally, applying the best classifier

(RNN-based GRU) to the entire study of the area, the agricultural land cover map for Camargue was established in

2017 (Fig. 34.14). Fig. 34.15 is an enlarged version of the box with a white border in Fig. 34.14 to facilitate the visuali-

zation of the classification results for the RNN-based GRU and the SVM approach with the reference plots.

FIGURE 34.12 RNN unit (on the left) and

unfolded structure (on the right). RNN,

Recurrent Neural Networks. Adapted from

Ndikumana, E., Minh, D.H.T., Baghdadi, N.,

Courault, D., & Hossard, L. (2018). Deep

recurrent neural network for agricultural clas-

sification using multitemporal SAR Sentinel-1

for Camargue, France. Remote Sensing, 10,

1217. doi:10.3390/rs10081217.

FIGURE 34.13 The schematic view of the RNN LSTM-based architecture. By replacing LSTM to GRU unit, we get the RNN GRU-based architec-

ture. LSTM, long short-term memory; RNN, Recurrent Neural Networks. Adapted from Ndikumana, E., Minh, D.H.T., Baghdadi, N., Courault, D., &

Hossard, L. (2018). Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote

Sensing, 10, 1217. doi:10.3390/rs10081217.

TABLE 34.2 The average and standard deviation from cross-validation five times on the time series SAR Sentinel-1

data.

Classifier F-measure Accuracy Kappa

KNN 86.1 _ 0.6% 85.6 _ 0.6% 0.823 _ 0.009

Random forest 87.1 _ 0.9% 86.9 _ 1.2% 0.833 _ 0.015

Support vector machine 87.3 _ 1.5% 87.1 _ 1.6% 0.837 _ 0.019

RNN (LSTM) 89.2 _ 1.7% 89.1 _ 1.6% 0.862 _ 0.020

RNN (GRU) 89.8 _ 1.6% 89.6 _ 1.6% 0.869 _ 0.019

The higher values are in bold. KNN, K-nearest neighbor; LSTM, long short-term memory; RNN, Recurrent Neural Networks.
Based on Ndikumana, E., Minh, D.H.T., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep recurrent neural network for agricultural classification
using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10, 1217. doi:10.3390/rs10081217.
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FIGURE 34.14 The agricultural land cover map in Camargue using the RNN-based GRU multitemporal SAR Sentinel-1. RNN, Recurrent Neural

Networks. Based on Ndikumana, E., Minh, D.H.T., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep recurrent neural network for agricultural

classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10, 1217. doi:10.3390/rs10081217.

FIGURE 34.15 A zoom version of the white-border box in Fig. 34.14 is provided to facilitate visualization of classification results. (A) Reference

plots; (B) the classical SVM result, and (C) the RNN-based GRU result. RNN, Recurrent Neural Networks; SVM, support vector machine. Based on

Ndikumana, E., Minh, D.H.T., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep recurrent neural network for agricultural classification using

multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10, 1217. doi:10.3390/rs10081217.
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34.5 Conclusion

In recent years, it has been possible to observe a development in the computational techniques used to implement intel-

ligent mechanisms in several application areas. Likewise, technological growth in areas such as Biological Engineering,

as well as the evolution of sequencing platforms, was notorious. This is expected, since a sequencer is not created where

there are no algorithms capable of processing the data produced.

Intelligent techniques known as Deep Learning, a more precise and improved form of Machine Learning, have now

become an essential approach to a wide range of real-world problems, such as object perception, speech recognition,

computer vision, collaborative filtering, and natural language processing. As more data are available, the system is able

to learn the problem and provide solutions such as analysis and prediction of situations and behaviors.

DNNs are already present and are of great importance on bioinformatics and computational biology research due to

their ability to handle complex and high-dimensional data. In its various architectures, such as Deep Autoencoder,

RNN, DBN, Deep Boltzmann Machine, and CNN, these models are able to find correlations between previously

unknown data. Today, there are many solutions and tools to apply Deep Learning to computational biology problems,

such as predicting protein structures, regulating gene expression, and predicting diseases. They are also used in drug

discovery, gene annotation, medical image recognition, and health-care management. Research continues to be carried

out in this field to improve the efficiency of Deep Learning architectures. Bioinformatics and computational biology

tend to continue to improve with the use of these techniques.

There is still a lot of space to expand and apply Deep Learning in agricultural research. Although some of the results

have achieved accuracy at or above 95%, robustness and reliability are still challenges. The promise of applying Deep

Learning in agriculture can be predicted. Furthermore, it is very likely that the future development of Deep Learning in

the agricultural sciences will be based on the combination of various methods and techniques.

What is expected, in the future, with the evolution of computing and molecular biology, is that both can increasingly

help the search for solutions to problems related to human, environmental, and animal health. There will be even greater

impact with the integration of other sciences, such as chemistry and physics, in favor of knowledge and preservation of

the environment, through monitoring by using One Health approaches.

References

Albert, F. W., Treusch, S., Shockley, A. H., Bloom, J. S., & Kruglyak, L. (2014). Genetics of single-cell protein abundance variation in large yeast

populations. Nature, 506, 494�497.

Alcantara, G. (2017). Empirical analysis of non-linear activation functions for Deep Neural Networks in classification tasks. CoRR arXiv 2017,

arXiv:1710.11272.

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep

learning. Nature Biotechnology, 33(8), 831�838. Available from https://doi.org/10.1038/nbt.3300.

Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A., & Albuquerque, N. (2016). Deep learning applications for predicting

pharmacological properties of durgs. Molecular Pharmaceutics, 13(7), 2524�2530. Available from https://doi.org/10.1021/acs.molpharma-

ceut.6b00248.Deep.
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35.1 Introduction

Artificial intelligence (AI) is contributing significantly to all domains of the industry. Every sector is looking for auto-

mation of certain jobs using intelligent machinery. Agriculture plays a vital role in the economic sector. Worldwide,

agriculture is a $5 trillion industry. The global population is expected to reach more than 9 billion by 2050 which will

require an increase in agricultural production by 70% to fulfill the demand. Due to increase in world population; land,

water, and resources are becoming insufficient to maintain the demand�supply chain. Hence, we need a smarter

approach in crop production and storage. The life cycle of agriculture comprises soil preparation, sowing seeds, applica-

tion of fertilizer, irrigation, weed management, disease management, crop protection, harvesting and storage. AI and

machine learning (ML) can be applied in all these steps of agriculture to increase the productivity. In this chapter, dis-

ease management using AI and ML is explored. In agriculture, disease detection plays an important role. Early detec-

tion of plant disease will help the farmer to protect the plant from the disease. Manual identification is tedious and

time-consuming. It also requires expertise in the specific crop/plant. Timely availability of the experts becomes difficult

in remote locations; hence automatic identification of plant disease will certainly be able to help the farmer in identifi-

cation of disease at the earliest. Plant disease can be identified from different sections of plant such as root, stem, leaf,

flower, and fruit. In plants, some common diseases are seen such as brown and yellow spots, early and late scorch, and

other fungal, viral, and bacterial diseases. Image processing is a tool to identify the affected area of disease and deter-

mine the difference in the color of the affected area (Dhaygude & Kumbhar, 2013; Ghaiwat & Arora, 2014). Nowadays

smartphones can offer novel approaches to identify diseases because of their high-resolution cameras, good network

facility, computing power, long battery life, and high-resolution displays.

35.2 Visual symptoms of diseases in plant

To identify the plant disease, one should be able to identify the healthy plant. Growth rate, color, texture, and shapes of

the leaves differ from plant to plant.

Prior knowledge is required to know the difference between the normal appearance of a plant and the appearance of

different cultivars. Once the “normal” appearance of the plant under consideration is determined, comparisons can be

made to identify the infected plant. Around 85% of the plant diseases are caused by the three main pathogenic

microbes: virus, bacteria, and fungus.

Microbial pathogens like fungus, bacteria, and virus are mostly responsible for causing diseases in plant. Symptoms

of plant disease are a physical evidence of the pathogen. For example, fungal fruiting bodies are a sign of disease. The

appearance of powdery mildew on a lilac leaf, actually, shows the parasitic fungal disease organism itself
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(Microsphaera alni). A symptom of plant disease is a visible effect of the disease on the plant. Generally, plants respond

to the pathogens by changing its color, texture, and shape of the leaf. This visible change gives a clue about the disease

in the plant.

Symptoms may include a detectable change in color, shape, or function of the plant as it responds to the pathogen.

Symptoms can be grouped as follows:

� unnatural growth of tissues and organs
� undeveloped tissues and organs
� dead of leaves/stem
� change in the color/texture of the leaves/stem

The infected area of the crop can appear at leaves, stems, roots, flowers, and fruits. Flower and fruits come to the

plant in a later stage of the plant development. Visual examination of the root is not possible since roots are deep into

the earth surface. In a plant, we have multiple leaves but the plants have a very limited number of stems. So for early

detection of disease, leaf is considered the best choice. More than 50% of the disease symptom comes on leaves only.

The health of leaf defines the degree of healthiness of the plant.

35.3 Imaging

During the various stresses, including pathogen attack, plants counter it with biochemical and biophysical changes—dif-

ferent phenomena like changes in microstructure of leaf and degradation of chlorophyll content are found. Several exist-

ing imaging methods are available like hyperspectral reflection, multispectral fluorescence, and optical coherence

tomography (OCT) for imaging different plant parts under field conditions.

Hyperspectral imaging relies on measuring and analyzing of reflected light pattern in narrow bands spectrum as a

hypercube (Moghadam et al., 2017). It can be used as detection as plant disease characterization and classification.

However, different parts of plants interacts with different bands of electromagnetic spectrum based on biochemical

compounds and microstructure. An example, leaf of healthy plants absorbs visible range of light (400�700 nm) due to

the presence of photosynthesis pigments. However, the spectrum ranges from visible to shortwave infrared

(400�2500 nm) based on water and chemical contents inside of a leaf (Fig. 35.1B).

On the other side, imaging system OCT generates tomographic images of the plant leaf (Rateria, Mohan,

Mukhopadhyay, & Poddar, 2019; Wijesinghe et al., 2016). The OCT B-scan cross-sectional images reveal the changes

in internal structure, in real-time, in vivo, fast, and noninvasive ways (Fig. 35.1C and D).

A huge pool of such images can be generated using these abovementioned imaging systems for infected and normal

plants.

FIGURE 35.1 (A) Uninfected leaves; (B) hyperspectral

image of infected leaves; (C) infected wheat leaves; and

(D) real-time, in-vivo OCT B-scan. UE, upper epidermis;

PC, parenchyma cell; VB, vascular bundle; EC, epidermal

cell; ST, stomata. Yellow dashed line (in A) shows the posi-

tion of OCT scan (D) [Rateria et al (2019)].

620 SECTION | IV Artificial intelligence and agribots



35.4 Database creation

The success of the plant disease identification depends heavily on the datasets. Image datasets are created by capturing

images of the leaf of different crops under consideration. This database should contain healthy images and images of

the leaf infected by different diseases. These images are also taken in different lighting conditions.

35.5 Disease identification using feature extraction and classification

Steps involved in disease identification using feature extraction are shown in Fig. 35.2.

First, the infected leaf image is acquired by using any digital camera. Preprocessing steps such as background

removal and noise reduction are done on the acquired image. Then, segmentation is done to get only the infected por-

tion of the leaf. Color and texture features were extracted from the segmented image. This process is done for all the

images present in the database. The image dataset is split into training set and validation/testing set. With the help of

training dataset, disease identification system is trained using different ML algorithms such as support vector machine

(SVM), K-nearest neighbour (KNN), K-means, and random forest. The learning algorithm can be supervised learning,

unsupervised learning, and reinforcement learning. Once the training is satisfactory, the system is tested using valida-

tion dataset.

Identification and classification of grapevine diseases is proposed by Meunkaewjinda, Kumsawat, Attakitmongcol,

and Srikaew (2008). Different color spaces such as HIS, YCbCr, L*a*b*, and UVL were explored in their execution.

The background removal was performed by a multilayer perceptron network, which is coupled with a color library built

a priori by means of an unsupervised self-organizing map (SOM). The color patches on the leaves were then clustered

by unsupervised and untrained SOM. Genetic algorithm was used to identify the number of clusters to be adopted in

each case. Healthy and diseased regions were then separated by an SVM. After applying a specific threshold the seg-

mented image was submitted to a multiclass SVM, which performed the classification into either healthy, scab, or rust

diseases.

Cucumber disease recognition system based on image processing and SVM was proposed (Youwen, Tianlai, & Yan,

2008). They developed a method to identify two diseases that are predominantly present in cucumber leaves. Statistical

pattern recognition technique was adapted for segmentation of healthy and diseased region. Color, texture, and shape

Image acquisition

Image pre-processing.

Image segmentation.

Feature extraction.

Statistical analysis.

Classification

Diagnosis results.

FIGURE 35.2 Different steps of disease detection.
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features were extracted and feed into an SVM, which performed the disease classification. The authors stated that the

results obtained by them using SVM were much better than that of ANN. Yao et al. (2009) applied SVM for disease

identification and classification in rice crops. First, the RGB image was converted into HSV color space using color

transformation. Diseased regions were extracted from the whole image using segmentation by Otsu’s method. Color,

texture, and shape features were extracted from the HSV-transformed image. These features were applied to SVM, for

the final disease classification. Identification and classification of disease-causing agents in cotton plants was developed

(Camargo & Smith, 2009). The system could able to identify three different diseases in cotton plant. In their study, they

incorporated fruits and stem along with the leaves to identify the disease very accurately. They also applied SVM for

classification of disease. Inputs to the SVM are the extracted features from the infected region and the output is the dis-

ease class. Hsu and Lin (2002) used SVM to deal with multiclass disease. The authors concluded that the texture fea-

tures have the best discriminative feature as compared to color and shape. Jian and Wei (2010) proposed an SVM-

based method to recognize three types of cucumber diseases.

Plant disease identification based on principal component analysis and neural networks (Wang, Li, Ma, & Li, 2012)

was developed. They proposed a grape disease identification system in which principal component analysis was done to

identify the unique feature and multilayer perceptron was used for classification. The dataset of grape diseases included

downy mildew and powdery mildew. They had obtained the maximum recognition accuracy of 94.29%. Sannakki,

Rajpurohit, Nargund, and Kulkarni (2013) came up with a method to identify two types of grape diseases.

Segmentation was done using thresholding and anisotropic diffusion. K-means clustering was used to segment disease

spots. The proposed method achieved better training accuracies when using hue features as compared to the saturation

and intensity.

35.6 Disease identification using convolutional neural network

Disease identification using convolutional neural network (CNN) has achieved excellent results in recent years. A basic

CNN is a sequence of three main layers, convolutional layer, pooling layer, and fully-connected layer as shown in

Fig. 35.3.

For an input x to the ith convolution layer, the output is

y5ReLU ðWi � xÞ (35.1)

where Wi5 [Wi
1, Wi

2, . . ., Wi
K] represents K number of filter kernels of the layer and * denotes the convolution

operation.

Each filter is an M3M3N matrix where M is the window size of the filter and N is the number of input channels.

The first few convolution layers extract low-level features (such as edges) from the input image. Additionally, nonline-

arity is introduced at the convolution output through a Rectified Linear Unit (ReLU) function ReLU(x)5max (0, x).

The output to each subsequent convolution layer is called an activation map. Pooling layer subsamples the activation

map and hence allows position invariance of features in the input image. Among various types of pooling, max pooling

has been chosen which allows downsampling by computing the maximum value of each filter window traversing the

entire output matrix of the activation map. The deep network also consists of dropout layers to avoid overfitting. These

layers are arranged after the pooling layer. Finally, the fully-connected layer is stacked at the top of last convolution

FIGURE 35.3 Basic structure of a convolution neural network.
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layer. The last layer is the softmax layer which provides classification by exponentially normalizing the input which is

fed from the last fully-connected layer. Arrangement of these layers in the form of a stack forms a CNN architecture.

The loss function is used to measure the error between the predicted and the labeled input and is computed by

J5 ðWÞ5 21

m

Xm

i51
yilogŷi 1 ð12 yiÞlogð12 ŷiÞ (35.2)

where y is the expected and ŷ is the estimated output label vector, m is the number of training samples, w depicts the

weight matrix of the convolutional and fully-connected layers.

The aim of training a network is to find an optimum value of w that minimizes the loss function, J. Backpropagation

algorithms such as gradient descent and stochastic gradient descent are used to update weights.

Image-based plant disease detection using deep learning was proposed by Mohanty, Hughes, and Salathé (2016).

They trained two deep learning models (AlexNet and GoogLeNet) using PlantVillage dataset. They had identified 26

diseases from 14 crop species. They examined the performance of the two deep neural networks by changing the trai-

ning�testing distributions. They achieved a maximum accuracy of 99.35% using GoogLeNet when the training�testing

distribution is made as 80�20.

An in-field automatic wheat disease diagnosis system was proposed by J. Lu, Hu, Zhao, Mei, and Zhang (2017).

They developed a mobile application�based real-time wheat disease identification system. By implementing two differ-

ent CNNs VGG-FCN-S and VGG-FCN-VF16, they obtained average recognition accuracies of 95.12% and 97.95%,

respectively.

A deep learning�based real-time leaf disease’s detector for grapes using improved CNNs was proposed by Xie

et al. (2020). They presented a deep learning�based Faster Dr-IACNN model with higher feature extraction capability

for detecting grape leaf diseases.

35.7 Determination of the accuracy of the system

Accuracy of the system can be determined from the true-positive (TP), true-negative (TN), false-positive (FP), and

false-negative (FN) values. A TP is an outcome where the model correctly identifies the positive class (healthy leaf

image is identified as healthy by the system). Similarly, a TN is an outcome where the model correctly identifies the

negative class (diseased image is identified as diseased leaf by the system). An FP is an outcome where the model

incorrectly identifies the positive class (diseased image is identified as healthy). And an FN is an outcome where the

model incorrectly identifies the negative class (healthy image is identified as diseased).

Accuracy5
TP1TN

TP1TN1 FP1 FN
3 100 (35.3)

To identify the accuracy of the system in each class (disease type), confusion matrix is used. Example of a confusion

matrix is shown next.

There are 120 black measles present in the database, out of which the system predicts 115 images correctly and 5

images incorrectly. So for black measles class, the accuracy is 95.83%. Similarly for other classes, the accuracy can be

calculated.

Over all accuracy of the system5 1003
115

120
1

100

120
1

120

120
1

50

50

� �
5 94:79%:

35.8 Severity estimation

Severity estimation plays a vital role in disease management. The main objective of severity estimation system is to cal-

culate the amount of severity with which the plant has been infected. The severity estimation methods should match

with the ground truth provided by the plant pathologist. Different parameters like fraction of infected area, rust color

index number of lesions, number of epicenter, location of epicenter, texture of leaf, etc. are used to estimate the severity

of the infection in a leaf image (Cui, Zhang, Li, Hartman, & Zhao, 2010). DNN can also be used to predict the severity

in plants (Wang, Sun, & Wang, 2017). Fuzzy logic is also used to estimate the severity (Negi & Tripathy, 2020). The

impressionness inherently present in the severity estimation process is handled by fuzzy inference system.
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35.9 Conclusion

Different ML algorithms like SVM, K-means clustering, random forest are used to identify the diseases in plants. In these

techniques, image database has to go through complex preprocessing steps like background removal, green channel

enhancement, etc. Then the features are extracted from the preprocessed images. A neural network is obtained based on

the healthy and diseased images. Once the training is done, when a new image is applied to the trained neural network,

then the neural network can classify these images into a specific category. Even with complex image segmentation, feature

extraction, and classification approach, these methods still have low disease identification accuracy. This happened

because of the fact that low-level features (color, texture, and shape) fail to identify the high-level semantics (diseases in

leaf). The CNN provides an end-to-end solution through deep learning. It takes the full advantage of image big data and

identifies the discriminative features directly from the original image. To do so the CNN requires a large dataset. If the

large dataset is not available, then image augmentation is done to increase the training and testing dataset. Because of the

multilayer nature of the CNN, the computational cost is very high. So the need of the hour is to develop crop-specific

lightweight CNN which can run on a smartphone and help the farmers to identify the disease at the earliest.
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36.1 Introduction

Agriculture has traditionally been considered an intuitive place in which knowledge is passed from one generation to

another. Nonetheless, currently, glitches such as the changing climate and lack of viable farming are major challenges.

The United Nations estimates that the global population will reach 9.8 billion by 2050, an increase of 2.2 billion from

this day and age. This means that to meet the demands due to the increasing number of people, there is a necessity to

surge our crop production but unfortunately, hasty urbanization and climate change have windswept the major fragment

of agriculture. In the United States alone, urbanization and climate change have worsened the total area of farms rang-

ing from 913 million acres in 2014 to 899 million acres in 2018. In the current technology-based era the concept came

into the picture which contributes to big data which refers to bulk number collection of soil architecture, weather fore-

cast, fertilizer recommendation, disease management, disease management, climate change, crop mapping data

(Manyica et al., 2019). These data are extracted by several resources like IoT (Internet of things) systems, software, and

web portal (Nidhi, 2020). Nevertheless, big data information is implemented by robots and some forms of artificial

intelligence (AI) (Fig. 36.1). By convention, farms have looked for many workers, customarily seasonal, to harvest

crops and keep farms productive. However, society has moved away from being an agrarian society with large quanti-

ties of people living on farms to people living in cities now; thus farms are facing the challenge of a workforce short-

age. One way to aid with this shortage of workers is agricultural robot integrating AI features. According to a Forbes

study (Walch, 2020), farm robots augment the human labor workforce and can harvest crops at a higher volume and

faster pace than human (Saiz-Rubio and Rovira-Más, 2020). Although there are still many cases in which robots are not

as fast as humans, agriculture is currently developing robotic systems to work in the field and help producers with

tedious tasks (Saiz-Rubio & Rovira-Más, 2020), pushing agricultural systems to the new concept of agriculture.

According to Reddy, Reddy, and Kumar (2016), the advent of robots in agriculture drastically increased productivity in

several countries and reduced farm operating costs. As said earlier, robotic applications for agriculture are mounting

exponentially (Shamshiri et al., 2018), which bids promising solutions for smart farming handling labor shortage and a

longtime declining profitability. However, like most innovations, there exist important limitations to cope with the cur-

rent initial stages. These technologies are still too exclusive for most farmers, especially those owning minor farms

(Lamborelle & Fernández Álvarez, 2019) because scale economics make small individual farms less profitable (Sonka,

2014). Nevertheless, the cost of technology shrinks with time, and agricultural robots will be surely be implemented in

the future as an alternative to bring about sophisticated production (Saiz-Rubio & Rovira-Más, 2020). The world’s
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agricultural production and crop yield slackened down in 2015. The notion of agricultural robotics was introduced to

overcome these problems and satisfy the rising demand for high yields. Robotic innovations are giving a boost to the

global agriculture and crop production market, also according to the Verified Market Intelligence report, agricultural

robots will be capable of completing field tasks with greater efficiency as compared to the farmers (Verified Market

Intelligence, 2018). Agricultural tech startups have upstretched over 800 million dollars in the last 5 years (Cbinsights,

2019). Startups consuming robotics and machine learning (ML) to disentangle snags in agriculture started gaining

momentum in 2014, harmonized with an intensifying interest in AI (Varadharajan, 2019). Venture capital funding in AI

has increased by 450% in the last 5 years (Murugesan et al., 2019). This kind of new agriculture pretends to do addi-

tional with less, for the reason that nourishing people while increasing production sustainably and taking care of the

environment will be decisive in the coming years, as the Food and Agriculture Organization of the United Nations esti-

mates that, in 2050, there will be a world population of 9.6 billion (Zhang, 2015). Advanced sensing technologies in

agriculture can help to meet the challenge; they provide detailed information on soil, crop status, and environmental

conditions to allow precise applications of phytosanitary products, resulting in reduced use of herbicides and pesticides,

amended water use efficiency, and increased crop yield and quality (Zhang, 2019).

36.2 Characteristics of big data

Big data is metaphorically compared to the ocean and information to a floating Iceland inside it which can be excessed

by different platforms and software. Big data can be pigeonholed by four Vs—volume, velocity, variety, and veracity.

36.2.1 Volume

The volume raises the huge amount of data that are captured, stored, managed, and analyzed through an eclectic range

of resources.

36.2.2 Velocity

Velocity refers to the data that need to be collected, stored, processed, analyzed in real time, for example, Google Maps

that provided us real-time data of traffic, soil, weather, etc.

FIGURE 36.1 Diagrammatic representa-

tion of big data information cycle.
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36.2.3 Variety

A variety of data refer to the data arising from multiple formats such as structured data in the traditional database and

unstructured text documents such as email, video, audio, and financial transactions.

36.2.4 Veracity

Veracity is another term that characterizes big data signifying access to heaps of data, generated from assorted sources

with minimal lag times and data flows that vary greatly with periodic peaks and baseline.

36.3 Big data and smart agriculture

Big data and smart agriculture both are reasonably newfangled concepts of agriculture. The precision agriculture con-

cept is an extension of smart agriculture; based on big data information, the farmer takes the decision and accomplishes

the situation as per information provided by big data. The big data contain a key feature that is real-time assistance like

suddenly changed operational conditions or other circumstances, for example, weather or disease alert, through these

real-time assistance crop management systems like weather alert system, crop sensor, pest spraying UAV (unmanned

aerial vehicle) carry out agile actions (Esmeijer, Bakker, Ooms, & Kotterink, 2015). Big data also have intelligent assis-

tance which helps in the implementation, maintenance, and use of agriculture technology as well. The main role and

application of big data in smart farming are to ensure minimum cost gaining higher profit as well as sustainability. The

use of AI, sensors, and smart machines in agriculture has brought agriculture to the top of the digital revolution in the

modern era. Data in agriculture are a collection of data about various types of soil mapping containing information

related to their physical and chemical properties, weather, past management practices, etc., because of all this data

information, in any adverse weather or diseases, the farmer is warned in advance, due to which the farmers agonize less

(Nidhi, 2020). Big data for smart agriculture contain a far-reaching level collection of good agriculture practices data,

these are the following.

36.3.1 Digital soil and crop mapping

Digital soil and crop mapping concern with building digital maps for soil types and their physiochemical properties. In

developed and some developing countries, farmers supervise so many acres of land, it is almost difficult to get instant

updates and alerts from their planted lands without exhausting technology. Aimed at the management and inspection of

these many acres of the lands, many countries like Ireland use satellite-based soil and crop monitoring that are more

rapid and cost-effective than traditional methods.

36.3.2 Weather prediction

Crops growths, development yield, and total agriculture production hinge on weather. Not only in India, but also in

many other countries like Bangladesh, Pakistan, Japan, Korea, China, agriculture system is also influenced by the

weather. In other words, India and other countries’ agriculture system is weather based. Weather aberrations can ground

physical damage to crops and soil erosion. Abrupt weather changes source severe damage to crops. All economical pro-

cesses, including the quality of crops from agricultural land to market, transportation storage, depend on the weather.

Debauched weather hampers all aspects mentioned previously ensuing in high economical losses. Agricultural weather

conjectures the following elements:

1. Low-pressure areas, cyclones, tornadoes, and depressions

2. Wind speed and direction

3. Relative humidity

4. Max, min, and dew point temperatures

5. Amount and type of coverage of sky by clouds

6. Rainfall and snow

7. Events like fog, frost, hail, thunderstorms, and wind squalls

8. Earth observation satellites, UAV (Drones), and automatic weather stations
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36.3.3 Fertilizers recommendation

Eloquent exact fertilizer rate for crop filed is a science and this science requires analysis of multiple factors, parameters

at the nanolevel. These parameters comprise crop nutrient uptake rates; research data; soil chemical, physical, and bio-

logical properties; weather; water composition; land type; soil testing methods; irrigation techniques; fertilizer charac-

teristics; interactions of fertilizers between crops. The use of this excess amount of fertilizer in agriculture field into the

soil as toxic compounds gives rise to various types of pollutants. Big data tools are now able to advise the farmers with

the right quantity of fertilizers.

36.3.4 Disease detection and pest management

In modern agriculture, with the help of big data tools, developed advanced algorithms are used to identify the patterns

and behavior of various types of microorganisms and pests which helps in forecasting the invasion of pests and the

spread of microscopic diseases. Agricultural pests can quickly censor into a farmer’s revenues, but misusing and a high-

er amount of pesticide use can have adverse effects on people (like they can cause cancer), plants, and other living

things. UAV and crop sensors assist in pest control, mid-season crop health monitoring reducing the use of pesticides.

36.3.5 Adaptation to climate change

Climate change due to global warming is a looming concern that affected the agriculture sector. One project of big data

provides IoT sensors to Taiwanese farmers for rice production so that they can assemble information that is necessary

about their crops. The collective information of IoT sensors will help farmers to optimize their production cycles even

in antagonistic climate conditions. Traditional farming is not able to analyze these climate changes due to which tradi-

tional farmer faces gigantic economical loss. With the solution to all these concerns, big data can revolutionize the

future of farming.

36.3.6 Automated irrigation system

All the countries in the world are currently in a situation where they are required to use water in a very resourceful

manner. According to recent studies, water is flattering more and more in short supply worldwide and over one-third of

the world population would aspect total water shortage by the year 2025. In agriculture as well, the major problem

which farmers face is water scarcity, hence to improve the convention of water, one of the irrigation systems—using

drip irrigation which is implemented as an automated irrigation system for small-scale farms, and the other being auto-

mated irrigation system using weather prediction.

36.4 Sources of big data

Large scale and a wide variety of sources can originate big data. Sources of big data stand to be ground sensors (chemi-

cal detection devices, biosensors, weather stations, etc.) which observed that the farmers filed and provided the data,

governmental organizations, NGOs, and other private organizations collect the data (statistical yearbook, government)

which is also a major source for big data (Fig. 36.2) (Chedad, 2001; Kempenaar, Lokhorst, Bleumer, & Veerkamp,

2016). Online stored and web service data obtained from airborne sensors like UAV, light airplanes, satellites are a

source for big data (Becker-Reshef, 2010; Gutiérrez, 2008). Cloud system that is an amalgamation of wireless sensor

networking, IoT system source for big data, provides real-time web data (information about plants, crops, yields,

weather conditions, etc.) from private companies to farmers on their mobile phones; media are (social media platforms

corresponding Facebook, Twitter, YouTube, Instagram agriculture channels, videos, audios, research reports, articles)

also sources for big data. Altered sources of big data are required to deal with the various problems in agriculture and

this big data is used in agriculture applications. For example, crop-, soil-, and animal-related research use ground sen-

sors deployed at the field, climate change applications use data from weather stations, information on land mapping

from satellite, data and this information used by many government agencies to making the policies for farmers to

enhance production, export and import predication as per yield of crops. Various types of government and private ser-

vice providers have collected the agricultural big data information for its service to the consumer (Table 36.1).
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36.4.1 Sensors

Sensors are the radical devices that monitor crops and obtain objective information from them. Sensors can be classified

according to their platforms, like satellites, aerial, or airborne (airplanes, UAVs, balloon), and ground based. Airplanes,

satellites, and UAVs mostly employ cameras to amass images and ground-based optical sensors that can collect reflec-

tance data and storage in a text file (Saiz-Rubio & Rovira-Más, 2020) (Fig. 36.3).

36.4.1.1 Remote sensing platforms: satellites

Remote sensing has frolicked a crucial role in collecting the data related to geographical characteristics of a particular

area and charting these geographical areas without physical contact with the areas that have to be measured with the

images gathered from the satellites (Ma et al., 2015). In the world, every country is hurling satellites for collecting real-

time data allied to agriculture. America has eight Landsat satellites that gross spectral data from the Earth each 16�18

days: European Sentinel has two Landsat satellites that provide multispectral data at 10-m pixel resolution for NDVI—

Normalized Difference Vegetation Index—imagery, soil, and water cover in every 10 days; additionally, the RapidEye

being a German geospatial information provider operated a five-satellite constellation and provided multispectral RGB

imagery, as well as red-edge and near-infrared (NIR) bands at 5-m resolution; GeoEye-1 being another satellite had

been launched on September 6, 2008 to capture multispectral RGB data and NIR data at a 1.84-m resolution;

FIGURE 36.2 Diagrammatic representation of big data sources.

TABLE 36.1 Overview of big data sources, service providers.

Agriculture

area

Big data source Big data innovative service providers

Weather and
climate

Earth observation satellites
UAV, automatic weather stations

Fertilizer calculator
Crop water needs Estimation
Yield models

Soil Mobile app’s location-based datasets ground sensors/base
stations, UAV

Soil indicators for Scottish soils, SoilInfo, SoilWeb
mKrishi (India), CiAgriculture
(China), Fujitsu (Japan)
Batian (China), RedBird, etc.

Crop and yield Fertilizer calculator
Crop water needs Estimation
Yield models

BaiKhao

Source: From Swiss Re Centre for Global Dialogue Switzerland.
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WorldView-3 satellite launched on August 13, 2014 collects multispectral data from the RGB bands, including the red-

edge, two NIR bands, and eight SWIR bands with a resolution of 1.24 m at the nadir (Saiz-Rubio & Rovira-Más,

2020). Several studies focus on the potential applications of thermal technologies using remote sensing and determine

the nutritional status of field crops (Khanal, Fulton, & Shearer, 2017; Rudd, Roberson, & Classen, 2017).

36.4.1.2 Airborne platform systems: unmanned aerial vehicles and remotely piloted aircraft

The distance between a satellite and a crop is very extraordinary ranging up to 700 km and deeper insights are reachable

when sensors endure closer to the targets. The distance between the airborne system and the land is about 100 m so that

it can easily inspect the land and get information from there about the crops, soil, fertilizer, crop disease, etc. UAVs

and remotely piloted aircraft are mainly divided into two types, fixed-wing aircraft and multirotor aircraft. Fixed-wing

UAVs can cover more agricultural area per flight and carry larger payloads but easily break after multiple landings and

are supplementarily expensive (Rudd et al., 2017). Rotary-wing UAVs are more stable fliers as they are capable of ver-

tical takeoff and landing; however, they are slower and cannot conceal as much area during their battery life (Saiz-

Rubio & Rovira-Más, 2020). UAVs have more advantages than remote sensing, which include frequency flexibility and

better spatial resolutions that help to collect big data in agriculture. Compared to ground vehicles, UAVs can obtain

data from inaccessible locations where conventional equipment cannot stance. Nevertheless, they require advanced pro-

fessional planning of the flight path and some machine vision applications that may need to soar in the afternoon to

avoid vegetation shadows on the ground, causing errors with imagery data (Rudd et al., 2017).

36.4.1.3 Ground platform systems: unmanned ground vehicle

Ground platform systems’ sensors are known as unmanned ground vehicles or UGVs. This UGV is equipped with

advanced technologies for positioning and orientation, navigation, planning, and sensing which are applied in agricul-

ture for tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal, and harvesting (Bechar

& Vigneault, 2016; Bechar & Vigneault, 2017; Corke, Roberts, & Winstanley, 1998). Husky is a medium-sized robotic

UGV developed by Clearpath Robotics company which has a role to carry some unique features like stereo cameras,

LIDAR, GPS, IMUs, manipulators that can be beneficial for monitoring field crops and collected data.

36.4.2 Statistical data

A massive level of agricultural data is prepared by governmental organizations, NGOs, and other private organizations

which are collected in the form of the data and published, for example, statistical yearbook, survey data of government-

FIGURE 36.3 Diagrammatic representa-

tion of sensors.
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related weather, soil properties type, soil mapping, crop mapping, water-related data, etc. which stamp as a major

source for big data (Chedad, 2001; Kempenaar et al., 2016).

36.4.3 Remote sensing

Remote sensing has played a crucial role in collecting the data related to geographical characteristics of a particular

area and they chart these geographical areas without physical contact with the areas that have to be measured with the

images congregated from the satellites (Ma et al., 2015). In remote sensing Earth the satellites collect data allied to

crop mapping, soil mapping, water availability which also forecast drought and flood (Shelestov, Lavreniuk, Kussul,

Novikov, & Skakun, 2017).

36.4.4 Cloud data source

Cloud computing is emerging today as a saleable infrastructure associated with a new paradigm for the provision of

computing infrastructure and big data processing methods for various resources (Patel & Patel, 2013). It eliminates the

need for maintaining expensive computing hardware, software, Information technology, staff, infrastructure, recourses,

and their maintenance. Various types of digital tools in agriculture like sensors, remote sensing, UAV, etc. provided the

data bank related to soil, weather, crop, farmers, agriculture marketing, fertilizers, and pesticide information which are

hoarded in a single place in the cloud. This big data from the cloud can be easily accessed by the end users such as

farmers, experts, consultants, researchers with the help of various software in the form of mobile applications, web por-

tals, etc.

36.4.5 Internet of things database source

IoT is a new era of revolutionary technology that empowers to connect the object (such as plants) and devices (such as

sensors) to enormous databases via the help of the Internet. IoT facilitates interaction between agricultural objects.

Various agricultural devices provided output data in variable formats. Hence it is very important to compile all these

data in a common protocol for communication between the objects and devices in the network. After one-to-one care of

the crops during the production, it is also required that the agricultural products have to be tracked after harvest; radio-

frequency identification (RFID), wireless sensors networks (WSN) serve as a basic building block for using IoT in agri-

culture, WSN plays a strategic role in intensive care of the storage and logistics facilities of the yield (Madhuri &

Indiramma, 2019). These WSN sensors can be deployed to measure soil pH, soil moisture, water, fertilizer, pest, tem-

perature, evaporation (Yan-e, 2011). These different kinds of sensors collect the data to sense the growth patterns

changes in plants like plant height measurements, chlorophyll measurements, leaves area index, rate evaporation, etc.

through capturing the images of plants through RFID to track all these patterns (Zhao, Zhang, Feng, & Guo, 2010). The

big data information collected by IoT-based sources help the farmers to better understand plant health, plant height

measurements, chlorophyll measurements, weed pressure charting for microlevel management to the application of irri-

gation pesticide herbicide and fertilizer (Madhuri & Indiramma, 2019).

36.4.6 Media source

Media corresponding to social media platforms, for example, Facebook, Twitter, YouTube, Instagram agriculture chan-

nel, videos, audios, research reports, articles are also a source for big data.

36.5 Techniques and tool use in big data analysis

Big data are highly dimensional and heterogeneous, containing complex information, sophisticated tools, and techniques

that are needed to extract information from it (Mucherino, Papajorgji, & Pardalos, 2009; Vitolo, Elkhatib, Reusser,

Macleod, & Buytaert, 2015). Big data are analyzed by using various algorithms, single or combination of two different

techniques, for example, ML image processing, remote sensing, cloud platforms, GIS (geographic information system),

vegetation indices (VIs), NDVI (Kamilaris, Kartakoullis, & Prenafeta Boldú, 2017).
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36.5.1 Machine learning

ML is a prevalent technology nowadays that can be used in agriculture for more sustainability. The usage of ML in

agriculture makes it more lucrative because of its micro-label management. ML also contains artificial ML which is

breakneck in applied agricultural science. Artificial techniques are being used in the agricultural sectors to amplify

accuracy and to seek solutions to the hitches.

36.5.1.1 Livestock management

The livestock is categorized into two parts, animal livestock and livestock production. Animal welfare deals with ani-

mal health, welfare, disease, and well-beings. The main application of ML is monitoring the early detection of animal

diseases and behavior. It also scans the economic profit as well as losses and production of animal-related goods.

36.5.1.1.1 Livestock production

Adhering to human civilization, domesticated livestock has played a fundamental role henceforth becoming an integral

part of human culture, society, and, most importantly, the global economy. Domestic livestock has underwritten the rise

of human societies and civilizations by cumulating the amount of food and nutrition available to people in four ways:

by providing sources of meat, milk, and fertilizer and by pulling plows. Throughout antiquity, livestock has also pro-

vided leather, wool, other raw materials, and transport. With the help of ML analysis the accurate data prediction of

rumen fermentation suggested the diets, fatty acid percent in milk, and milk production of animals (Craninx, Fievez,

Vlaeminck, & De Baets, 2008). ML model support vector machines are useful for early uncovering and warning of pro-

blems in the commercial production of eggs, which helps the poultry industry to analyze data related to hen and egg

production (Mohammadi et al., 2015). ML algorithm�based convolutional neural networks are effectively applied in

digital images for face recognition of the animal, for example, pig and this method overcomes the problem of distres-

sing activity for tagging of RFID which has a lot of limitations like low range and time-consuming (Hansen et al.,

2018).

36.5.1.1.2 Animal welfare

Animal welfare is defined as the relationships of humans with animals and the duty they pledge humane and responsible

treatment to the animals under their care. Animals collar sensors with magnetometers and three-axis accelerometers

data are collected and analyzed by ML modeling preceded by the events such as the estrus and the recognition of die-

tary changes in animals (Dutta et al., 2015). ML acts on chewing patterns data with a combination of behavioral data of

calves like dietary supplements, such as hay and ryegrass, which were collected by optical FBG sensors analyzed by

ML (Pegorini et al., 2015).

36.5.1.2 Water management

In the agriculture system, water is a fundamental aspect of farming showing the importance of water in farming so it

requires micromanagement and plays a significant role in hydrological, climatological, and agronomical balance. ML is

used in the estimation of daily, weekly, or monthly evapotranspiration (Mohammadi et al., 2015). The progression of

evaporation is very complex for every plant, but subsequently understanding this process, the irrigation system can be

developed to provide water according to the requirement of each plant in the crop field. This is also important in the

present 2020 scenario because according to recent studies, with continuous use of groundwater, more than one-third of

the world population would face total water shortage by the year 2025. Temperature sensors provided data which were

analyzed by ELM model of ML to estimate the accurate weekly evapotranspiration in the arid region of India; therefore

this big data analyzing model would help in crop water management (Patil & Deka, 2016).

36.5.1.3 Soil management

Soils are the superlative media for the growth and development of each plant. For healthy growth of plants, it requires

healthy soil and ML application to predict identification and estimate the soil properties like soil drying, condition, tem-

perature, and moisture content (MC). Earth has oodles of biodiversity climate and geographical distribution of lands

that is why the soil of each in every area is a heterogeneous natural resource, with complex processes and mechanisms

that are difficult to understand (Johann, de Araújo, Delalibera, & Hirakawa, 2016). Combination of ML and big data

related to the soil developed a method for the provision of remote agricultural management decisions, which evaluated

632 SECTION | IV Artificial intelligence and agribots



soil drying for agricultural planning. This smart method accurately gauges the soil drying, with evapotranspiration and

precipitation data, in a region located in Urbana, IL of the United States (Coopersmith, Minsker, Wenzel, & Gilmore,

2014). Big data are also a master collection of soil condition data such as composition, nutrient availability, mineral

quantity, and type of soil. Various modeling aspects of ML with combination soil data predicated soil organic carbon,

MC, and total nitrogen, for this analysis used a visible�NIR spectrophotometer to collect soil spectra from 140 unpro-

cessed and wet samples of the top layer of Luvisol soil types, which were collected from an arable field in Premslin,

Germany in August 2013, after the harvest of wheat crops (Morellos et al., 2016). Soil moisture is also estimated by

ML artificial neural network model and data are obtained from force sensors (Johann et al., 2016).

36.5.2 Cloud platforms

Cloud computing is an information technology paradigm through which users can access shared pools of configurable

system resources over the Internet. Cloud platforms unruffled with big data sources (crop, weather and climate, soil,

growth progress, and pattern) collected data that need to be accumulated at a common platform that should be easily

accessible, preprocessed, visualized, and analyzed (Kamilaris et al., 2017). Cloud computing of agriculture is used to

manage to analyze the environmental factors, analyze the soil moisture, temperature, and manage the water supply func-

tions (Murakami, Utomo, Hosono, Umezawa, & Osawa, 2013). Cloud system allows farmers to view farm or farm field

information with ground sensors, devices connected, etc. Apart from this, the system allows farmers to control the farm

hardware remotely such as to switch on/off bulb and motors with the help of microcontroller (Balbudhe, Amar, Nikhil,

Saket, & Nandan, 2015). Cloud system has the following role in the case of big data:

1. Cloud system stores all the agriculture-related information provided by big data sources in a centralized cloud,

which will be available to all the users like a farmer, agricultural companies, etc., at anytime, anywhere.

2. Cloud system management of all big data is related to land, location, area; soil, and land characteristics through cen-

tralized decision support systems.

36.5.3 Geographic information systems

GISs are computer hardware and software that use feature attributes and location data to produce maps (Lucas &

Chhajed, 2004). GIS has imperative feature functions in agriculture like storing layers of information, such as yields,

soil survey maps, remotely sensed data, crop scouting reports, and soil nutrient levels (Barrett, Nitze, Green, &

Cawkwell, 2014). GIS tool combined with big data source provided by Earth observation satellites, UAV, ground sen-

sors like temperature sensors, moisture sensors is collected as large volume of data which observed by GIS analyzing

software in various forms like visual image, audio, video for weather forecasting (Kamilaris et al., 2017).

36.5.4 Vegetation indices

UAV pooled with a thermal camera and satellite sensors provided data related to measuring wavelengths of light

absorbed and reflected by green plants. In the biological system, every plant leaves contain a pigment system that

strongly absorbs wavelengths of visible (red) light and, on the other hand, strongly reflects wavelengths of NIR light,

which is invisible to human eyes. As a plant canopy changes from early spring growth to late-season maturity and

senescence, these reflectance properties also change. VIs obtained from remote sensing-based canopies are effective

algorithms for quantitative and qualitative evaluations of vigor, vegetation cover, and growth dynamics, among other

applications (Xue & Su, 2017). VIs are various types like NDVI, GDVI (Green Normalized Difference Vegetation

Index), and SAVI (Soil Adjusted Vegetation Index) but NDVI is widely used to obtain and analyze the big data in the

agriculture. In a biological system to govern the density of green plants on lands, it must observe the distinct colors

(wavelengths) of visible and NIR sunlight reflected by the plants (Skakun, Justice, Vermote, & Roger, 2018). If

sunlight passes the prism then many different colors of light with different wavelengths called VIBGYOR

(Violet�Indigo�Blue�Green�Yellow�Orange�Red) are visible and when sunlight strikes objects, certain wave-

lengths of this spectrum are absorbed and other wavelengths are reflected. The pigment in plant leaves, chlorophyll,

strongly absorbs visible light (from 0.4 to 0.7 μm) for use in photosynthesis. The cell structure of the leaves, on the

other hand, strongly reflects NIR light (from 0.7 to 1.1 μm) (Daroya & Ramos, 2017). As many leaves a plant has, there

is an increase in effect to these wavelengths of light, respectively. NDVI values range from 11.0 to 21.0. Areas of bar-

ren rock, sand, or snow usually show very low NDVI values (e.g., 0.1 or less) (Mahajan & Raj, 2016). Sparse vegeta-

tion such as shrubs and grasslands or senescing crops may result in moderate NDVI values (approximately 0.2�0.5).
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FIGURE 36.4 (A and B) Diagrammatic repre-

sentation of NDVI. NDVI, Normalized Difference

Vegetation Index.

FIGURE 36.5 Satellite images of Machhlishahr, Jaunpur, (A) NDVI (B) FCC. FCC, False-color composite; NDVI, Normalized Difference

Vegetation Index.
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High NDVI values (approximately 0.6�0.9) correspond to dense vegetation such as that established in temperate and

tropical forests or crops at their peak growth stage (Shafi et al., 2019). NDVI is a key tool to obtain and analyze big

data related to crop health. All sensors like satellite, UAV collected broad data analyzed by smearing a different mathe-

matical formula to quantify the density of plant growth on the Earth NIR radiation minus visible radiation divided by

NIR radiation plus visible radiation obtained resulted from this mathematical calculation called NDVI (Shafi et al.,

2019) (Figs. 36.4 and 36.5; Table 36.2).

NDVI5 NIR-VISð Þ= NIR1VISð Þ

36.6 Role of big data in agriculture ecosystem: for smart farming

Keeping in view the big data source and big data analyzed tool, it has been found that with the help of big data, com-

mon farming will be converted into smart farming resulting farmers can earn good profits at low-cost wages

(Wheeler & von Braun, 2013). For the production of the crop in a sustainable manner, it is required to utilize agricul-

tural resources in a more precise way and in time, a decision for maximum resource utilization. Big data play impor-

tant role in different aspects for smart farming like GPS for mapping, navigation, and IoT connected to remote

sensors and monitoring system base autonomous driverless tractor (Conesa-Muñoz, Gonzalez-de-Soto, Gonzalez-de-

Santos, & Ribeiro, 2015; Reeve, Eizad, & Ramm, 2011); smart autonomous machines and robotics base seedbed

preparation to reseeding (Blackmore, Stout, Wang, & Runov, 2005; Griepentrog, Nrremark, Nielsen, & Blackmore,

2005); helicopters base smart planting from air to field is cost-effective for larger size of lands which is managed by

GPS and IoT system (Pedersen, Fountas, & Blackmore, 2008; Scott, 2010); digital management of planting and

TABLE 36.2 Small overview of big data source, analyzer tools, software, and service provider companies.

S.

no.

Agriculture

field

Big data source Big data analyzer

tools

Software Service providers

1. Weather and
climate

Weather stations, surveys,
static historical
information (weather and
climate data, Earth
observation data), remote
sensing (satellites),
geospatial data

Machine learning
modeling
algorithms, image
processing, remote
sensing, cloud
platforms, GIS

Weather and
Climate Toolkit
(WCT), ArcGIS,
Google Earth,
MatLAB, QGIS,
ModelVis

Weather Decision
Technologies, Inc (WDT),
IBM The Weather
Company, CropProphet
Enterprise, World Climate
Service, AccuWeather,
AerisWeather, Atmograph,
Hurricane Mapping

2. Soil
management

Mobile app’s location-
based datasets ground
sensors/base stations, UAV

Machine learning
modeling
algorithms, GIS,
remote sensing,
NDVI vegetation
indices

SOILMAP, Soil
Data Viewer 5.1,
SOTER ArcGIS,
Autodesk

Soil indicators for Scottish
Soils, SoilInfo, SoilWeb
mKrishi (India),
CiAgriculture (China),
Fujitsu (Japan) Batian
(China), RedBird

3. Crop and
yield

Fertilizer calculator crop
water needs estimation
yield models

Machine learning
modeling
algorithms ANN,
VIS-NIR, GIS,
remote sensing,
NDVI vegetation
indices

AgroMetShell,
SCOPUS,
BaiKhaoNK,
SOCiT, PocketLAI,
RaGPS, MapIT, m-
Sahayak, mKRISHI

Soil indicators for Scottish
soils, SIFSS, ICAR, IASRI,
BaiKhao

4. Animal
research and
management

Livestock production Machine learning
modeling
algorithms SVM
CNNs, RFID, face-
detection sensors

Ranch Manager,
Chetu, Cattle Max,
Livestock

SCR dairy, Lely Qwes

ANN, Artificial neural networks; CNNs, convolutional neural networks; GIS, geographic information system; NDVI, Normalized Difference Vegetation
Index; RFID, radio-frequency identifications; SVM, support vector machines.
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sowing through automation and robotics machine monitored by IoT and cloud system (Henten, Van, Bac, Hemming,

& Edan, 2013; Buning, 2010); smart management of crop health through ML and AI, both integrated and applied to

make it easy for farmers for the detection of pest, weed management, and crop health through image processing like

NDVI, along with all the information, UAV, RPA, UGV technology is also widely adopted in many smart farms for

spraying of herbicides, pesticides, fertilizer, and weather broadcasting (Veroustraete, 2015; Alimuzzaman, 2016).

Crop yield analysis with the help of crop mapping through satellite UAV, NDVI is preparing data related to crop pro-

duction which is stored in the cloud platform that estimates the yield of a specific location (McBratney & Whelan,

1999; Luck & Fulton, 2015). Smart method of harvesting from field robotics-based harvesting has an aim like the

efficient ability to analyze the maturity of crops and harvest it without damaging the grains. The robotic system has a

sensor that analyzes the ripening and maturing of fruit and crops before the harvesting ensuring that fruit and crops

are perfectly ripened and mature last they start to harvest it (Blackmore et al., 2005; Yamamoto et al., 2010; Hayashi

et al., 2011) (Fig. 36.6).
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FIGURE 36.6 Diagrammatic representation the role of big data in agriculture ecosystem.

636 SECTION | IV Artificial intelligence and agribots



Author contributions

P.K. conceived and designed the manuscript; P.K., Ab. S., V.D.R., A.K.S.Y., P. Ku., A. S., and G.S. wrote the manu-

script; P.K. and V.D.R. critically reviewed the manuscript and did the required editing.

References

Alimuzzaman, M. (2016). Agricultural drone. Available from https://doi.org/10.13140/RG.2.1.1146.2247.

Balbudhe, K. S., Prof, Amar, B., Nikhil, D., Saket, R., & Nandan, J. (2015). Cloud based cultivation management system. ACSIJ Advances in

Computer Science: An International Journal, 4(3), No.15.

Barrett, B., Nitze, I., Green, S., & Cawkwell, F. (2014). Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands

monitoring in Ireland using machine learning approaches. Remote Sensing of Environment, 152(2), 109�124.

Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94�111.

Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110�128.

Becker-Reshef, I. (2010). Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project.

Remote Sensing, 2(6), 1589�1609, 22.

Blackmore, S., Stout, B. A., Wang, M., & Runov, B. (2005). Robotic agriculture—The future of agricultural mechanization?. In: European conference

on precision agriculture (Vol. 5; pp. 621�628). Uppsala, Sweden: Wageningen Academic Publishers.

Buning, E. A. (2010). Electric drives in agricultural machinery-approach from the tractor side. Journal of Agricultural Engineering, 47(3), 30�35.

Cbinsights. (2019). AgTech deal activity more than triples. Available from https://www.cbinsights.com/research/agriculture-farm-tech-startup-funding-

trends/. Accessed 18.02.19.

Chedad, A. (2001). AP—Animal production technology: Recognition system for pig cough based on probabilistic neural networks. Journal of

Agricultural Engineering Research, 79(4), 449�457.
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37.1 Introduction of artificial intelligence

Artificial intelligence (AI) is a combination of conventional science disciplines, scientific theories, and practices using

mathematical logic, statistics, probabilities, through computers to imitate the cognitive abilities of humans. In other

words, AI is a subfield of computer science which deals with the creation of tangible or intangible systems which not

only behave intelligently but also display behavior similar to human beings including speech recognition, natural lan-

guage understanding and translation, knowledge management, image analysis, decision making, and learning among

others. Achieving human-like performance in all cognitive tasks using purely logical reasoning makes systems powerful

and useful. Thus the “artificial” in AI can be understood as “nonbiological,” the “intelligence” can be taken as “ability

to accomplish complex goals or tasks” (Brewka, 1996).

The term AI was designed by John McCarthy in 1955 and defined by Marvin Minsky as the construction of com-

puter programs that engage in tasks that are currently more satisfactorily performed by human beings because they

require high-level mental processes such as perceptual learning, memory organization, and critical reasoning. The

Rockefeller Institute-funded conference in 1956 at Dartmouth College was the first step toward its foundation (Brewka,

1996). The advancement in AI is closely linked with the developments in the computing field. Started with simple “if-

then rules,” the AI has currently progressed to behaving like a human brain using a variety of complex algorithms.

Technology has advanced at such an accelerating pace that we have computers in our pockets that are connected to the

Internet which provides plenty of information at our fingertips along with a plethora of other options like streaming

video and music at any moment. AI involves both the collection and organization of large amounts of data to attain

insights and to make predictions using above human capabilities (Sajja, 2021).

Fundamentally, AI aims to achieve thinking like humans, acting like a human, thinking rationally, and acting ratio-

nally; therefore it has been driven by all of the four objectives by employing and developing different methods.

A human-centric aim is generally fulfilled by an empirical approach involving human behavioral observation and

hypotheses. While the rational-centric aim is achieved by a combination of mathematics and engineering. Thinking like

a human is mainly following a cognitive modeling approach; combining both AI models and experimental psychology

techniques to hypothesize precise human mind/thinking process (Brewka, 1996). Acting like a human is mainly

described by Turing and the Total Turing Test (TT) (see Box 37.1). For achieving this, the computer must have natural

language processing (NLP), automation reasoning, machine learning (ML), knowledge representation, computer vision,

and robotics capabilities. Thinking rationally involves the use of logic. For instance, “XYZ is a man; all men are mortal;

therefore XYZ is mortal.” Logistic programs developed in 1965 were abiding by this approach and in principle to any

solvable problem. Acting rationally primarily involves achieving the best outcome or correct inferences (Sajja, 2021).

From Apple’s intelligent personal assistant Siri or Cortana of Microsoft to self-driving cars, AI is improving swiftly.

Other popular examples include Google Maps, ridesharing in cabs, Face recognition in Facebook photo upload, Face

*Equal authorship.
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unlock in Mobile, search, and recommendation in online shopping sites. Currently, Google with the goal of “AI-first”

world is using AI technologies for numerous applications and operating two of the top AI research labs in the world,

that is, DeepMind in London and GoogleBrain in California (Davenport & Ronanki, 2018). Robotics, one of the major

AI field, require intelligence for operating jobs involving object manipulation, motion planning, mapping, and naviga-

tion. An added advantage, the AI systems, once programmed to perform and evolve for doing specific tasks are unbi-

ased and this could have a positive impact on the interaction between AI systems and the society at large. The AI

applications are not limited to any discipline and can also help in agriculture by detecting diseases, reducing agricultural

risks, predicting consumer behavior, and helping farmers increase crop yields among others (Murase, 2000).

AI can be utilized to making intelligent embedded systems that are responsive like humans and can work quickly

with higher precision. AI, jointly with automation, Internet of Things (IoT) devices, and solar-powered and sensor tech-

nology facilitates precision and climate-smart agriculture. Besides, AI techniques such as expert and mobile-based rec-

ommender systems can also significantly enhance the adoption of AI in agriculture particularly for high-yielding or

disease-resistant varieties and innovative farm technique implementation (Zhao, 2020). AI can also help farmers to

maximize their cultivable field, by providing precise information about the types of crops, weather patterns, and best

conditions for crop cultivation. AI techniques like machine and deep learning (DL) are being used effectively on image

data for segmentation for disease/variety identification, crop yield, field monitoring, and predicting the time of applica-

tion and optimum dose of chemical sprays, time of harvest, and life of produce among others (Murase, 2000; Pantazi

et al., 2020). AI research, tools, and technology are evolving every day and reaching new horizons. In the last five

years, the reported annual AI growth is 12.9% across the world, which is truly commendable.

37.2 History of artificial intelligence

The notion of simulating intelligent behavior and critical thinking by computers was first expressed by Alan Turing in

1950 in the book entitled “Computers and Intelligence,” as a test that determines whether computers have abilities to

achieve intelligence similar to humans or not. Even though at that time it was not called AI; Still, John Von Neumann

and Alan Turing are considered as the founding fathers of AI technology (Haenlein & Kaplan, 2019). They standardized

the architecture of our contemporary computers and made the transition from machines to binary logic and computers

to decimal logic. They demonstrated that computer capabilities for executing whatever are they are instructed or pro-

grammed to do. Turing, then further rose the question “why machine can’t use available information as well as the rea-

son to solve problems and make decisions like a human?” He further discussed building intelligent machines and

testing their intelligence in an article entitled Computing Machinery and Intelligence in 1950 (Turing, 2012). Turing

described it as a “game of imitation,” that involves a human differentiating between a man or a machine via teletype

chatting and designed a TT (see Box 37.1). The article, even though called controversial at times, is often cited as the

beginning of AI and the questioning of the human and the machine boundary lines (Turing, 2012).

The developments of AI coincide with technological progress and the desire to achieve the functioning of machines to

the human levels. The first mathematical and computer model of the neurons developed in 1943 by Warren McCulloch

and Walter Pitts along with the unification of mathematical theory, electronics, and automation via cybernetics by Norbert

Wiener in 1948 marked the initial effort for AI (Muthukrishnan et al., 2020). The computer at that time lacks a prerequi-

site for intelligence, that is, memory, hence could only execute commands but couldn’t remember them; therefore cannot

develop any further understanding. The Logic Theorist program of 1956 created by Allen Newell, Cliff Shaw, and Herbert

Simon emulates human problem-solving skills. This is deemed as the first AI program and was presented in 1956 at the

BOX 37.1 Turing Test

The “Turing Test” (TT) involves a human and a computer in two sealed rooms, and a human judge to determine in which of the

two rooms contains a human and a computer by asking questions by email (originally, it was by teletype messaging). If, after

receiving answers, the judge can not perform better than 50/50 in recognizing the room of the human and the computer, it can

be said that the computer has passed the TT. Passing the test in this method operationalizes linguistic indistinguishability. Later,

Turing explicitly suggested that the “child machines” be built and that these machines could then gradually grow up on their

own to learn to communicate in natural language at the level of adult humans. Turing test deliberatively avoided direct physical

interaction between human judge and computer. As the physical simulation is considered unnecessary for intelligence. But the

“Total Turing Test” involves a video signal; so that judge can examine the perpetual abilities and have an opportunity to judge

based on complete interactions.
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Dartmouth Summer Research Project on Artificial Intelligence conference hosted by John McCarthy and Marvin Minsky

(Muthukrishnan et al., 2020; Wilamowski & Irwin, 2016). Even though this historic AI conference brought top researchers

from various fields together and had an open-ended discussion, it fell short of achieving anything as there was no agree-

ment on the standard methods for AI advancement (Muthukrishnan et al., 2020; Wilamowski & Irwin, 2016).

Nonetheless, everybody agreed with the AI achievability and catalyzed the next twenty years of AI research.

Even though AI was fascinating and promising, its popularity declined in the early 1960s. Owing to memory con-

straints in the early machines, it was difficult to attain any of the AI goals. However, the foundations such as information

processing language (the basis of logic theorist machine program) and solution trees were laid (Millstein, 1968). AI flour-

ished with the advent of the first microprocessors as computers now are cheaper, faster, and accessible with higher storage.

ML algorithms based “inference engine” was developed to mirror human logical reasoning and to help people in choosing

algorithms according to their problem. For instance, DENDRAL of MIT in 1965 and MYCIN of Stanford University in

1972 are developed; these are the specialized system for molecular chemistry and diagnosis of blood diseases as well as

prescription drugs respectively. Despite everything, the lacuna before achieving the end goal of AI, that is, machine with

the general average intelligence of a human is still present (Haenlein & Kaplan, 2019; Muthukrishnan et al., 2020).

During the 1980s, the development of the algorithmic toolkit using DL and expert systems as well as increased

funding, again reignited the AI. DL techniques developed by John Hopfield and David Rumelhart allow a computer to

learn from experience whereas Edward Feigenbaum’s expert systems simulated the decision-making process of a human

expert (Haenlein & Kaplan, 2019; Muthukrishnan et al., 2020). From 1982�90, the Japanese government invested $400

million in expert systems and other AI-related endeavors under Fifth Generation Computer Project to revolutionize

computer processing, logic program implementation, and improving AI (Jaakkola et al., 2019). Unfortunately, the

majority of the objectives were not achieved and funding ceased, resulting in reducing in AI popularity. The main prob-

lem was the absence of understanding about machine reasoning that in turn caused difficulty in AI development.

Additionally, faster, cheaper, and simpler methods were developed to solve problems. This gives rise to the term

advanced computing in the 1990s (Haenlein & Kaplan, 2019; Muthukrishnan et al., 2020).

Ironically, in the lack of public scrutiny, AI bloomed and numerous goals had been accomplished such as intelligent

decision-making, speech recognition, and kismet robot. In 1997, the winning of IBM’s chess-playing program named

Deep Blue against the world chess champion and grandmaster Gary Kasparov served as a great leap toward AI develop-

ment (Haenlein & Kaplan, 2019; Muthukrishnan et al., 2020). The program utilizes a systematic brute force algorithm

where all possible moves were scored. Similarly, Dragon Systems’ speech recognition software was another huge step

in AI’s endeavor in spoken language interpretation. The Kismet robot by Cynthia Breazeal could recognize and display

emotions is another success of AI (Breazeal, 2003). All this could be achieved due to the development in computer stor-

age and processing speed, key limiting factors in early AI research. Still, each program is only able to manage edge in

a specific field with few parameters as input which do not represent the full scale of complexity in the world (Haenlein

& Kaplan, 2019; Muthukrishnan et al., 2020).

The development of AI is closely linked with the invention of the computer system. As the advent of computers

increased the fundamental limit of storage the AI achieved many of its goals. Even though the scale is limited still it is

a huge step in the forward direction. With the further advent of DL in the 2000s and other ML techniques, AI has

become capable of analyzing complex algorithms, and decision making. Google’s AlphaGo who defeated the Chinese

Go champion, Ke Jie in 2016 is another example of an AI success story (Silver et al., 2017). The game “Go” is the

most challenging classical game for AI due to its complexity. Alpha Go used deep neural networks and reinforcement

learning for decision making. New bloom in the discipline since 2010 can be attributed to the access to massive

volumes of data as well as to the invention of graphics card processor that enhances the efficiency of learning algo-

rithms (Chen, 2016b). Table 37.1 illustrates major milestones in AI development.

37.3 Methods and approaches in artificial intelligence

Today, AI has grown to be a significant component of the technology industry and its highly specialized and technical

research. The core of AI includes computer programs targeting problems involving reasoning, knowledge, problem

solving, learning, ability to manipulate and move objects among others.

Currently, AI can be classified into three types: Artificial Narrow Intelligence (ANI), Artificial General Intelligence

(AGI), and Artificial Super Intelligence (ASI) (Chang et al., 2018). ANI refers to the ability of a computer in performing

a single task extremely well, such as playing chess or finding efficient routes to places while riding a car by Google

Maps. AGI comes to play in performing any intellectual task like reasoning, solving problems, and making judgments

along with planning, learning, and integrating prior information in decision-making as well as innovative, and imaginative
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TABLE 37.1 Major milestones in artificial intelligence history.

Year Significance in artificial intelligence

1763 Thomas Bayes develops a framework for reasoning about the probability of events. The Bayesian inference will become a
leading approach in machine learning.

1914 The Spanish engineer Leonardo Torres y Quevedo demonstrates the first chess-playing machine, capable of king and rook
against king endgames without any human intervention.

1921 Czech writer Karel Čapek introduces the word “robot” in his play R.U.R. (Rossum’s Universal Robots). The word “robot”
comes from the word “robota” (work).

1943 Warren S. McCulloch and Walter Pitts published “A Logical Calculus of the Ideas Immanent in Nervous Activity” in the
Bulletin of Mathematical Biophysics. They discussed networks of idealized and simplified artificial “neurons” and how they
might perform simple logical functions. (This will become the inspiration for computer-based “neural networks” and later
“deep learning.”)

1950 Alan Turing publishes “Computing Machinery and Intelligence” in which he proposes “the imitation game” which will later
become known as the “Turing Test.”

1955 The term “artificial intelligence” is coined in a proposal submitted by John McCarthy (Dartmouth College), Marvin Minsky
(Harvard University), Nathaniel Rochester (IBM), and Claude Shannon (Bell Telephone Laboratories). The workshop, in July
and August 1956, is generally considered as the official birthdate of AI.

1957 Frank Rosenblatt develops the Perceptron, an early artificial neural network enabling pattern recognition based on a two-layer
computer learning network.

1958 John McCarthy develops the programming language Lisp which becomes the most popular programming language used in
artificial intelligence research.

1965 Joseph Weizenbaum develops ELIZA, an interactive program that carries on a dialog in the English language on any topic.
Weizenbaum, who wanted to demonstrate the superficiality of communication between man and machine, was surprised by
the number of people who attributed human-like feelings to the computer program.

Edward Feigenbaum, Bruce G. Buchanan, Joshua Lederberg, and Carl Djerassi start working on DENDRAL at Stanford
University. The first expert system, automated the decision-making process and problem-solving behavior of organic chemists.

1969 Arthur Bryson and Yu-Chi Ho describe backpropagation as a multistage dynamic system optimization method. A learning
algorithm for multilayer artificial neural networks has contributed significantly to the success of deep learning, once computing
power has sufficiently advanced to accommodate the training of large networks.

1970 The first anthropomorphic robot, the WABOT-1, is built at Waseda University in Japan. It consisted of a limb-control system, a
vision system, and a conversation system.

1972 MYCIN, an early expert system for identifying bacteria causing severe infections and recommending antibiotics, is developed
at Stanford University

1978 The XCON (eXpert CONfigurer) program, a rule-based expert system assisting in the ordering of DEC’s VAX computers by
automatically selecting the components based on the customer’s requirements, is developed at Carnegie Mellon University.

1986 The first driverless car, a Mercedes-Benz van equipped with cameras and sensors, built at Bundeswehr University in Munich
by Ernst Dickmanns, drives up to 55 mph on empty streets.

David Rumelhart, Geoffrey Hinton, and Ronald Williams describe “a new learning procedure, back-propagation, for networks
of neuron-like units.”

1988 Judea Pearl publishes Probabilistic Reasoning in Intelligent Systems. He was awarded the 2011 Turing Award.

Rollo Carpenter develops the chat-bot Jabberwacky to “simulate natural human chat in an interesting, entertaining and
humorous manner.” It is an early attempt at creating artificial intelligence through human interaction.

Members of the IBM T.J. Watson Research Center heralded the shift from rule-based to probabilistic methods of machine
translation and reflecting a broader shift to “machine learning” based on statistical analysis.

1989 Yann LeCun and other researchers at AT&T Bell Labs successfully apply a backpropagation algorithm to a multilayer neural
network, recognizing handwritten ZIP codes. Given the hardware limitations at the time, it took about 3 days to train the
network.

1995 Richard Wallace develops the chatbot A.L.I.C.E (Artificial Linguistic Internet Computer Entity), inspired by Joseph
Weizenbaum’s ELIZA program, but with the addition of natural language sample data collection on an unprecedented scale.

(Continued )
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similar to humans by a computer program. As AI is getting powerful day by day; ASI is when a computer or a system sur-

passes human intellect, that is, it is wiser, creative, more socially adept, and better as well as smarter than the sum of all

humanity combined (Sundvall, 2019). ML, Robotics, NLP, Automated Reasoning, Expert Systems, Computer Vision,

Speech Recognition, Automated Data Analytics, Virtual Reality, Augmented Reality, IoT, Cloud Computing, DL among

others are some major subareas of AI having huge potential in solving complex problems of agriculture (Bundy, 2017).

Fig. 37.1 depicts the relationship between AI methods, approaches, algorithms, and subfields.

Currently, there are numerous methods popular for AI-driven technologies and systems. The methods of AI include

ML, DL, and artificial neural network (ANN) among others.

37.3.1 Machine learning

ML is the subfield of AI that uses previously obtained data to recognize patterns that can be used for further analysis of

specific data. The machine, therefore “learns” and applies that information dynamically to future similar scenarios. In

other words, it enables automatic learning and improvement by the system without being explicitly programmed and

without human intervention or assistance (Liakos et al., 2018). With the aid of ML practical speech recognition, self-

driving cars, effective web search, and insight into the genome have been achieved. Nowadays, ML is so prevalent that

one probably uses it throughout the day without even realizing it. Using algorithms and neural network models ML con-

structs a mathematical model based on sample data (training data) to assist in progressively improving the performance

of computer systems to make predictions or decisions (Tu, 2019).

The idea behind ML is based on a brain-cell interaction model developed using theories of communication between

neurons. It was first described by Donald Hebb in a book entitled The Organization of Behavior in 1949 (Shaw, 1986).

In the 1950s, Arthur Samuel of IBM created a computer program for playing checkers which had a scoring function

associated with the positions of the board pieces. The program decides its next step following a minimax strategy (later

becomes minimax algorithm). He further modified the program in such a way that it can become better by recording/

remembering already seen positions and scoring function (Devroye & Lugosi, 2001). The term “Machine Learning”

was given by Arthur Samuel in 1952 (Panesar & Panesar, 2019). Since then, ML algorithms and methodologies were

TABLE 37.1 (Continued)

Year Significance in artificial intelligence

1997 Sepp Hochreiter and Jürgen Schmidhuber propose Long Short-Term Memory (LSTM), a type of recurrent neural network used
today in handwriting recognition and speech recognition.

Deep Blue becomes the first computer chess-playing program to beat a reigning world chess champion.

1998 Dave Hampton and Caleb Chung create Furby, the first domestic or pet robot.

2000 MIT’s Cynthia Breazeal develops Kismet, a robot that could recognize and simulate emotions.

Honda’s ASIMO robot, an artificially intelligent humanoid robot, can walk as fast as a human, delivering trays to customers in
a restaurant setting.

2001 A.I. Artificial Intelligence is released, a Steven Spielberg film about David, a childlike android uniquely programmed with the
ability to love.

2007 Fei Fei Li and colleagues at Princeton University start to assemble ImageNet, a large database of annotated images designed to
aid in visual object recognition software research.

2009 Computer scientists at the Intelligent Information Laboratory at Northwestern University develop Stats Monkey, a program that
writes sport news stories without human intervention.

2011 A convolutional neural network wins the German Traffic Sign Recognition competition with 99.46% accuracy (vs humans at
99.22%).

2014 The first driverless car designed by Google to pass a self-driving test in Nevada, United States.

2016 Google DeepMind’s AlphaGo defeats Go champion Lee Sedol.

2018 Microsoft’s Project Brainwave based on deep learning for real-time AI inference in the cloud and on the edge was launched.
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developed in the form of neural network (1957), nearest neighbor algorithm (1967), feedforward/multilayered neural

networks (the 1960s), backpropagation (1970s), ANN (1980s), and DL among others (Zhou, 2015). Until the early

1980s, ML was used as a training program for AI; but later AI research started focusing on using only logical and

knowledge-based approaches. This created a division between AI and ML. Still, ML researchers continued to work in

the field and with the advent of boosting algorithms developed by Robert Schapire in 1990, ML flourished (Jordan &

Mitchell, 2015). Boosting algorithms reduces the bias during learning and transforms a set of weak points/learners (i.e.,

classifiers which are vaguely correlated with their true classification) into a single strong point/learner (i.e., classifiers

which are properly aligned with their true classification) through repetitive learning (Schapire, 2013).

Model creation is the significant feature of performing ML wherein input data is trained so that they can process

additional data to make decisions. Modern ML models are adept in continuously learning, thus becoming more precise

the longer they run and with new computing technologies, they also have higher scalability and efficiency. From 1990

to date speech recognition, facial recognition and self-driving vehicles are some of the success stories of ML (Jordan &

Mitchell, 2015). The newer concepts and technologies derived from the ML include new algorithms for robots, IoT,

analytics tools, chatbots, and more. Currently, ML models are used for a variety of predictions, that is, from disease out-

breaks to the rise and fall of stocks to fraud detection to product recommendations to customer personalization, to data

analysis of streamlined data, and many more (Mohammed et al., 2016). Besides, the ML models are also being devel-

oped and employed to forecast environmental impacts on crop yield due to weather changes as well as crop sustainabil-

ity prediction and detection of potential diseases and pests.

ML algorithms are often categorized based on the input data, output data, and the problem they are proposed to

solve. Three methods of ML are supervised, unsupervised, and reinforcement learning (Vieira et al., 2019). Other meth-

ods of ML such as semisupervised, self-supervised, multiinstance, inductive, transductive learning among others are

mostly variants of these three.

37.3.1.1 Supervised learning

Supervised learning includes both input variables (X) and an output variable (Y) and a mapping function (Y5 f(X))

which links the input to the output during learning through an algorithm. The aim is to accurately estimate the mapping

function in a way that the prediction of output variables (Y) is also precise when the new input data (X) was introduced

(Cunningham et al., 2008). Supervised learning algorithms construct a mathematical model of a dataset (training data)

FIGURE 37.1 Relationship between artificial intelligence (AI) methods, approaches, algorithms, and subfields. AI, machine learning, and algorithms

have a very interdependent relationship and often time might be confusing. Algorithms are a specific set of rules for a particular task, approaches

might include more than algorithms. Machine learning can use one or more approaches for achieving the desired target. AI can be achieved using

machine learning or artificial neural network or deep learning. Robotics, automation, computer vision, natural language processing, speech and voice

recognition are the application of AI that are beneficial for a variety of purposes.
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comprising inputs, desired outputs/outcomes as well as training examples (i.e., previously designed models). The train-

ing example and training data in the mathematical model are depicted by the array (also called feature vector) and

matrix respectively. The name “Supervised learning” reflects the nature of the learning process, that is, we know the

outcome and the algorithm has to make predictions repetitively till it achieves the desired outcome. The repeated pre-

diction of the mapping function causes its optimization, training and finds the optimal function that precisely determines

the outcomes for inputs that were not present in the training data. Improved accuracy of outcomes by an algorithm over

time is recognized as learning for the execution of the task. The majority of practical ML models are created using

supervised learning (Kotsiantis, 2007).

Supervised learning algorithms are categorized into classification and regression. Classification algorithms are

employed when the outputs possibly fall into a limited set of predefined categories; whilst, regression algorithms are

employed when the outcome possibly has a numerical value within a range. For training of a classification algorithm,

the data points and an assigned category or class are provided (Radhakrishnan et al., 2007). Following which the classi-

fication algorithms assign a class/category to an input value, according to the training data provided. For example, for

determining whether an email is spam or not; spam and not spam are considered as two classes and a classification

algorithm will be provided emails belonging to both of these classes (training data). The supervised learning algorithm

model then identifies data features correlated to either class and created a mapping function (Y5 f (X)). The mapping

function of the model, on encountering a new email, establishes whether the new email is spam or not. Classification

algorithms include linear classifiers, decision trees, support vector machines (SVM), k-nearest neighbor, and random

forest; the choice of algorithms depends on the data (Kotsiantis, 2007; Vieira et al., 2019).

Unlike classification, regression establishes the significant relationship between dependent and independent vari-

ables (Radhakrishnan et al., 2007). For example, for determining a student’s test grade according to the number of hours

per week spent in studying; here hours per week is an independent variable while test score is a dependent variable.

The regression algorithm will determine the correlation between them; so that a line for best fit can be plotted using the

data points representing model predictions which will be used to predict the test score of new student’s. The regression

algorithms include linear regression, polynomial regression, and logistic regression (Kotsiantis, 2007).

37.3.1.2 Unsupervised learning

Contrary to supervised learning, unsupervised learning uses only input data (X) but no corresponding output variables

for developing mapping function. Hence training takes place without labeled outcome or supervision. The unsupervised

algorithms mainly assemble unsorted data according to similarities, and differences and identify hidden patterns and

structures in data by themselves. It is known as unsupervised learning due to the absence of predefined outcomes of

supervision (Francis, 2014; Zheng, 2015). They recognize common features in the input data and respond based on the

presence or absence of these common features in new input data. For example, if an image contains fox and lion, then

during learning the algorithm or machine can not categorize it as fox or lion; as it doesn’t have any idea or information

about them. Still, it can classify them as per their similarities, patterns, and differences. So, with the aid of unsupervised

learning, the computer model discovers previously undetected patterns and information on its own.

The unique feature of unsupervised learning algorithms is that it learns from test data without being labeled, classi-

fied or categorized. Unsupervised learning algorithms can be classified into two, that is, clustering and association cate-

gories. The clustering or cluster analysis is performed when the desired outcome is to divide data into various groups

such as customers according to their purchasing behavior or viewers according to their watched list. Cluster analysis is

the most common method of unsupervised learning which is primarily used for exploratory data analysis. The clustering

algorithms include k-means clustering, self-organizing maps, Gaussian mixture models, hierarchical clustering, and hid-

den Markov models among others (Xu & Tian, 2015). While, the association is performed to establish rules that corre-

late large portions of input data like buyers of X also have a tendency to buy Y or viewer of X also have a tendency to

watch Y. Other unsupervised algorithms are k-nearest neighbors, hierarchal clustering, anomaly detection, a priori algo-

rithm and many more (Moutinho et al., 2014). Unsupervised learning methods are prominently used in bioinformatics

studies like sequence analysis. sequence data mining, pattern mining, and genetic clustering; in medical imaging and

computer vision for image segmentation and object recognition respectively (Francis, 2014; Topol, 2019).

37.3.1.3 Reinforcement learning

Reinforcement learning is based on the human brain’s “trial and error” or “learning from their mistake” learning mecha-

nism. It uses computational power and software for developing a model in an interactive environment by utilizing feed-

back from its actions and experiences (Bhatnagar et al., 2013). In simpler words, the reinforcement learning method
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follows a series of decision making whilst every step was taken by the model is awarded reward points and the model

will accumulate all the reward points based on steps taken before achieving the end goal. Similar to the video games

where players gather scores that will increase their level one at a time; the objective of the reinforcement learning algo-

rithm is to identify the next correct answer that will take it to the next step of the process (Szepesvári, 2010).

Similar to supervised learning, it also derives mapping function using input and output variables, but contrary to

supervised learning it uses awards and penalties for positive and negative performance respectively. In terms of compar-

ison with unsupervised learning which focuses on finding similarities and differences amongst training data, reinforce-

ment learning has an entirely different objective, that is, to find an appropriate model with maximum cumulative award

points (Tu, 2019). The basic elements of the reinforcement learning model are environment, state, reward, policy, and

value; referring to the physical world for the agent operation, the current situation of the agent, feedback from the envi-

ronment, the method to map agent’s state to actions and possible future rewards basis on action taken in a particular

state respectively (Bhatnagar et al., 2013). For instance, in the PacMan game, the PacMan (agent) eats the dots in the

grid while evading the ghosts. Here, the grid reflects the interactive environment; scores received on eating dots are

rewards, and loss of game and life is the penalty for getting killed by the ghost. The states are the PacMan location

within the grid and the total cumulative reward is a game win. The policy makes PacMan explore new states and reward

maximizing along with trying to find the optimal policy in turn (Tu, 2019; Vieira et al., 2019).

The reinforcement learning approach can be categorized into model-based and model-free approaches. Model-based

approaches generally use past occurrences for building the transitions and immediate outcomes of an internal model

within the environment. The environment in reinforcement learning is described using mathematical frameworks called

Markov Decision Processes (MDPs) (Littman, 2015). An MDP, mostly used in model-based reinforcement learning,

comprises determinate environment states, possible actions in each state, a real-valued reward function, and a transition

model. On the other hand, Model-free approaches utilize past occurrences to learn directly from the state/action values

or policies for achieving optimal behavior but without estimating the model. The commonly used model-free RL meth-

ods include policy optimization and Q-learning. The policy optimization methods involve learning straight from the

mapped state to action policy function but without value function. While, Q-learning consists of updating values of

action in states; also known as Q-value. The updating value is fundamental for the Q-learning algorithm. Other algo-

rithms used in the model-free approach are Deep Q-Networks, Deep Deterministic Policy Gradient, and many more

(Ding et al., 2020).

Owing to its flexible component the reinforcement learning has been employed in numerous disciplines including

control theory, game theory, information theory, simulation-based optimization, swarm intelligence, multiagent systems,

statistics, and genetic algorithms among others. It is extensively used in building gameplay, robotics, autonomous vehi-

cles, and many more; mostly where large volume simulated data is the input data. Reinforcement learning is used in the

development of AlphaGo Zero. It was also used in the development of other games including ATARI games and

Backgammon (Elfwing et al., 2018). Besides, the dialog agents (text, speech), and text summarization engines, design-

ing optimal treatment policies in healthcare, and online stock trading are some other areas where reinforcement learning

is employed as they can improve with time and from user interactions.

37.3.1.4 Semisupervised learning

The supervised and unsupervised learning are founded on the requirement the data must follow a predefined rule like

labeled or with outcomes variables for supervised and unlabeled or without outcomes variables for unsupervised. But

real-world data is of varied nature. Like in an image archive some images might be labeled or others might be unla-

beled. Furthermore, hand-labeling of data by an ML engineer or a data scientist is expensive and time-consuming, par-

ticularly the big-data. These kinds of input data cannot be modeled using either supervised or unsupervised algorithms.

The problems that sit in between supervised and unsupervised learning, that is, when big input data (X) and few out-

come variables (Y) are available, the semisupervised learning algorithms are employed (Tu, 2019). Numerous ML chal-

lenges fall under this. The semisupervised ML paradigm comprises features of both supervised learnings (labeled

training data) as well as unsupervised learning (absence of labeled training data). The amalgamation of unlabeled data

with labeled data has demonstrated augmentation in learning accurateness (Goldberg, 2009).

The most common approaches of semisupervised learning are label propagation algorithms and semisupervised gen-

erative adversarial networks (GAN). There are three assumptions of the Semisupervised algorithm about the data, that

is, continuity, cluster, and manifold assumption (Dligach et al., 2015). Continuity assumption reflects the assumption of

the algorithm that the closer data points will probably have the same output variable. Cluster assumption reflects the

assumption of the algorithm that if data points on clustering belong to the same clusters then they will probably share
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an output variable. Manifold assumption reflects that the data lie in a much lower dimension than the input space and

the algorithm is working on approximation (Cholaquidis et al., 2020). Speech analysis to label audio files, internet con-

tent classification (ranking relevance by search engine against a user query), and protein sequence classification among

others are some of the areas where semisupervised learning has been successfully applied.

37.3.2 Artificial neural network

ANN or neural network is a subset of ML; they are trainable algorithm that uses a network like a topology. These net-

works also “learn” to execute tasks by studying examples, and not by explicitly. These are also known as connectionist

systems as they vaguely mimic neural networks of brains (Okwu & Tartibu, 2021). A set of connected nodes are called

“artificial neurons” that constitute an ANN model, which is similar to the neurons of biological brains. Akin to the syn-

apses in the brain, each association of artificial neurons can pass on information called a “signal” from an individual

neuron to another (Buscema et al., 2018). Artificial neuron after obtaining the signal, process and then traverses the sig-

nal to the next neuron. ANN was developed in the early 1940s by Warren McCulloch and Walter Pitts based on thresh-

old logic; whose further development led to the launch of Perceptron in 1958 by Franck Rosenblatt. However, they

were not widely used until backpropagation was created in1969. The traditional ANN method bore with problems like

diminishing gradients, and overfitting (Basheer & Hajmeer, 2000).

Typically, ANN implementations have numbers/value as a signal at the edges, that is, a connection between neurons

but the output of each neuron is computed from the summation of its inputs by a nonlinear function. Both artificial neu-

rons and edges carry an adjustable weight that increases or decreases during the learning process according to the sig-

nal/value strength at the edges. ANN sometimes also has a threshold against so that only those higher than the

threshold are received as inputs. ANN is a layered network where every layer carries out different kinds of signal/value

transformations. The three layers are Input, Hidden, and Output layer. The input layer comprises input nodes having the

raw data. The number of input nodes indirectly linked with the explanatory variables count. The input layer performs

data duplication which is then fed into the hidden layers of the network. The hidden layer contains hidden nodes that

receive data from input nodes and perform actual processing using weighted connections or threshold logic. The num-

ber of hidden layers might be more than one. The output nodes in the output layer receive information either from the

hidden or input layer following which predicted outcome will be returned as output. The activity of the output note is

closely linked with the hidden nodes and the weights of the hidden/output nodes. Signals/values travel from the first

layer (the input layer) to the last layer (the output layer), possibly subsequently travel through the numerous hidden

layers (Basheer & Hajmeer, 2000; Buscema et al., 2018). The central aim of the ANN is to decipher solutions to the

problems like a human brain. The two ANN topologies are FeedForward and Feedback. The flow of information is uni-

directional in FeedForward. Every node/layer sends information to other nodes/layers but won’t receive from them; due

to the absence of feedback loops. They are used in recognition, pattern generation, and classification. Whilst feedback

loops are permitted in FeedBack topology which is mainly utilized for content-addressable memories (Yao, 1999).

ANNs are capable of following several learning strategies like supervised, unsupervised, and reinforcement learning.

ANNs have been employed in a variety of areas, including machine translation, computer vision, social network filter-

ing, speech recognition, bioinformatics analysis, and medical diagnosis among others.

37.3.3 Deep learning

DL is the advanced version of ML, wherein the machines can learn from experience and gain skillfulness without

human intervention. DL, also called hierarchical learning or deep structured learning, is inspired by ANN and also uses

a layered architecture for data analysis. DL can solve more complex problems with a large number of features as mas-

sive parallelization is performed in it. The “deep” in “deep learning” refers to the possession of numerous (deep) layers

in the neural networks that facilitate learning. The DL algorithm carries out a task repetitively and alternating it every

time for the improved outcome, resembling the human learning process. Any problem that necessitates “thought” to

solve can be figured out by DL; as it aids machines for solving complex using diverse, unstructured/unstructured, and

inter-connected data (Lecun et al., 2015). Le Cun, Jeoffrey Hinton, or Joshua Bengio are considered the fathers of DL;

also received the prestigious Turing Award in 2018. The conceptual foundations and engineering advances laid by

LeCun, Bengio, and Hinton aided by graphics processing unit (GPU) computers and massive data are key behind the

DL and AI success. Backpropagation and Boltzmann Machines in 1983 by Hinton; Convolutional neural networks in

the 1980s by LeCun; hidden Markov models in 1990s, GAN in 2010 by Bengio; and Improved backpropagation

Artificial intelligence: a way forward for agricultural sciences Chapter | 37 649



algorithms by LeCun along with Improved convolutional neural networks in 2012 by Hinton laid the foundation of DL

(Muthukrishnan et al., 2020).

Compared to ML, where an inaccurate prediction by algorithms is checked and accordingly adjusted for achieving

correct prediction, the DL models can establish accuracy of prediction by themselves. Besides, the learning in DL can

be supervised, or unsupervised, or semisupervised. The DL model, similar to the neural network, contains Input,

Hidden, and Output layers. While ANN permits two hidden layers; DL allows around 150 hidden layers. Owing to the

enormous number of layers, DL can perform more complex operations. The most popular types of DL algorithms are

Convolution Neural Networks (CNN), Long Short-Term Memory Networks (LSTMs), and Recurrent Neural Networks

(RNN) among others (Ahmad et al., 2019). Although none of them is perfect for every problem, some outdo others in

specific tasks. CNN, also known as ConvNets, includes several layers and is largely used in object detection and image

processing. Yann LeCun designed the first CNN in 1988, and named it LeNet, for distinguishing typescripts, that is,

digits and Pin codes. The layers of CNN are Convolution Layer, Rectified Linear Unit (ReLU), Pooling Layer, and

Fully Connected Layer. The convolution layer contains multiple filters for feature extraction and data convolution.

ReLU layer operates on elements and generates rectified feature map as an output which is then fed into a pooling

layer. The pooling layer executes dimensionality reduction of the map and transforms it into a single, continuous linear

vector. The fully connected layer classifies and identifies the linear vector image (Tran et al., 2015; Yang et al., 2015).

Identification and processing of satellite or medical images, forecasting time series, and detecting anomalies among

others are some of the widespread applications of CNN. Other DL algorithms such as LSTMs and RNNs learn, memo-

rize, and recalls long-term dependencies and past information. RNNs form a directed cycle, while LSTMs form a

chain-like structure. LSTMs retain information of past inputs and update values based on relevance; therefore they are

used for time-series prediction, music composition, speech recognition, and pharmaceutical development. RNNs allow

the outputs at time t-1 or t to be fed as inputs at time t or t1 1 based on directed cycles architecture due to its internal

memory. RNNs are commonly employed in time-series analysis, handwriting recognition, image captioning, NLP, and

machine translation (Aggarwal & Murty, 2021; Malhotra et al., 2015).

Besides CNN, LSTN, and RNN, several other DL algorithms that can be used in developing DL models are Radial

Basis Function Networks, GAN, Restricted Boltzmann Machines, Multilayer Perceptrons, and Deep Belief Networks

(DBNs) (Schmidhuber, 2015). Although the majority of DL models’ attributes feature mining to its layered architecture,

they are also employed for propositional formulas or layer-wise organized variables in DBN, deep generative models,

and deep Boltzmann machines. Advances in DL turned it a popular choice for AI application as in computer and

machine vision, speech and audio recognition, NLP, social network filtering, machine translation, bioinformatics, drug

design, and board game programs, among others have yielded comparable results, even surpassing human expert perfor-

mance in some cases (Ahmad et al., 2019).

37.4 Technological advancements in artificial intelligence

AI is not a miracle; in many cases, its functions depend on a physical device that incorporates various algorithms of AI.

Like a robot without its body is of no use, AI software also often needs a shell, that is, hardware to be productive. In

the past, there was a heated argument about the higher significance of hardware or software for computer advance-

ments. Eventually, as computer hardware standardized, the intervening decades beginning to focus on software develop-

ment; concluding that both hardware and software work hand in hand. Similarly, the advancements in AI are closely

linked with computer algorithms, hardware, and software. The current AI advancements are similar to computer tech-

nology 1970s and 80s. Therefore the argument about the higher significance of hardware or software for AI advance-

ment is at the peak and the chip research is again going through the same transition.

To understand the link between hardware and software, one has to grasp technological layers or stack in the computer

application architecture. Technological stack, a list of all the technology services used to build and run one single applica-

tion, of AI can be divided into five layers, that is, Hardware, Interface, Platform, Training, and Services (Fig. 37.2).

Hardware is at the bottom with no direct user interaction and services at the top with full functioning, ready for the users.

Hardware is comprised of the accelerator and the head node that deals with the highly parallel operation and computation

among accelerators as required by AI, respectively. An accelerator is a silicon-based chip that is used for computer mem-

ory, storage, logic processing, and networking. The next layer in the technological layer is Interface, which facilitates the

communication between software and underlying hardware. The platform layer, on the top of the Interface, deals with the

software packages, rules, approaches to be applied to the data for the analysis. It comprises four sublayers, that is,

Framework, Algorithm, Architecture, and Methods. The Framework is where the software is used to define and invoke

algorithms on hardware through the Interface layer. The algorithmic rules with weights to utilized in the model training
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and optimization and approach that to be used on the data for feature extraction are mainly performed by Algorithm and

Architecture sublayers; whereas Methods sublayer primarily dealt with the techniques for optimizing weights given to

models respectively. Training and Services, of the technology stack, respectively deals with the data types of data for anal-

ysis and final integrated solution that includes training data, model, hardware, and every other component (for example

voice recognition system, handwriting recognition system) (Quigley et al., 2007).

This section will focus on the technological advancements in both hardware and software that have helped AI to

achieve several of its accomplishments.

37.4.1 Hardware

In recent years, AI has witnessed immense progress with the advent of deep neural networks and surpassed humans in

the number of cognitive tasks. With time AI is becoming more sophisticated and demanding more computation power

for achieving its full potential. Newer hardware, designed for AI, is meant to accelerate the training and performance of

AI models with reduced power consumption. Essentially, the AI hardware consists of computer memory, storage, logic,

and networking. Computer memory primarily helps in the temporary storage of data and instructions during processing,

for example, dynamic RAM or DRAM, while computer storage helps in the long-term storage of large datasets; typi-

cally using Not AND or NAND type of devices. The computer logic involves its logical function, that is, optimization

and calculation of neural network operations; mainly performed by processors and typical logic devices are central pro-

cessing unit (CPU), GPU, application-specific integrated circuit (ASIC), and field-programmable gate array (FPGA).

The computer networking utilized switches, routers, or other networking components (Does, 2018).

The primary AI hardware is called accelerators, that is, silicon chip-based microprocessors or microchips that

facilitates faster AI processing due to the presence of multicores, novel dataflow architectures low-precision arithme-

tic, or in-memory computing (IMC) capabilities. and parallel task completion (Welser et al., 2019). Additionally, the

FIGURE 37.2 Artificial intelligence (AI) technological stack layers. The technological stack provides a list of all the technology services used to

build and run one single application. AI technological stack is divided into five layers, that is, hardware, interface, platform, training, and services.
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algorithmic complexity of DL poses high computation and memory demands which are challenging to the hardware

platforms. This section will discuss AI hardware.

37.4.1.1 Processor

Processors, invented in 1937 by Marcian Hoff, are the logical circuits that handle the computer instructions within sec-

onds and their speed is measured in terms of megahertz. The four main primary tasks of the processor are fetching,

decoding, executing, and write back the instructions. They are called the brain of the system including computers,

smartphones, robots, embedded systems, etc. The processor receives input devices instruction after processing sends the

output to the output devices. The Arithmetic Logic Unit (ALU) and Control Unit (CU) are the two components of

the processors. The ALU executes all mathematical operations and the CU operates like traffic police by managing the

instructions command. Typically, the CPU is the main processor in almost every electronics device surrounded by the

microcontroller. The operations of a processor are inherently constrained due to the sequential execution of instructions.

To address this, one part of hardware designing is also focused on multicores. Currently, every CPU includes multiple

processing cores to accomplish the execution of multiple tasks simultaneously. Even though “cores” are confined in

one physical unit, they are independent processors. For instance, processors with two cores are dual-core, with four

cores are quad-core, and eight or ten are known as octa-core or deca-core (Chen, 2016b). The processor for AI includes

CPU, GPU, FPGA, an ASIC (Mittal, 2020; Momose et al., 2020).

Although the CPU is the main processor, more often not it is not an AI accelerator. In the beginning, CPU was

mostly employed for AI-related studies but as computational demands of AI, increased CPU efficiency strained owing

to its physical limits in clock speed and heat dissipation, and development of newer hardware becomes a necessity. The

GPU, FPGA, and ASICs are known AI accelerators. The AI computations need only linear algebra for parallel proces-

sing and GPUs are specifically designed for massively parallel operations required for graphics rendering to achieve

smooth video display. The performance of the CPU is enhanced with the aid of GPU; as it can take the

computationally-intensive load of the CPU. GPUs are first built by NVIDIA and are an assemblage of hundreds to thou-

sands of cores in parallel. Traditional CPUs generally took weeks for prediction whilst GPUs may only take days or

hours for the same task (Lee et al., 2010). In 2009, Andrew Ng’s group illustrated GPU’s capability for large-scale DL.

The group reproduced the 11 billion network connections of the Google X project with 16 computers powered by 64

GPUs whereas originally 1000 computers with 16,000 CPUs are used. The replicated project did not run significantly

faster or performed better, but it demonstrated that 64 GPUs is equivalent to 16,000 CPUs. Ever since GPUs are a popu-

lar choice for AI-related training and inference. Newly developed GPUs such as Nvidia NVLink and Tensor cores have

enhanced connective capability for AI dataflow and are neural network-specific hardware (Böhm et al., 2009; Coates

et al., 2009). FPGA is a type of programmable logic device that can be easily be configured and optimized for the latest

AI algorithms. As DL frameworks are still developing, it is difficult to design customized hardware for it, but easily

reconfigurable devices, FPGA, are simpler to customize and can be evolved besides frameworks and software. FPGA

chips are used to accelerate real-time AI inference under project brainwave launched in 2017 by Microsoft. Intel

acquired Altera in 2015 to integrate FPGAs in the CPUs server for accelerating AI as well as performing general-

purpose tasks (Mittal, 2020).

Although GPUs and FPGAs execution for AI-related tasks are far better than CPUs, it is believed that with a more

specific design that efficiency can be improved ten times. ASICs are integrated chips that are tailor-made for a specific

purpose or application. These accelerators through optimizing memory usage and lower precision arithmetic accelerate

the calculation as well as increase the throughput of computation. ASICs are often utilized in big data products such as

consumer or business products or cell phones or other similar applications (Mittal, 2020; Momose et al., 2020).

Currently, GPUs are the ultramodern hardware in the machine and DL. Owing to their good performance in parallel

computing to the thousands of cores. Nevertheless, the ever-growing deep neural network complexity has directed the

search for advances in processing efficiency. The AI hardware researchers are investigating novel algorithms, architec-

tures, devices, and approaches like quantum computing, IMC, and approximate computing for enabling AI workloads

and the shift from Narrow AI (ANI) to Broad AI (AGI or ASI).

Recently developed new generation of hardware architectures are optimized for AI workloads; for instance,

Qualcomm’s Snapdragon 888 processor is a computer vision and AI driving force. Currently, popular AI-specific hard-

ware includes:

1. Tensor Processing Unit (TPU) is developed by Google. It is an ASIC type of AI accelerator specifically designed

for neural networks and ML solutions. TPU also empowers the Google products like Assistant, Search, Translate,

Photos, and Gmail. It also offers cloud TPU for executing other ML teams’ solutions.
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2. EyeQ is a system-on-chip (SoC) device designed by Mobileye consisting of 32-bit ASICs microprocessor, memory

blocks, network circuits, etc. EyeQ is optimized for complex and computationally heavy signal-processing,

computer-vision, and ML/DL tasks while using low power. Currently, it has been incorporated into assisted-driving

technologies, even in fully-autonomous (Level 5) vehicles, by more than twenty-seven car manufacturers (Lloyd,

2015).

3. Nervana Neural Network Processor-T 1000, developed by Intel is a discrete accelerator designed specifically for the

ever-increasing AI complexity and scale of inference (Hickmann et al., 2020).

4. The Intel Movidius Myriad is a vision processor unit SoC type of device containing programmable processors, dedi-

cated and configurable image and vision accelerators. It is specifically designed for on-device computer vision and

neural network applications. The device presents top-tier performance per watt for demanding workloads in AI

inference (Bakshi & Johnsson, 2020).

5. Epiphany V is developed by Adapteva with a 1,024-core processor chip aimed for real-time ML in the form of

image processing and autonomous driving (Varghese et al., 2017).

6. Akida neural processor is developed by BrainChip using the latest neuromorphic computing. This DL accelerator is

low power, inexpensive, and follows incremental learning. Earlier the distribution was with license; but now it is

freely available on their site, Github, and Python. Currently, BrainChip is developing a software toolkit, the Akida

Development Environment (Lorenc et al., 1973).

Besides, the interest and investment in FGPA for AI training and inference is also increasing. NVIDIA’s latest Tesla

V100 and NASDAQ: NVDA GPUs are DL-focused and are better suited for AI applications. The start-ups like Mythic,

Wave, and Graphcore Computing are also working toward faster and cheaper AI training and inferencing. One aspect

involved in hardware advancement is closely linked to DL growth both in the framework as well as market; therefore

everyone ensuring that their chipsets are an advantage, not a pitfall.

37.4.1.2 Memory device

Memory devices are required to store information for immediate use. Three major processes involve memory: encoding,

storage, and retrieval. The computing layers of DL or ANN models require a large amount of data to pass rapidly into

thousands of cores for processing; that’s why AI applications have high memory-bandwidth requirements, that is, the

rate of reading or storing data into memory by a processor. For example, a model trained for identifying the cat image

requires colors, contours, textures among others to reside on memory during the recognition process. The dynamic

random-access memory (DRAM) is most widely used in AI for storing input data, weighing model parameters, and per-

forming other functions during both inference and training. DRAM was invented by Robert Dennard while working in

the Research Division of IBM; the “dynamic” refers to the constant refreshing of the charge on each capacitor in

DRAM. The invention ultimately led to the formation of a single chip that can hold billions of RAM cells in modern

computers. The first commercial DRAM, that is, Intel 1103 was launched by Intel in the 1970s. Since then, numerous

versions of DRAM have been developed that are keeping up with the latest accelerators and algorithms (Upadhyay

et al., 2019). Still, currently, the development in-memory infrastructure-related field is the least among the AI hardware

and technologies. The major contributing factor behind its slower development might be the rapid advent in the micro-

processor chips/accelerator and improved efficiencies in algorithm design such as reduced bit precision and their ability

to be par at recent advancements. Existing memory is augmented for CPUs, but new architectures are being explored.

Since the launch of DRAM, various advancements like Double Data Rate (DDR), Graphics Double Data Rate (GDDR),

and Low power DDR (LPDDR) among others have been achieved. Nowadays, GDDR is one of the popular choices due

to its close integration with the processor for applications with a high bandwidth demand (Kim et al., 2016).

Nonetheless, a large GPU can only be surrounded by twelve GDDR chips; therefore there is still a limit in the band-

width it can offer. Other memory solutions include High-bandwidth memory (HBM) and On-chip memory that is also

closely integrated with the GPU (Jun et al., 2017).

The newer designs and architectures for the memory mainly involve trough-silicon-vias (TSVs), that is, vertical fast

interconnections on-chip that enables 3D memory stack accessibility to the processor and resulting in higher bandwidth

memory. HBM a 3D equivalent of GDDR, Hybrid memory cube (HMC), developed by Micron was a proposed 3D

equivalent of DDR, and Wide I/O is a 3D equivalent to LPDDR memories in SoCs devices for improving AI proces-

sing. Owing to the higher number of parallel interconnects, the power consumption per bit in these newer 3D architec-

tures is three times lower. With HBM technology large datasets can be processed rapidly while reduced power

requirements. HBM is currently the memory solution of choice for Google and Nvidia, even with its three times

expenses against traditional DRAM per gigabyte (Tran et al., 2015; Yang et al., 2015). HMC primarily focused on the

Artificial intelligence: a way forward for agricultural sciences Chapter | 37 653



high total system memory capacity and easy plugging into a server as memory stacks, similar to DDR memories

(RAM). It provided a loose integration and called as far-memory, but HMC was canceled. The Wide I/O is an example

of extreme integration for achieving the lowest possible power consumption. The memories are integrated directly on

top of SoCs and are connected directly to the CPU using TSVs. However, this integration requires TSVs in the SoC,

which consumes a lot of precious logic area, and thus is pricey (Hansson et al., 2014; Kim et al., 2016). This is perhaps

the biggest reason behind the absence of its implementation in any commercial products yet.

The AI-related data computation, storage, and access in DRAM or other outside memory sources can take 100 times

more time than if the memory is located on the same chip. These can be obtained through Non-von Neumann comput-

ing architectures like IMC/ Processing-in-memory (Bavikadi et al., 2020; Gauchi et al., 2019). Unlike von Neumann

architecture where memory and processor are separate units (e.g., personal computer), Non-von Neumann computing

architectures contain both on the same units; this, in turn, targets the conceptual constraint of traditional computing sys-

tems. On-chip memory is developed using IMC architectures so that data does not need to be constantly exchanged

between RAM and the processor (Gauchi et al., 2019). Through increasing on-chip memory the AI speed can be

enhanced as the time taken for data exchanged will be minimized. For instance, the ASIC type of Google’s TPU proces-

sor comprises sufficient memory to store an entire model on the chip. The Graphcore are working in the direction and

further taking it to a level about 1000 times than found on a typical GPU, through a novel architecture. The expense of

on-chip memory is still excessive for most applications (Jia et al., 2019; Kacher et al., 2020). In 2018, IBM announced

an in-memory-based architecture for processing and modeled according to the synaptic network of the brain to acceler-

ate DL. Every solution has a different target area for achieving better performance like DDR and HMC focus is capac-

ity and flexible integration, LPDDR and Wide I/O focus on the lowest possible power consumption, and GDDR and

HBM focus on the highest bandwidth.

37.4.1.3 Storage device

AI techniques, both ML or DL, require data and storage architecture differently from traditional workloads; as they pro-

duce large volumes of data (B80 exabytes annually and projected to be 845 exabytes by 2025). Also, the amount of

data used in AI training is growing, hence a further surge in storage demands. From 2017 to 2025, the estimated annual

growth of storage is 25%�30%. Unlike conventional storage solutions that follow a one-size-fits-all approach, AI solu-

tions must adjust according to changing needs. Both AI training and inference models have high storage demands and

store massive volumes of data during algorithm refinement, but overall, it is higher for AI training compared to infer-

ence. Traditionally, the data storage is performed by Nonvolatile memory (NVM) using semiconductor memory chips

where stored data is retained even after power disconnection. For instance, read-only memory, magnetic storage devices

(like magnetic tape and hard disk drives), optical disks, and flash memory (solid-state drives and NAND flash) among

others. Ideally, AI needs a storage device that is fast like static random-access memory, has storage capacity similar to

DRAM or Flash (Chen, 2016a; Xue et al., 2011), and has low power dissipation. None of the current technology fulfills

these demands, resulting in a “memory bottleneck” reflecting severe limitations in the performance of AI applications.

The recently developed NVMs fall between traditional memory (DRAM) and traditional storage (NAND flash) but

have a higher density than traditional memory, better performance than traditional storage, and lower power usage than

both. The multiple NVM technologies such as magnetoresistive random-access memory (MRAM), Resistive random-

access memory (ReRAM), and Phase-change memory (PCM), differing in terms of memory access time and cost are in

various development stages. MRAM has data retention for more than five-year, high endurance, and the lowest latency for

reading and writes function. However, due to its limited scaling capacity, it is an expensive substitute for caches and not a

long-term data-retention solution (Tsymbal et al., 2019). Whereas, ReRAM has potential in vertical scaling and advanta-

geous pricing, but it has slower latency and reduced endurance (Mittal, 2018). PCM fits in between the two, but endurance

and error rate needs to be addressed for its widespread adoption (Ambrogio et al., 2020). The development of antiferro-

magnetic (AFM) materials could potentially aid in data-centric computing that requires ever-increasing power, storage,

and speed. The AFM-based device is the smallest, operates with a record-low electrical current for data writing, and has

electrons in antiparallel alignment that behave like tiny magnets due to spin. In AFM materials, the constant electric cur-

rent is not needed and data cannot be erased by external magnetic fields due to dense packing which will not interact with

magnetic fields. Besides, AFM-based devices are also very secure and easy to scale down to small dimensions (Ha et al.,

2004). The FlashBlade is developed and optimized by Pure Storage for the fulfilling storage needs of the entire ML work-

flow. It has a datacentric infrastructure, high-performance file and object storage, scalable elastic storage, and massive

throughput (B 75 GB/s from a cluster of devices) for any access pattern, sequential or random (Stalzer, 2012). Similar to

GPUs, it is the first in the storage industry that is immensely parallel in architecture.
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37.4.2 Software

The tremendous progress of AI in recent years with the aid of DL and ML has made AI systems more sophisticated and

demanding computation power from hardware. New hardware, as well as software, are being specifically devised for

accelerating AI training and performance. The software component of AI can be divided into AI platform and software

solution, where AI platform is defined as hardware architecture or software framework (including application frame-

works) that allows execution of software or software solution over it.

37.4.2.1 Artificial intelligence platform

AI platforms facilitate software execution and application. It stimulates the cognitive function of minds to perform

problem-solving, learning, reasoning, social intelligence as well as general intelligence. AI platforms can be divided

into weak AI/ narrow AI (used for a specific task) or strong AI (or ASI) (find solutions for unfamiliar tasks). Recently

popular cloud infrastructure offers scalability as well as resource access for the implementation of complex AI and ML

solutions. It is vital to regulate platform as a service (PaaS) and software as a service (SaaS) while launching AI solu-

tions for best performance (Beimborn et al., 2011; Tsai et al., 2014). Microsoft Azure, Google AI Platform,

TensorFlow, Amazon AI Services, Rainbird, Wipro HOLMES, Infosys Nia, are some of the top AI Platforms.

37.4.2.1.1 Google artificial intelligence platform

It is a simple, quick, and cost-effective platform available for building customized ML projects and applications from

conceptualization to production to deployment. It also supports an open-source platform, Kubeflow for the construction

of portable ML pipelines to run on-premises or on Google Cloud. AI Technologies such as TensorFlow, TPUs, and

TFX tools are accessible through the Google AI platform. Additionally, libraries of Prediction and RESTful API for

successful integration of search engines are available in popular languages, such as Python, JavaScript, and DotNET. It

is primarily used for Cloud-based ML, Spam Detection, Customer Sentiment Analysis, Recommendation Systems, and

Purchase Prediction among others (Hlavac et al., 2004).

37.4.2.1.2 TensorFlow

It is a simple, visual, and open-source software platform created by Google Brains’ team to implement ML and DL

Neural Networks for numerical computation; it provides ML capabilities for different programming environments and

visual interface that relies mostly on graphs and data visualizations. It was the first highly accessible ML platform and

resulting in the widespread implementation of ML in training models, JavaScript, and bringing ML to mobile, and IoT

devices. Besides, the Keras library is available for Neural Networks programming (Abadi et al., 2016; Nelli & Nelli,

2018). Currently, it works with both GPU and TPU; it is flexible enough to permit users to use one or more GPUs or

CPUs in a mobile, or desktop, or server with a single API (Abadi, 2016; Ketkar & Ketkar, 2017).

37.4.2.1.3 Amazon artificial intelligence services

Amazon Web Services (AWS) is one of the most widely adopted cloud platforms. It offers a variety of services, fea-

tures, infrastructure, and emerging technologies for computing, storage, ML and AI-based data analytics, and the

Internet of Things. AWS provides the widest variety of specifically built databases for different types of applications

and offers them for best cost and performance. Its flexible and secure cloud computing environment is designed for ful-

filling security requirements for global banks, military, and other high-sensitivity organizations. In 2014, AWS

Lambda, a serverless computing space, was launched to allows developers to execute their code without provisioning or

managing servers. Amazon SageMaker, another AWS service, is a ML service that lets everyone employ ML without

prior understanding (Muni & Hansen, 2005; Varia & Mathew, 2014).

37.4.2.1.4 Microsoft Azure

It is mobile-enabled, cloud-based advanced analytics the supports every operating system, language, tool, and frame-

work developed to simplify ML for businesses. Business users can model through algorithms from Bing, Xbox, R, or

Python (both customized and noncustomized R or Python code) and can be uploaded as a web service or in the product

Gallery or into the ML Marketplace (Schwichtenberg & Schwichtenberg, 2020). Some of the areas where it has been

successfully employed are Monitoring, Digital Marketing, Business Intelligence, E-Commerce, Big Data and Analytics,

Digital Media, Internet of Things, High-Performance Computing, Gaming, and Blockchain, among others.
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37.4.2.1.5 Rainbird

It is an award-winning AI platform that enables the building of a decision-making system that increases efficiency and

quality of customer interaction by combining current human-business knowledge. It automates work and provides con-

sultative systems for enterprises. It has been utilized for producing Analytics & Insights, RBLang, Visual User

Interface, Smart Data Import, Controlled Learning Algorithms, and NLP among others (Hlavac et al., 2004).

37.4.2.1.6 Infosys Nia

It is a knowledge-based AI platform that combines ML with deep insights to create automation and innovation by sim-

plifying the continuous renovation of core processes within an organization. Nia also enables businesses to bring new,

delightful user experiences leveraging state-of-the-art technology. The Infosys Nia platform belongs to the Infosys

Aikido framework which primarily deals with the order-to-activation process transformation asset efficiency and inci-

dent automation. Jointly with AiKiDo service, it offers reduced maintenance costs for both physical and digital assets.

Major platforms of Infosys are information platform, automation platform, knowledge platform, and aikido framework

(Hlavac et al., 2004; Wilamowski & Irwin, 2016).

37.4.2.1.7 Wipro HOLMES

It is developed using ML, DL, NLP, genetic algorithms, pattern recognition semantic ontologies, and knowledge model-

ing technologies to deliver improved cognitive experience and productivity along with accelerating the process through

automation and autonomous abilities. This AI platform provides a wide variety of cognitive computing services such as

predictive systems, knowledge virtualization, virtual agents, visual computing applications, cognitive process automa-

tion, robotics, and drones (Tarafdar & Beath, 2018).

Other AI platforms include H2O, Petuum, Polyaxon, DataRobot, NeuralDesigner, PredictionIO, Dialogflow,

MindMeld, Premonition, Ayasdi, Meya, KAI, Receptiviti, Watson Studio, Vital A.I, Wit, Lumiata, and Infrrd among

others. Additionally, various APIs are available for the development of software targeting particularly for Robotic

Automation (UIPath, BluePrism, and Pega Platform), Chatbot Software (Engati, Chatbot, ManyChat, and FreshChat),

Facial Recognition (Deep Vision AI, FaceFirst, Trueface, and Amazon Rekognition) among others.

37.4.2.2 Artificial intelligence solution

AI Software Solutions can provide a sustainable and cohesive AI-driven ecosystem by conceptualizes and implementing

data-driven decision making that can assist in informed decision making, by identifying growth hacking opportunities,

trends, and anomalies in operational processes, including risk analytics, predictive maintenance, operational forecasting,

and demand prediction. Marketing & Sales, Customer Service, Mobile Application Solutions, IoT Solutions, customer

service, and Predictive Analytics Solutions are some of the areas where AI software is available in abundance.

Table 37.2 listed a few of the AI software.

37.4.2.3 Big data

Although it is not technical, it also played a role in the implementation of AI-related applications; as the data can be

without information, but information cannot be without data. The concept of big data, even without the term “big data,”

has been around since the 1990s and by the time term was coined in 2005 by Roger Mougalas from O’Reilly Media,

the massive amount of data has been already accumulated. The rise of big data has enabled the emergence of AI cloud

and on-edge devices which is altering the computing, networking, and data storage industries fundamentally. Big data

is the power behind AI; as diversity in big data is making ML and DL applications do what they were designed to do,

that is, develop and improve a skill. The amount of data available for the AI is unequivocally linked to its learning and

improvement of pattern recognition capabilities (Haenlein & Kaplan, 2019; O’Leary, 2013).

37.5 Application of artificial intelligence

While the promise of AI is not yet fully realized, and according to AI scientists and experts, it’s still in its infancy.

Nevertheless, its endless potential and human-like capabilities look very promising. Currently, AI applications have

already been popular in various fields like customer interactions management, healthcare, chatbots, computer vision

among others. AI-driven technologies are proving to be beneficial in many fields including agriculture through crop

and soil monitoring, weather forecasting, predictive agricultural analytics, and markets. The cloud computing
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TABLE 37.2 List of artificial intelligence software.

AI Tools Functionality Supported OS/ Languages/
Platform

Best Feature Price

Content
DNA
Platform

Machine Learning/
Computer Vision.

Suits both Cloud and On-
premises deployment models.

Unsupervised Machine learning.
Training on your data.

One-time fee.

Google
Cloud
Machine
Learning
Engine

Machine Learning GCP Console Trains model on your data.
Deploy it. You can manage it.

Per hour per
training unit costs:
US: $0.49;
Europe: $0.54;
Asia Pacific:
$0.54

Azure
Machine
Learning
Studio

Machine Learning Browser based Model will get deployed as a
web service.

Free

TensorFlow Machine Learning Desktops, Clusters, Mobile, Edge
devices, CPUs, GPUs, & TPUs.

It is for everyone from beginners
to experts.

Free

H2O AI Machine Learning Distributed in-memory.
Programming.
Languages: R & Python.

AutoML functionality included. Free

Cortana Virtual Assistant Windows, iOS, Android, and
Xbox OS. Supported Languages:
English, Portuguese, French,
German, Italian, Spanish,
Chinese, and Japanese.

It can perform so many tasks
from setting reminders to
switching on the lights.

Free

IBM Watson Question-
answering system.

SUSE Linux Enterprise Server 11
OS Apache Hadoop framework.

It learns lot from small data. Free

Salesforce
Einstein

CRM system Cloud based. No need for managing models
and data preparation.

Contact them for
pricing details

Infosys Nia Machine Learning
Chatbot.

Supported devices: Windows,
Mac, & Web based.

It provides three components,
i.e., Data platform, Knowledge
platform, and automation
platform.

Contact them for
pricing details.

Amazon
Alexa

Virtual Assistant OS: Fire OS, iOS, & Android.
Supported Languages: English,
French, German, Japanese,
Italian, and Spanish.

It can be connected to devices
like Camera, lights, and
entertainment systems.

Free with some
amazon devices
or services.

Google
Assistant

Virtual Assistant OS: Android, iOS, and KaiOS.
Supported Languages: English,
Hindi, Indonesian, French,
German, Italian, Japanese,
Korean, Portuguese, Spanish,
Dutch, Russian, and Swedish.

Supports two-way conversation. Free

PaleBlue VR Simulations,
creating Virtual
Reality,
Augmented
Reality, and 3D
simulators

iOS, Android, Windows, Mac, &
Web based, Cloud, SaaS

PaleBlue is the leading provider
of VR, AR, & 3D simulators for
the real world. PaleBlue digital
solutions help its clients to
intensify training, streamline
workflow, & improve safety
worldwide!

Free Trial

BIRD
Analytics

Machine Learning iOS, Android, Windows, Mac, &
Web based, Cloud, SaaS

Healthcare, Manufacturing,
Financial Services, Insurance,
Automotive, and Retail

$8.00/month/user

(Continued )
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infrastructures with the use of data ecosystems, IoT devices, and AI enables the development of digital agriculture that

can in turn strengthen the farmers through smart farming, irrigation, fertilizer application, and harvesting among others

(Murase, 2000; Zhao, 2020). In this section, the AI applications in agriculture, and their related area are listed

(Fig. 37.3).

37.5.1 Agriculture/farming

As, agriculture is also a significant contributor to the country’s economy and frequently affected by challenges such as

ever-increasing population and food security, climate fluctuations, herbicide resistance, pollution, soil deforestation

among others; therefore requires novel strategies for augmented crop yield. AI is gradually providing solutions to the

several challenges faced in agricultural operations such as disease detection, crop phenotyping, yield monitoring,

weather forecasting, irrigation management among others, and rising as a part of the industry’s technological evolution.

Broadly, the application of AI in agriculture can also be termed as precision agriculture or farming which is focused on

soil, weather, and crop conditions (Khattab et al., 2019). With the aid of sensors and technological advances such as

robots, satellites, GPS, and drones the valuable data on crop growth, soil characteristics, and weather conditions is

obtained that can further detect hidden knowledge about agriculture production.

In this section, the implementation and applications of AI in providing next-generation agriculture tools including

agriculture robots for crop health and soil monitoring along with predictive analytics is discussed.

37.5.1.1 Field mapping

It the key component of precision farming where inter and intra-field variability in the crop is observed measured and

then used for the development of better farm management. It involves monitoring and evaluating the exact geometry of

agricultural entities like fields or ponds with their precise perimeter and location, that is, local geological data. The

aggregated geological data of agricultural areas are useful for monitoring, crowdsourcing, and farm management (Fritz

et al., 2015). MapIT, a crowdsourcing tool developed for collecting geographic information of small objects and agricul-

tural areas. The tool requires firstly the snapping picture of the target field followed by its outlining by the user which

is then simplified by an inbuilt Douglas-Peucker algorithm. Jointly with the data from the built-in internal sensors, the

distance of the object from the camera, and GPS location, the coordinates in the photo are projected to obtain a geologi-

cal object of original geometry (Schmid et al., 2013).

37.5.1.2 Yield monitoring

Yield monitoring or mapping is a significant facet of precision agriculture that assists farmers in making educated deci-

sions by providing ample information about their fields. Yield monitoring or mapping refers to the process of georefer-

enced data collection with the aid of farm equipment such as drones, tractors, or harvester along with the information

TABLE 37.2 (Continued)

BAAR Machine Learning Installed � Windows, Web-
Based, Cloud, SaaS

Automated Workflows,
Computer Vision Capabilities,
Reporting and Analytics, Low
Code Platform, Robotic Process
Automation, Industry-Specific
Solutions

Not provided by
vendor

G6GFINDR
System

query-based
system and
Natural Language
Processing (NLP)

Windows Provide in depth search for info/
meta-data on the artificial
intelligence and bioinformatics
software fields. This online
Artificial Intelligence system
offers Chatbot, For Healthcare,
Predictive Analytics, Process/
Workflow Automation, Virtual
Personal Assistant (VPA) at one
place.

Free Trial
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including grain yield, moisture levels, and soil properties, among other during crop harvesting. Monitoring involves

feeding of harvested grain into the elevator for sensing grain moisture followed by their transfer to holding tank for

sensing grain yield and then displayed on the screen. The information obtained is then georeferenced to the field and

the associated field data can further help farmers in assessing things such as when to sow, fertilize or harvest, the effects

of weather, and much more (Magalhães & Cerri, 2007). Numerous methods, using a range of sensors and imaging tech-

niques have been developed for data collection; whilst, computer vision and DL algorithms are employed for data pro-

cessing (Khaki & Wang, 2019). Typically, at least five years of yield maps are essential to avoid reaching conclusions

that are affected by the unpredictable factors of a particular year. Plantix, a DL application developed by Berlin-based

agricultural start-up PEAT, detects potential nutrient deficiencies and defects in soil. Liao et. al. used spatiotemporal

fusion of MODIS and Landsat-8 data to estimate yield phenology and biomass for soybean and corn (Liao et al., 2019).

37.5.1.3 Irrigation management

Irrigation management involves fulfilling the water requirement of crops through the management of time and water

application without wasting any water, soil, plant nutrients, or energy. Time and again newer methods of irrigation have

been introduced to reduced flood irrigation (Dolci, 2017). Currently, drip irrigation with embedded systems is the most

prominently used in precision agriculture where water usage is reduced by exploiting parameters such as soil, pest,

wind speed, solar radiation, humidity, plant density among others. Devices such as fertility meter and pH meter are

installed in the field to evaluate soil fertility via evaluation of primary ingredients of soil such as potassium, phospho-

rus, and nitrogen. Besides, automated farm irrigators and microcontroller controls drip irrigation through irrigator

pumps and wireless technology. Moreover, machine-to-machine technology (M2M) is being developed for communica-

tion and data sharing amongst each other via cloud or main network of agricultural field. An AI-based robot is devel-

oped for estimation of moisture and temperature with Arduino and raspberry pi3; and an AI-based strategy for

estimation of drip tape irrigation based on ANN, least-square support vector machine, neurofuzzy c-Means clustering

(NF-FCM), and neurofuzzy subclustering, are developed (Seyedzadeh et al., 2020; Shekhar et al., 2017). Similarly, an

automated irrigation system wherein output of cameras and different sensors are used for detection of soil moisture,

pressure, and temperature are shared over the network for better irrigation management.

FIGURE 37.3 Application of artificial intelli-

gence (AI). AI-driven technologies are proving

to be beneficial in many fields including preci-

sion farming, field mapping, yield monitoring,

irrigation management, agriculture robot and

drones, crop scouting, disease detection and

diagnosis, crop phenotyping, soil management,

nutrient monitoring, smart greenhouse manage-

ment, weather tracking and forecasting, system

biology, advisory services.
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37.5.1.4 Crop scouting

Crop scouting refers to the process of precise crop performance and pest pressure (infestations and disease) assessment

for estimating economic risk as well as determining the effectiveness of potential intervention strategies. Usually, scout-

ing is incorporated in Integrated pest management; but with the aid of AI, built-in sensors, specialized field instruments,

and handheld computers with GPS help geotagging of crops and their issues (Geng & Dong, 2017; Kalischuk et al.,

2019). Geotagging aids in their visualization on an aerial map that can further help farmers in making site-specific treat-

ment decisions. DL CNN-based framework, that is, MAESTRO and automation spotted grasshopper and Drosophila

suzukii using RBG images and has shown potential for UAV-based monitoring (Roosjen et al., 2020). The DL CNN

and ML are also employed for differentiating pest-damaged and healthy wheat grains as well as for investigating the

spatiotemporal spread of Tuta absoluta, a pest of tomato in South and Southeast Asia (Mkonyi et al., 2020).

37.5.1.5 Disease detection and diagnosis

Plant diseases adversely affect the yield and quality of the crop and their rate of progression depends on the existing

crop condition and its susceptibility. The plant’s diseases often display morphological changes such as colored spots

and streaks in leaves, stems, and seeds whose timely detection might prevent economic losses faced by farmers (Cruz

et al., 2019; Pathan et al., 2020). Several AI technologies including DL, CNN, K-Means clustering method, SVM

among others have been employed for the detection of diseased and healthy crops with varying degrees of accurateness

in models. The developed models or tools can be used for early, instant detection, classification, and diagnosis of plant

diseases which could be further expanded to support an integrated plant disease identification system under real cultiva-

tion conditions.

37.5.1.6 Agriculture robot and drones

The development and programming of autonomous robots for the handling of significant agriculture tasks is one of the

high valued applications of AI. Automation and Robots are increasing precision as well as managing the farms by carry-

ing out many operations such as irrigation, weeding, harvesting, and safeguarding the farms among others (Yahya,

2018). See and spray, a robot developed by Blue River Technology, employs computer vision to examine and accu-

rately spray herbicide only on weeds of cotton plants; effectively reduces the chemical usage as well as targets poten-

tially resistant weeds. On the other hand, the Harvest CROO Robotics robot aids strawberry farmers in their picking

and packing of their crops. Similarly, drone technology developed by SkySquirrel Technologies Inc. also utilizes com-

puter vision for examining crop health and has been successfully applied in reporting the health of the vineyard, particu-

larly the condition of grapevine leaves.

37.5.1.7 Crop phenotyping

Phenotyping refers to all the features of an organism which include size, shape, color, biochemical properties, and

behavioral properties among others that are the outcome of the interaction of genotype (total genetic inheritance) with

the environment. Current phenotyping technologies have applied imaging techniques in combination with computer

vision for plant phenotyping that can be applied in agriculture and crop science (Dolci, 2017).

37.5.1.8 Soil management

Soil monitoring involves measuring soil temperature, water potential, oxygen levels, NPK, and volumetric water content

using sensors and IoT devices to maximize yield, reduce disease and optimize resources. The IoT application in agricul-

ture is known as Smart Agriculture (or Smart Farming), and IoT is the core of Precision Farming (Geng & Dong, 2017;

Pathan et al., 2020). Soil quality monitoring is imperative for its health and potential imbalances that can affect the

crop. Soil moisture is another significant parameter in agricultural operations which is crucial for the management of

water resources and drought control. A DL regression network was used to construct a soil moisture prediction model

that later can be used to develop effective strategies for water-saving and controlling drought (Cai et al., 2019).

Computer vision and DL algorithms are being employed for the processing of data captured by drones and/or software-

based technology to monitor soil and crop health. A DL application called Plantix developed by Berlin-based agricul-

tural tech start-up PEAT spots potential defects and nutrient deficiencies in soil associating foliage patterns with plant

disease and pest infestation as well as soil deficiencies. California-based Trace Genomics also performs soil analysis

and diagnostics through comprehensive microbial evaluation.
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37.5.1.9 Nutrient monitoring

Nutrient monitoring, as the name suggests, involves monitoring nutrients, pH, alkalinity in water bodies, soil, hydropon-

ics as well as plants with the aid of wireless sensors and IoT devices by estimating mainly nitrogen, phosphorous, and

potassium for increasing crop yield (Dolci, 2017). Nutrient deficiencies can cause moderate to severe crop loss; hence it

is necessary to monitor for providing suitable intervention for preventing crop losses. The plant nutrient monitoring is

done at three levels, that is, at soil/water level (what is given to the plants), at root zone level (what is available to

plants), and a leaf/stem level (what ends up in the plant). Water used for irrigation can be from water bodies, hydropon-

ics is farming without soil; therefore nutrients in the water are significant for successful hydroponic cultivation and

higher field yield. NexSens UV nitrate sensors in tandem provide a monitoring system to better understand seasonal

nutrient loads in water bodies (Burton et al., 2018). Nutrient Film Technique, one of the hydroponics techniques, uses a

nutrient solution to drain on the root area and has been successfully applied in lettuce cultivation. Similarly, nutrients in

the soil are also crucial not only for higher crop yield but also for their disease-free or health status. Electrical conduc-

tivity, cation, and anion exchange capacities are used for estimating N, P, K, Ca, Mg, and S.

37.5.1.10 Smart greenhouse management

The smart or automated greenhouse management system can monitor climatic conditions and carry out robotic crop

treatments by utilizing AI with IoT technologies on a potentially large-scale for cultivation. They are customized and

specialized microfarming solution for individual farmers that incorporates sensors and actuators to fully automated

greenhouses which will additionally help in protecting against the external and environmental factors influence.

Therefore the greenhouses will monitor climatic conditions and carry out robotic treatments accordingly, including soil

preparation, sowing, weeding, and crop harvesting and predict from eliminating production errors to optimize produc-

tion costs for each microfarm (Burton et al., 2018; Yahya, 2018). In 2019, five international horticulture teams joined a

smart greenhouse experiment where each team grows a cucumber crop remotely for a 4-month-period in a compartment

equipped with standard actuators (ventilation, heating, lighting, screening, fogging, water CO2, and nutrient supply).

Control features were remotely determined by each team using their own AI algorithms, which varied between super-

vised, unsupervised, and reinforcement ML (Deep Reinforcement Learning, Dynamic Regression, GAN, CNN, RNN).

It was concluded that overall AI performed well in controlling a greenhouse and one team even outperformed the

manually-grown reference (Hemming et al., 2019).

37.5.1.11 Weather tracking and forecasting

Climate-crop association is very significant in agriculture. The variability in the climate makes accurate forecasting dif-

ficult. Currently, ML, DL algorithms, and specific crop models are being used to decode, forecast, and understand data-

intensive processes in agricultural operational environments (Dolci, 2017). In 2020, an improved data-driven global

weather forecasting framework/model using a deep CNN was developed for forecasting constant and accurate weather

patterns of several weeks and longer duration by using atmospheric state variables as input. The model computes realis-

tic forecasts and can be executed quickly; this further offers a potential opportunity for future developments (Weyn

et al., 2020).

37.5.2 As a service industry

There’s no doubt that technology is becoming faster, smarter, better; but many professions, by their very nature, from

artists and writers to doctors and nurses require human intervention; essentially due to the compassion, empathy, trust,

and personality which to date cannot be programmed into a machine. Currently, both China and the United States are

frontiers in adopting AI, with a 190% increase in the AI patents granted in the last five years and by the investing $10

billion approx. respectively. Similarly, Russia also aims to make 30 percent of its military equipment robotic by 2025

and the United Kingdom is an investment of over d603 million in the AI industry (Marinchak et al., 2018). Out of all

AI fields, the field and customer or advisory service is the one where AI is hugely embraced in the form of chatbots. AI

enables “predictive field service,” which anticipates service requirements and automatically adjusts processes accord-

ingly. For example, in agriculture, while tasks that are simple and monotonous can be easily automated, AI solutions

can be used to enhance the ability to decide based on recorded observations of a variety of parameters.

The AI-as-a-Service (AIaaS) refers to third-party that provide out-of-the-box AI solutions as a cost-effective alterna-

tive to developing AI software. AIaaS makes AI technology accessible to everyone even without writing code

(Beimborn et al., 2011). The popular solution includes Bots and APIs which utilize ML, NLP, and computer vision.
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Chatbots use AI algorithms to simulate human conversation by NLP and ML for understanding user queries and provide

relevant responses. AI-powered chatbots assist in a high-quality personalized experience, support, speed and efficiency,

and cost-saving. Currently, major industries that rely on AI in customer support or advisory service are food, travel,

finance, retail, airline, and clothing (Ivanov & Webster, 2017). Therefore similar can be applied in Agriculture where

farmers can get the information regarding best sowing, irrigation, and harvesting time based on the weather forecasting.

On a smaller scale, it has been implemented for farmers of few dozen villages in Karnataka, Andhra Pradesh,

Telangana, Madhya Pradesh, and Maharashtra through a joint effort Microsoft India and International Crop Research

Institute for the Semiarid Tropics (ICRISAT). Technologies like Cloud ML, Satellite Imagery, and Advanced Analytics

are optimized by Microsoft Cortana Intelligence Suite for providing higher crop yield and better price control using

data from geostationary satellite images without installing sensors implicitly on farmer’s field.

37.5.3 Biological sciences

Biological sciences are one of the most promising beneficiaries of AI. Currently, the use of Bioinformatics and AI algo-

rithms like ML, DL, ANN among others in exploring genetic mutations responsible for physiological changes to exam-

ining pathological effects. Biology generates immensely large, complex, and convoluted data that offers valuable

insights that could be used to improve our health with proper investigation and applications.

37.5.3.1 Bioinformatics

Bioinformatics is a multidisciplinary field to enhance understanding of biological data through developing methods,

tools, or software. With the aid of AI, ML, and DL, it can achieve its numerous objective such as gene expression anal-

ysis, protein classification, prediction, and pattern detection among others by utilizing varied datasets. Typically, a bio-

informatics approach includes predictive analytics where a query is searched against a previously known dataset or

annotation for forming any conclusive information. For instance, in protein structure and gene prediction or gene find-

ing predictive models that are generated using ML/DL algorithm such as K-Nearest Neighbor, SVM and neural net-

works among others methodically searches the genomic DNA for protein-coding genes (Asgari & Mofrad, 2015; Kelley

et al., 2012; Senior et al., 2020). Recent advances also employ computer vision and Deep Convolutional Neural

Networks for the identification of protein families and their subsequent classification. For instance, the protein pattern

classifier model developed by Optima AI derives multilabel multiclass classifications using high throughput cellular

microscopy images. Other subfields of bioinformatics where AI can play a significant role are Sequence/ Structure/

Functional analysis, integrative bioinformatics, protein interaction networks, metabolic networks, and pathway analysis.

Biomarker discovery, Pharmacogenomics, Functional Enrichment Analysis from omics data are the new emerging disci-

plines of Bioinformatics with the aid of AI.

37.5.3.2 Molecular biology and omics data mining

The advancement in omics technology has resulted in an expansion of molecular data in modern research. The devia-

tions of normal physiological processes are reflected by genes, DNAs, RNAs, proteins, and other biomolecules expres-

sions and profiles in different types of omics data. All the biological entities, that is, DNAs, RNAs, proteins, and other

biomolecules are immensely correlated; hence, the integrative analysis of multiomics data is required for making sense

of them. AI algorithms such as ML and DL has the adeptness to make decisive interpretation of this enormously com-

plex data and currently seems like the most effective tool for the analysis and understanding of multiomics data. For

instance, the combination of medical images and clinical datasets with the omics data has promoted precision and per-

sonalized medicine by creating predictive models and identifying patterns using computer vision and DL (Ahmed,

2020; Martorell-Marugán et al., 2019). In recent years the ML and DL are popularly being used in cancer and muscle

disease diagnostics and drug discovery (Preusse et al., 2020). Indivumed, founded in Hamburg, Germany in 2002, is an

integrated AI Platform that includes tools for immuno-oncology, clinical data, genomics, expression, and pathway ana-

lytics. PHARMA.AI, a fully AI-integrated drug discovery software suite that can be used for disease target identifica-

tion, synthetic biology generation and generation of novel molecules data, and predicting clinical trial outcomes.

Methods of identifying cancer progression is also being developed where epigenetic markers, that is, promoter methyla-

tion is established using epigenomics studies and ML for recognizing transcriptional accessibility and molecular pro-

cesses involved in development, tissue maintenance, disease states, and eventually aging (Chen et al., 2019).

Currently, the use of AI in omics is limited to phenomics which deals with phenome, that is, the entire phenotypes

expressed by a cell, tissue, organ, organism, or species primarily by using algorithms of the computer vision, DL and
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ML. Deep Plant Phenomics is a DL Platform developed for complex plant phenotyping tasks including leaf counting

for establishing the baseline for the mutant classification and age regression. Verily Life Sciences (formerly Google

Life Sciences and a subsidiary of Google’s parent company, Alphabet) in San Francisco, has developed a DL tool

“DeepVariant” for identification of SNPs from low-quality reference genomes and achieved an error rate of only B2%

as compared to 20% through conventional methods (Zhao et al., 2020). Atomwise, another San Francisco-based com-

pany, performs AI-driven molecular-screening using DL algorithms by converting the 3D structure of proteins and

small molecules into 3D pixel grids leading to high atomic and geometries precision. This further aids in predicting the

likely interaction between small molecules and a given protein. DL algorithms unravel categorization challenges by

examining molecular features like shape and hydrogen bonding among others for recognizing key criteria and ranking

potential drugs. Deep Genomics, Toronto-based company uses genomics and transcriptomics data from healthy cells for

predicting disease progression and treatment. DL algorithms based predictive models of RNA-processing events like

transcription, splicing, and polyadenylation using input datasets and applying on clinical data recognizes changes and

flag them as pathogenic (Rothman & Kraft, 2006). Even though the use of AI in plant omics is in the nascent stage, AI

can also be used in plant omics for recognizing the pattern, biomolecules, and molecular processes for a better under-

standing of biological processes.

37.5.3.3 System and synthetic biology

Recently, AI is introduced in the field of system and synthetic biology which deals with understanding at the organism,

tissue, or cell level by putting all of their pieces together and engineering biological systems, respectively. The AI can

help by designing more effective experiments and decisive data analytics for identifying novel genetic circuits under

system biology and engineering living organisms with new functions under synthetic biology. One major bottleneck of

biological experiments is the reductionist approach used in the majority of research experiments, that is, target generally

is a piece of biological process and is very specific; this causes a hinge during data analysis. The need for DL and ML-

based algorithms in biology is to both experiment designing and data analysis of varied data types (Artificial

Intelligence Methods & Tools For Systems Biology, 2004; Nesbeth et al., 2016). Using Riffyn’s ML and cloud-based

software platform, the designing, and standardization of experiments along with data analysis (or de novo) that are sig-

nificant as industrial enzymes to crops and their microbiomes utilizing its ML/DL based protein design platform. DL

techniques ensure correct folding and function of designed proteins. On completion of engineering, the new proteins are

produced by fermentation, bypassing the natural evolution of producing brand-new molecules. Distributed Bio, founded

in 2012 and based in San Francisco, utilizes the Tumbler platform through ML methods for revolutionizes therapeutics

by engineering protein to optimize existing antibodies. It created more than 500 million antibody variants, scores them

as per their binding to potential targets, and identify valuable changes for further improvement of antibodies, and syn-

thesis as well as testing of the top scorers (Artificial Intelligence Methods & Tools For Systems Biology, 2004; Nesbeth

et al., 2016). Synthetic biology has the potential to make noteworthy effects in virtually every sector: food, agriculture,

medicine, climate, energy, and materials.

37.6 Future perspective and challenges

The application of AI in several industries such as technology, banking, marketing, entertainment, and little in agricul-

ture has seen success. Even with many success stories, AI is affected by numerous issues and challenges in AI imple-

mentation such as limitation in computing power, trust deficit, knowledge, data privacy and security, algorithms bias,

and data scarcity. The amount of power required for implementing AI-related projects is one of the keys that is keeping

most developers away. Both ML and DL have an unlimited demand for the number of cores and GPUs to work effi-

ciently. Even with the cloud computing and massively parallel processing systems, which did provide hope for

increased AI implementation but as the data volumes go up, and DL moves toward automated creation of increasingly

complex algorithms, cloud computing will also reach its limits. The expenses incurred for AI computing are not easily

affordable and are bound to shore up as the inflow of unprecedented amounts of input data owing to the rapidly increas-

ing complex algorithms.

One of the most important factors that are a cause of worry for AI is the unknown nature of how DL models predict

the output which results in the lack of trust for AI solutions. Another factor that presents a significant challenge is the

goal of achieving human-like through AI. Every learning model enjoying B90% accuracy is easily lost to humans. For

instance, the model predicting whether an image is of a cat or a dog. Humans can easily achieve the spectacular .99%

accuracy; but to achieve the same through ML or DL would require extreme optimization, finetuning, a large dataset,
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and a well-defined and precise algorithm, along with exceptional computing power, uninterrupted training on train data,

and testing on test data. But still, even the specific pretrained models, trained on millions of images and are fine-tuned

for maximum accuracy, continue to show errors and struggle to grasp human-level performance.

Every AI model is based on the data collected from users around the world. Most of the AI applications are based

on massive volumes of data to learn and make intelligent decisions. Often the ML systems depend on sensitive and per-

sonal data for learning and improving themselves. Due to this systematic learning process, these ML systems can

become prone to data breaches and identity theft. The data collected can be used for good or bad purposes. As the

amount of data increases the storage and security requirement is also growing. To address this some companies have

started to train data on the smart device and only trained model is sent to servers, not the data itself. Still, not every AI

implementer can afford to go this route. The good or bad aspect of an AI system is directly depending on the amount of

data they are trained on; good data will lead to a good AI solution whereas the bad will lead to a bad solution.

Everyday data collected for AI training is generally of bad quality and holds no significance of its own. As the input

data of poor quality therefore the resulting solution will also reflect that quality and bias. For instance, if bad data is

associated with, communal, ethnic, gender, or racial biases is used for training the AI interference model then the model

will also carry that bias might lead to unethical and unfair results. Therefore it is emergent that the use for training AI

models is unbiased.

Data scarcity is primarily due to the stringent IT rules established by governments around the globe; as major enter-

prises are facing charges for unethical use of user data generated. The data is a core of AI, and labeled data is used for

training, learning, and making predictions. A few companies are innovating new methodologies that can give precise

results despite the data scarcity. But it is well known that biased information can only lead to a biased and flawed AI

system.

Regardless of the type of AI, or its application, it is in the midst of a computational revolution and soon its tendrils

will be beyond the “computer world.” In the coming decades, the application of AI will increase manifold with its fast

adoption rates. For that to achieve hardware with greater performance, computational power, cost efficiency for training

sophisticated are need to be developed. Besides silicon chips, other materials and newer architecture for cloud and edge

computing are the focus of current AI research.

37.7 Conclusion

The impact of AI on human lives and the economy has been astonishing. AI contribution toward the world economy is

projected to be around B$15.7 trillion by 2030. To take that into perspective, that’s about the combined economic out-

put of China and India as of today. With various companies predicting that the use of AI can boost business productiv-

ity by up to 40%, the dramatic increase in the number of AI start-ups has magnified 14 times since 2000. The AI

application and potential are widespread from automation to complex prediction to agriculture to health much more.

Although AI challenges seem very depressing and devastating for mankind, through the collective effort of people, they

can be effectively tackled.
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